Полная мощность трансформатора: Активная мощность трансформатора формула — Морской флот

Содержание

Активная мощность трансформатора формула — Морской флот

Простое объяснение с формулами

Активная мощность (P)

Другими словами активную мощность можно назвать: фактическая, настоящая, полезная, реальная мощность. В цепи постоянного тока мощность, питающая нагрузку постоянного тока, определяется как простое произведение напряжения на нагрузке и протекающего тока, то есть

потому что в цепи постоянного тока нет понятия фазового угла между током и напряжением. Другими словами, в цепи постоянного тока нет никакого коэффициента мощности.

Но при синусоидальных сигналах, то есть в цепях переменного тока, ситуация сложнее из-за наличия разности фаз между током и напряжением. Поэтому среднее значение мощности (активная мощность), которая в действительности питает нагрузку, определяется как:

В цепи переменного тока, если она чисто активная (резистивная), формула для мощности та же самая, что и для постоянного тока: P = U I.

Формулы для активной мощности

P = U I – в цепях постоянного тока

P = U I cosθ – в однофазных цепях переменного тока

P = √3 UL IL cosθ – в трёхфазных цепях переменного тока

P = √ (S 2 – Q 2 ) или

P =√ (ВА 2 – вар 2 ) или

Активная мощность = √ (Полная мощность 2 – Реактивная мощность 2 ) или

кВт = √ (кВА 2 – квар 2 )

Реактивная мощность (Q)

Также её мощно было бы назвать бесполезной или безваттной мощностью.

Мощность, которая постоянно перетекает туда и обратно между источником и нагрузкой, известна как реактивная (Q).

Реактивной называется мощность, которая потребляется и затем возвращается нагрузкой из-за её реактивных свойств. Единицей измерения активной мощности является ватт, 1 Вт = 1 В х 1 А. Энергия реактивной мощности сначала накапливается, а затем высвобождается в виде магнитного поля или электрического поля в случае, соответственно, индуктивности или конденсатора.

Реактивная мощность определяется, как

и может быть положительной (+Ue) для индуктивной нагрузки и отрицательной (-Ue) для емкостной нагрузки.

Единицей измерения реактивной мощности является вольт-ампер реактивный (вар): 1 вар = 1 В х 1 А. Проще говоря, единица реактивной мощности определяет величину магнитного или электрического поля, произведённого 1 В х 1 А.

Формулы для реактивной мощности

Реактивная мощность = √ (Полная мощность 2 – Активная мощность 2 )

квар = √ (кВА 2 – кВт 2 )

Полная мощность (S)

Полная мощность – это произведение напряжения и тока при игнорировании фазового угла между ними. Вся мощность в сети переменного тока (рассеиваемая и поглощаемая/возвращаемая) является полной.

Комбинация реактивной и активной мощностей называется полной мощностью. Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью.

Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А. Если цепь чисто активная, полная мощность равна активной мощности, а в индуктивной или ёмкостной схеме (при наличии реактивного сопротивления) полная мощность больше активной мощности.

Формула для полной мощности

Полная мощность = √ (Активная мощность 2 + Реактивная мощность 2 )

kUA = √(kW 2 + kUAR 2 )

Следует заметить, что:

  • резистор потребляет активную мощность и отдаёт её в форме тепла и света.
  • индуктивность потребляет реактивную мощность и отдаёт её в форме магнитного поля.
  • конденсатор потребляет реактивную мощность и отдаёт её в форме электрического поля.

Все эти величины тригонометрически соотносятся друг с другом, как показано на рисунке:

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

ОбозначениеРасшифровкаЗначение
НННоминальное напряжение, кВ6
ЭаАктивная электроэнергия, потребляемая за месяц, кВи*ч37106
НМНоминальная мощность, кВА630
ПКЗПотери короткого замыкания трансформатора, кВт7,6
ХХПотери холостого хода, кВт1,31
ОЧЧисло отработанных часов под нагрузкой, ч720
cos φКоэффициент мощности0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

% потерь составляет 0,001. Их общее число равняется 0,492%.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА – киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы – нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН – это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной , как раз она то и измеряется в кВт – киловаттах.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной .

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные.

Ёмкостная

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА – киловольт-амперах . Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S (полная мощность)= P (активная мощность)/ k (коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт – это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Почему мощность трансформатора измеряют в ква, а не в квт ? — RozetkaOnline.COM

Многим из нас известна основная единица мощности – Ватт (Вт) или чаще используется его производная киловатт (кВт) и вы привыкли, что эта характеристика у электрооборудования указывается именно в них.

Но если взять трансформатор или приборы, в которых он является основным компонентом, например, стабилизаторы напряжения, вы увидите, что мощность там указана в кВА — киловольт-амперах.

Давайте разберемся, что такое кВА, почему именно в этих единицах измерения указывается мощность трансформатора и как она связана с обычными киловаттами.

Я не буду выкладывать здесь определения из учебников и сыпать физическими терминами, объясню коротко, простыми словами, чтобы было понятно любому.

В первую очередь, вы должны знать, что у некоторых электроприборов, работающих от переменного тока, не вся потребляемая мощность тратится на совершение полезной работы

— нагрева, освещения, звучания, вращения и т.д.

Всего существует четыре основных типа нагрузок, которые могут подключаться в частности к трансформатору:

Резистивная

 

Ярким примером резистивной нагрузки является ТЭН, который нагревается при протекании через него электрического тока.

ТЭН — это обычное сопротивление, ему не важно в какую сторону протекает по нему ток, правило одно, чем сила тока больше, тем больше тепла вырабатывается – соответственно вся мощность тратится на это.

Мощность, которая тратится на резистивной нагрузке называется – активной, как раз она то и измеряется в кВт – киловаттах

.

Индуктивная

Знакомым всем примером индуктивной нагрузки является электродвигатель, в нём не весь проходящий электрический ток тратится на вращения. Часть расходуется на создание электромагнитного поля в обмотке или теряется в медном проводнике, эта составляющая мощности называется реактивной.

Реактивная мощность не тратится на совершение работы напрямую, но она необходима для функционирования оборудования.

Кстати, индуктивные электрические плиты, которые так хотят заполучить многие домохозяйки, также используют реактивную мощность, в отличии от обычных электроплит, в которых нагреваются ТЭНы, те чисто резистивные. 

Ёмкостная

 

Еще один пример реактивной составляющей мощности содержит ёмкостная нагрузка, это, например, конденсатор. Принцип работы конденсатора – накапливание и передача энергии, соответственно часть мощности тратится именно на это и напрямую не расходуется на работу оборудования.

Практическаи вся окружающая вас электроника и бытовая техника содержит конденсаторы.

Смешанная

 

Здесь всё просто, смешенная нагрузка сочетает в себе все представленные выше, активную и реактивные составляющие, большинство бытовых приборов именно такие.

Полная мощность электрооборудования, состоит как из активной мощности, так и из реактивной, и измеряется в кВА — киловольт-амперах. Именно она чаще всего указана в характеристиках трансформатора.

Производители трансформаторов не могут знать, какого типа нагрузка к ним будет подключена и где они будут задействованы, поэтому и указывают полную мощность, для смешенной нагрузки.

Так, если нагрузка трансформатора — это ТЭН, то полная мощность будет равна активной, соответственно значение в кВт = кВА, если же нагрузка будет смешенная, включающая реактивную составляющую, то мощность нагрузки должна учитываться полная.

Будьте внимательны, нередко, на электрооборудовании, например, на электроинструменте, мощность прописана в киловаттах, но кроме того указан коэффициент мощности k. В этом случае, вы должны знать простую формулу:

S(полная мощность)=P(активная мощность)/k(коэффициент мощности)

Так, например, если мощность перфоратора P = 2,5кВт, а его коэффициент мощности k = 0,9, то полная мощность перфоратора будет равна S=2,5кВт/0,9=2,8 кВА, именно на столько он будет нагружать сеть.

Теперь, я думаю, вам понятно, почему мощность трансформатора измеряют в кВА, а не в кВт — это позволяет учитывать все виды нагрузок, которые могут подключаться к его вторичной обмотке.

Поэтому, обязательно учитывайте полную мощность указываемую в кВА или коэффициент мощности обордования, перед подключением к трансформатору.

Если же у вас еще остались какие-то вопросы – обязательно оставляйте их в комментариях к статье, кроме того, если есть что добавить, нашли неточности или есть, что возразить – также пишите!

Расчет полной мощности трансформатора. Силовой трансформатор

При проектировании трансформаторов основным параметром является его мощность. Именно она определяет габариты трансформатора. При этом основным определяющим фактором будет полная мощность, отдаваемая в нагрузку:

Для трансформатора с большим количеством вторичных обмоток полную мощность можно определить, просуммировав мощности, потребляемые нагрузками, подключенными ко всем его обмоткам:

(2)

При полностью резистивной нагрузке (отсутствие индуктивной и емкостной составляющей в токе) потребляемая мощность активна и равна отдаваемой мощности S 2 . При расчете трансформатора важным параметром является типовая или габаритная мощность трансформатора. В этом параметре кроме полной мощности учитывается мощность, потребляемая трансформатором от сети по первичной обмотке. Типовая мощность трансформатора вычисляется следующим образом:

(3)

Определим типовую мощность для трансформатора с двумя обмотками. Полная мощность первичной обмотки S 1 = U 1 I 1 , где U 1 , I 1 — действующие значения напряжения и тока Именно этой мощностью определяются габариты первичной обмотки. При этом число витков первичной обмотки трансформатора зависит от входного напряжения, сечение провода от протекающего по ней максимального тока (действующее значение). Габаритная мощность трансформатора определяет необходимое сечение сердечника s с. Ее можно рассчитать следующим образом:

(4)

Напряжение на первичной обмотке трансформатора можно определить из выражения U 1 = 4k ф W 1 fs B m , где s – площадь сечения сердечника магнитопровода, определяемая как произведение ширины сердечника на его толщину. Эквивалентная площадь сечения сердечника трансформатора обычно меньше и зависит от толщины пластин или ленты и расстояния между ними, поэтому при расчете трансформатора вводится коэффициент заполнения сердечника, который определяется как отношение эквивалентной площади сечения сердечника магнитопровода к его геометрической площади . Его значение обычно равно

k c = 1 … 0,5 и зависит от толщины ленты. Для прессованных сердечников (изготовленных из феррита, альсифера или карбонильного железа) k c = 1. Таким образом, s = k c s c и выражение для напряжения первичной обмотки трансформатора принимает следующий вид:

U 1 = 4k ф k c W 1 fs c B m (5)

Аналогичное выражение можно записать и для вторичной обмотки. В трансформаторе с двумя обмотками мощность первичной обмотки и типовая мощность трансформатора равны. Мощность первичной обмотки можно определить по следующему выражению:

U 1 = U 1 I 1 = 4
k
ф k c fs c B m W 1 I 1 (6)

При этом типовая мощность трансформатора будет рассчитываться по следующей формуле:

(7)

Отношение тока в проводе обмотки к его сечению называется плотностью тока. В правильно рассчитанном трансформаторе плотность тока во всех обмотках одинакова:

(8) где s обм1 , s обм2 — площади сечения проводников обмоток.

Заменим токи I 1 = js обм1 и I 2 = js обм2 , тогда сумма в скобках выражения (7) может быть записана следующим образом: W 1 I 1 + W 2 I 2 = ,

j (s обм1 W 1 + s обм2 W 2) = js м, где s м — сечение всех проводников (меди) в окне сердечника трансформатора. На рисунке 1 приведена упрощенная конструкция трансформатора, где отчетливо видны площадь сердечника s с, площадь окна магнитопровода s ок и площадь, занимаемая проводниками первичной и вторичной обмоток s м.


Рисунок 1 Упрощенная конструкция трансформатора

Введём коэффициент заполнения окна медью . Его величина находится в пределах k м = 0,15 … 0,5 и зависит от толщины изоляции проводов, конструкции каркаса обмоток, межслойной изоляции, способа намотки провода.

Тогда js м = jk м s ок и выражение для типовой мощности трансформатора можно записать следующим образом:

(9)

Из выражения (9) следует, что типовая мощность определяется произведением s с s ок. При увеличении линейного размера трансформатора в m раз, его объём (масса) увеличится в m³ раз, а мощность возрастёт в m 4 раз. Поэтому, удельные массо-габаритные показатели трансформаторов улучшаются с увеличением номинальной мощности. С этой точки зрения предпочтительны многообмоточные трансформаторы по сравнению с несколькими двухобмоточными.

При разработке конструкции трансформаторов стараются увеличить коэффициент заполнения окна сердечника обмотками, так как при этом возрастает значение номинальной мощности S тип. Для достижения этой цели применяются обмоточные проводники с прямоугольным сечением. Следует отметить, что при практических расчетах формулу (9) преобразуют к более удобному виду.

(10)

При расчете трансформатора по заданной мощности на нагрузке исходя из выражения (10) определяется произведение s с s ок. Затем по справочнику выбирается конкретный тип и размер магнитопровода трансформатора, у которого этот параметр будет больше или равен рассчитанному значению. Затем приступают к расчету количества витков в первичной и вторичной обмотках. Рассчитывают диаметр провода и проверяют, помещаются ли обмотки в окне магнитопровода.

Литература:

Вместе со статьей «Мощность трансформатора» читают:


http://сайт/BP/KlassTransf/


http://сайт/BP/SxZamTransf/

В домашнем хозяйстве бывает необходимо оборудовать освещение в сырых помещениях: подвале или погребе и т.д. Эти помещения имеют повышенную степень опасности поражения электрическим током.
В этих случаях следует пользоваться электрооборудованием рассчитанным на пониженное напряжение питания, не более 42 вольт .

Можно пользоваться электрическим фонарем с батарейным питанием или воспользоваться понижающим трансформатором с 220 вольт на 36 вольт.
Рассчитаем и изготовим однофазный силовой трансформатор 220/36 вольт, с выходным напряжением 36 вольт с питанием от электрической сети переменного тока напряжением 220 вольт.

Для освещения таких помещений подойдет электрическая лампочка на 36 Вольт и мощностью 25 — 60 Ватт. Такие лампочки с цоколем под обыкновенный электропатрон продаются в магазинах электротоваров.
Если вы найдете лампочку на другую мощнось, например на 40 ватт , нет ничего страшного — подойдет и она. Просто трансформатор будет выполнен с запасом по мощности.

СДЕЛАЕМ УПРОЩЕННЫЙ РАСЧЕТ ТРАНСФОРМАТОРА 220/36 ВОЛЬТ.

Мощность во вторичной цепи: Р_2 = U_2 · I_2 = 60 ватт

Где:
Р_2 – мощность на выходе трансформатора, нами задана 60 ватт ;

U _2 — напряжение на выходе трансформатора, нами задано 36 вольт ;

I _2 — ток во вторичной цепи, в нагрузке.

КПД трансформатора мощностью до 100 ватт обычно равно не более η = 0,8 .
КПД определяет, какая часть мощности потребляемой от сети идет в нагрузку. Оставшаяся часть идет на нагрев проводов и сердечника. Эта мощность безвозвратно теряется.

Определим мощность потребляемую трансформатором от сети с учетом потерь:

Р_1 = Р_2 / η = 60 / 0,8 = 75 ватт .

Мощность передается из первичной обмотки во вторичную через магнитный поток в магнитопроводе.Поэтому от значения Р_1 , мощности потребляемой от сети 220 вольт, зависит площадь поперечного сечения магнитопровода S .

Магнитопровод – это сердечник Ш – образной или О – образной формы, набранный из листов трансформаторной стали. На сердечнике будут располагаться первичная и вторичная обмотки провода.

Площадь поперечного сечения магнитопровода рассчитывается по формуле:

S = 1,2 · √P_1.

Где:
S — площадь в квадратных сантиметрах,

P _1 — мощность первичной сети в ваттах.

S = 1,2 · √75 = 1,2 · 8,66 = 10,4 см².

По значению S определяется число витков w на один вольт по формуле:

w = 50/S

В нашем случае площадь сечения сердечника равна S = 10,4 см. кв.

w = 50/10,4 = 4,8 витка на 1 вольт.

Рассчитаем число витков в первичной и вторичной обмотках.

Число витков в первичной обмотке на 220 вольт:

W1 = U_1 · w = 220 · 4.8 = 1056 витка.

Число витков во вторичной обмотке на 36 вольт:

W2 = U_2 · w = 36 · 4,8 = 172.8 витков ,

округляем до 173 витка .

В режиме нагрузки может быть заметная потеря части напряжения на активном сопротивлении провода вторичной обмотки. Поэтому для них рекомендуется число витков брать на 5-10 % больше рассчитанного. Возьмем W2 = 180 витков.

Величина тока в первичной обмотке трансформатора:

I_1 = P_1/U_1 = 75/220 = 0,34 ампера .

Ток во вторичной обмотке трансформатора:

I_2 = P_2/U_2 = 60/36 = 1,67 ампера.

Диаметры проводов первичной и вторичной обмоток определяются по значениям токов в них исходя из допустимой плотности тока, количества ампер на 1 квадратный миллиметр площади проводника. Для трансформаторов плотность тока, для медного провода, принимается 2 А/мм² .

При такой плотности тока диаметр провода без изоляции в миллиметрах определяется по формуле: d = 0,8√I .

Для первичной обмотки диаметр провода будет:

d_1 = 0,8 · √1_1 = 0,8 · √0,34 = 0,8 · 0,58 = 0,46 мм. Возьмем 0,5 мм .

Диаметр провода для вторичной обмотки:

d_2 = 0,8 · √1_2 = 0,8 · √1,67 = 0,8 · 1,3 = 1,04 мм. Возьмем 1,1 мм.

ЕСЛИ НЕТ ПРОВОДА НУЖНОГО ДИАМЕТРА, то можно взять несколько, соединенных параллельно, более тонких проводов. Их суммарная площадь сечения должна быть не менее той, которая соответствует рассчитанному одному проводу.

Площадь поперечного сечения провода определяется по формуле:

s = 0,8 · d².

где : d — диаметр провода .

Например: мы не смогли найти провод для вторичной обмотки диаметром 1,1 мм.

Площадь поперечного сечения провода диаметром 1,1 мм. равна:

s = 0,8 · d² = 0,8 · 1,1² = 0,8 · 1,21 = 0,97 мм² .

Округлим до 1,0 мм².

Из таблицы выбираем диаметры двух проводов сумма площадей сечения которых равна 1.0 мм².

Например, это два провода диаметром по 0,8 мм . и площадью по0,5 мм² .

Или два провода:
— первый диаметром 1,0 мм . и площадью сечения 0,79 мм² ,
— второй диаметром 0,5 мм . и площадью сечения 0,196 мм² .
что в сумме дает: 0,79 + 0,196 = 0,986 мм².

Намотка катушки ведется двумя проводами одновременно, строго выдерживается равное количество витков обоих проводов. Начала этих проводов соединяются между собой. Концы этих проводов также соединяются.

Получается как бы один провод с суммарным поперечным сечением двух проводов.

Смотрите статьи:
— «Как намотать трансформатор на Ш-образном сердечнике».
— «Как изготовить каркас для Ш — образного сердечника».

Электрический аппарат — трансформатор используется для преобразования поступающего переменного напряжения в другое — исходящее, к примеру: 220 В в 12 В (конкретно это преобразование достигается использованием понижающего трансформатора). Прежде чем разбираться с тем, как рассчитать трансформатор, вы в первую очередь должны обладать знаниями о его структуре.

Простейший трансформатор является компоновкой магнитопровода и обмоток 2-х видов: первичной и вторичной, специально намотанных на него. Первичная обмотка воспринимает подающееся переменное напряжение от сети (н-р: 220 В), а вторичная обмотка, посредством индуктивной связи создает другое переменное напряжение. Разность витков в обмотках влияет на выходное напряжение.

Расчет ш-образного трансформатора

  1. Рассмотрим на примере процесс расчета обычного Ш-образного трансформатора. Предположим, даны параметры: сила тока нагрузки i2=0,5А, выходное напряжение (напряжение вторичной обмотки) U2=12В, напряжение в сети U1=220В.
  2. Первым показателем определяется мощность на выходе: P2=U2ˣi2=12ˣ0,5=6 (Вт). Это значит, что подобная мощность предусматривает использование магнитопровода сечением порядка 4 см² (S=4).
  3. Потом определяют количество витков, необходимых для одного вольта. Формула для данного вида трансформатора такая: К=50/S=50/4=12,5 (витков/вольт).
  4. Затем, определяют количество витков в первичной обмотке: W1=U1ˣK=220ˣ12,5=2750 (витков). А затем количество витков, расположенных во вторичной обмотке: W2=U2ˣK=12ˣ12,5=150.
  5. Силу тока, возникающую в первичной обмотке, рассчитайте так: i1=(1,1×P2)/U1=(1,1×6)/220=30мА.Это позволит рассчитать размер диаметра провода, заложенного в первичную обмотку и не оснащенного изоляцией. Известно, что максимальная сила тока для провода из меди равна 5-ти амперам на мм², из чего следует, что: d1=5А/(1/i1)=5A/(1/0,03А)=0,15 (мм).
  6. Последним действием будет расчет диаметра провода вторичной обмотки с использованием формулы d2=0,025ˣ√i2 , причем значение i2 используется в миллиамперах (мА): d2=0,025ˣ22,4=0,56 (мм).

Как рассчитать мощность трансформатора

  1. Напряжение, имеющееся на вторичной обмотке, и max ток нагрузки узнайте заранее. Затем умножьте коэффициент 1,5 на ток максимальной нагрузки (измеряемый в амперах). Так вы определите обмотку второго трансформатора (также в амперах).
  2. Определите мощность, которую расходует выпрямитель от вторичной обмотки рассчитываемого трансформатора: умножьте максимальный ток, проходящий через нее на напряжение вторичной обмотки.
  3. Подсчитайте мощность трансформатора посредством умножения максимальной мощности на вторичной обмотке на 1,25.

Если вам необходимо определить мощность трансформатора, который потребуется для конкретных целей, то нужно суммировать мощность установленных энергопотребляющих приборов с 20%-ми, для того, чтобы он имел запас. Например, если у вас имеется 10м светодиодной полосы, потребляющей 48 ватт, то вам необходимо к этому числу прибавить 20%. Получится 58 ватт – минимальная мощность трансформатора, который нужно будет установить.

Как рассчитать трансформатор тока

Основной характеризующей чертой трансформатора является коэффициент трансформации, который указывает, насколько изменятся основные параметры тока, вследствие его прохождения через это устройство.

Если коэффициент трансформации превышает 1, значит, трансформатор является понижающим, а если меньше этого показателя, то повышающим.

  1. Обычный трансформатор образован из двух катушек. Определитесь с количеством витков катушек N1 и N2, которые соединены магнитопроводом. Узнайте коэффициент трансформации k посредством деления количества витков первичной катушки N1, подключенной к источнику тока, на число витков катушки N2, к которой подключена нагрузка: k=N1/N2.
  2. Проведите измерение электродвижущей силы (ЭДС) на обоих трансфорсматорных обмотках ε1 и ε2, если отсутствует возможность узнать число витков в них. Сделать это можно так: к источнику тока подключите первичную обмотку. Получится так называемый холостой ход. Используя тестер, определите напряжение на каждой обмотке. Оно будет соответствовать ЭДС измеряемой обмотки. Не забывайте, что возникающие потери энергии из-за сопротивления обмоток настолько малы, что ими можно пренебречь. Коэффициент трансформации рассчитывается через отношение ЭДС первичной обмотки к ЭДС вторичной: k= ε1/ε2.
  3. Узнайте коэффициент трансформации находящегося в работе трансформатора, когда потребитель присоединен к вторичной обмотке. Определите его путем деления тока в первичной I1 обмотке, на возникший ток во вторичной I2 обмотке. Измерьте ток посредством последовательного присоединения тестера (переключенного в режим работы амперметра) к обмоткам: k=I1/I2.

В быту и технике широко применяется низковольтная аппаратура. Этот факт требует использования устройств, понижающих стандартное напряжение до необходимого уровня. Нужно создать прибор, который соответствует предъявляемым нормам. Перед электриком встаёт задача, как определить мощность трансформатора. Знание элементарных физических законов помогает решить проблему.

Теория и история

Латинское слово transformare переводится на русский язык как «превращение». Трансформатор предназначен для изменения уровня входного напряжения на определённую величину. Устройство состоит из одной или нескольких обмоток на замкнутом магнитопроводе. Катушки наматываются из алюминиевого или медного провода. Сердечник набирается из пластин с повышенными ферромагнитными свойствами.

Первичная обмотка присоединяется к электрической сети переменного тока. Во вторичную обмотку включается устройство, которому требуется напряжение другой величины.

После подключения к трансформатору питания в магнитопроводе появляется замкнутый магнитный поток, который индуцирует в каждой катушке переменную электродвижущую силу. Закон Фарадея гласит, что ЭДС равна скорости изменения магнитного потока, который проходит через электромагнитный контур. Знак «минус» указывает на противоположность направлений магнитного поля и ЭДС.

Формула e = − n (∆Ф ∕ ∆ t) объединяет следующие понятия:

  • Электродвижущая сила e, исчисляемая в вольтах.
  • Количество витков n в индукторе.
  • Магнитный поток Ф, единица измерения которого называется вебером.
  • Время t, необходимое для одной фазы изменения магнитного поля.

Учитывая незначительность потерь в катушке индуктивности, ЭДС приравнивается к напряжению в обмотке. Отношение напряжений в первичной и вторичной обмотке равно отношению количества витков в двух катушках. Отсюда выводится формула трансформатора:

K ≈ U ₁ ∕ U ₂ ≈ n ₁ ∕ n ₂.

Коэффициент K всегда больше единицы. В трансформаторе изменяется только напряжение и сила тока. Умноженные друг на друга, они определяют мощность прибора, постоянную величину для конкретного устройства. Соотношение тока и напряжения в обмотках раскрывает формула:

K = n₁ ∕ n₂ = I ₂ ∕ I₁ = U₁ ∕ U₂.

Иначе говоря, во сколько раз уменьшено напряжение во вторичной обмотке в сравнении с напряжением в первичной катушке, во столько раз сила тока во вторичной катушке больше тока в первичной обмотке. Различное напряжение устанавливается количеством витков в каждом индукторе. Формула, описывающая коэффициент K, объясняет, как рассчитать трансформатор.

Трансформатор предназначен для работы в цепи переменного напряжения. Постоянный ток не индуцирует ЭДС в магнитопроводе, и электрическая энергия не передаётся в другую обмотку.

Ещё в 1822 году Фарадей озаботился мыслью, как превратить магнетизм в электрический ток. Многолетние исследования приводят к созданию цикла статей, в которых описывалось физическое явление электромагнитной индукции. Фундаментальный труд публиковался в научном журнале английского Королевского общества.

Суть опытов состояла в том, что исследователь намотал два куска медной проволоки на кольцо из железа. К одной из катушек подключался постоянный ток. Гальванометр, соединённый с контактами другой обмотки, фиксировал кратковременное появление напряжения. Чтобы восстановить индукцию, экспериментатор отключал источник питания, а затем вновь замыкал контакты на батарею.

Работу Майкла Фарадея высоко оценило научное сообщество Великобритании. В 1832 году физик удостоился престижной награды. За выдающиеся работы в области электромагнетизма учёный награждён медалью Копли.

Однако устройство, собранное Фарадеем, ещё трудно назвать трансформатором. Аппарат, который действительно преобразовывал напряжение и ток, запатентован в Париже 30 ноября 1876 года. В 80-х годах позапрошлого столетия автор изобретения и конструктор трансформатора П. Н. Яблочков жил во Франции. В это же время выдающийся русский электротехник представил миру и прообраз прожектора — «свечу Яблочкова».

Расчёт параметров прибора

Иногда в руки к электрику попадает прибор без описания технических характеристик. Тогда специалист определяет мощность трансформатора по сечению магнитопровода. Площадь сечения находится перемножением ширины и толщины сердечника. Полученное число возводится в квадрат. Результат укажет на примерную мощность устройства.

Желательно, чтобы площадь магнитопровода немного превышала расчётное значение. Иначе тело сердечника попадёт в область насыщения магнитного поля, что приведёт к падению индуктивности и сопротивления катушки. Этот процесс увеличит уровень проходящего тока, вызовет перегрев устройства и поломку.

Практический расчёт силового трансформатора не займёт много времени. Например, перед домашним мастером стоит задача осветить рабочий уголок в гараже. В помещении имеется бытовая розетка на 220 В, в которую необходимо подключить светильник с лампой мощностью 40 Вт на 36 В. Требуется рассчитать технические параметры понижающего трансформатора.

Определение мощности

Во время работы устройства неизбежны тепловые потери. При нагрузке, не превышающей 100 Вт, коэффициент полезного действия равен 0,8. Истинная потребная мощность трансформатора P₁ определяется делением мощности лампы P₂ на КПД:

P₁ = P₂ ∕ μ = 40 ∕ 0‚8 = 50

Округление осуществляется в бо́льшую сторону. Результат 50 Вт.

Вычисление сечения сердечника

От мощности трансформатора зависят размеры магнитопровода. Площадь сечения определяется следующим образом.

S = 1‚2∙√P₁ = 1‚2∙ 7‚07 = 8‚49

Поперечное сечение сердечника должно иметь площадь не менее 8‚49 см².

Расчёт количества витков

Площадь магнитопровода помогает определить количество витков провода на 1 вольт напряжения:

n = 50 ∕ S = 50 ∕ 8‚49 = 5‚89.

Разности потенциалов в один вольт будут соответствовать 5‚89 оборотам провода вокруг сердечника. Поэтому первичная обмотка с напряжением 220 В состоит из 1296 витков, а для вторичной катушки потребуется 212 витков. Во вторичной обмотке происходят потери напряжения, вызванные активным сопротивлением провода. Вследствие этого специалисты рекомендуют увеличить количество витков в выходной катушке на 5−10%. Скорректированное число витков будет равно 233.

Токи в обмотках

Следующий этап — нахождение силы тока в каждой обмотке, которое вычисляется делением мощности на напряжение. После нехитрых подсчётов получается требуемый результат.

В первичной катушке I₁ = P₁ ∕ U₁ = 50 ∕ 220 = 0‚23 ампера, а во вторичной катушке I₂ = P₂ ∕ U₂ = 40 ∕ 36 = 1‚12 ампера.

Диаметр провода

Расчёт обмоток трансформатора завершается определением толщины провода, сечение которого вычисляется по формуле: d = 0‚8 √ I. Слой изоляции в расчёт не берётся. Проводник входной катушки должен иметь диаметр:

d₁ = 0‚8 √I₁ =0‚8 √0‚23 = 0‚8 ∙ 0‚48 = 0‚38.

Для намотки выходной обмотки потребуется провод с диаметром:

d₂ = 0‚8 √I₂ =0‚8 √1‚12 = 0‚8 ∙ 1‚06 = 0‚85.

Размеры определены в миллиметрах. После округления получается, что первичная катушка наматывается проволокой толщиной 0‚5 мм, а на вторичную обмотку подойдёт провод в 1 мм.

Виды и применение трансформаторов

Области использования трансформаторов разнообразны. Устройства, повышающие напряжение, эксплуатируются в промышленных целях для транспортировки электроэнергии на значительные расстояния. Понижающие трансформаторы используются в радиоэлектронике и для подсоединения бытовой техники.

Некоторые народные умельцы, недовольные пониженным напряжением в сети, рискуют включать бытовые приборы через повышающий трансформатор. Спонтанный скачок напряжения может привести к тому, что яркий комнатный свет заменит очень яркое пламя пожара.

По задачам, которые решает трансформатор, приборы делятся на основные виды:

Любое изменение параметров электричества в цепи связано с трансформатором. Специалисту, проектирующему электронные схемы, необходимо знание природы электромагнетизма. Технология расчёта обмоток трансформатора основана на базовых формулах физики.

Электротехнику, занятому рутинным делом намотки трансформатора, стоит помянуть добрым словом дядюшку Фарадея, который открыл замечательный закон электромагнитной индукции. Глядя на готовое устройство, следует также вспомнить великого соотечественника, русского изобретателя Павла Николаевича Яблочкова.

Трансформаторы используются в блоках питания различной аппаратуры для преобразования переменного напряжения. Блоки питания, собранные по трансформаторной схеме, постепенно снижают распространенность благодаря тому, что современная схемотехника позволяет понизить напряжение без самого громоздкого и тяжелого элемента системы питания. Трансформаторы для блока питания актуальны в тех случаях, когда габариты и масса не критичны, а требования к безопасности велики. Обмотки (кроме автотрансформатора) осуществляют гальваническое разделение и изоляцию цепей первичного (или сетевого) и вторичного (выходного) напряжений.

Jpg?x15027″ alt=»Трансформатор»>

Трансформатор

Принцип действия и разновидности трансформаторов

Работа устройства основана на всем известном явлении электромагнитной индукции. Переменный ток, проходящий через провод первичной обмотки, наводит переменный магнитный поток в стальном сердечнике, а он, в свою очередь, вызывает появление напряжения индукции в проводе вторичных обмоток.

Совершенствование трансформатора с момента его изобретения сводится к выбору материала и конструкции сердечника (магнитопровода).

Типы сердечников

Металл для магнитопровода должен иметь определенные технические характеристики, поэтому были разработаны специальные сплавы на основе железа и особая технология производства.

Для изготовления трансформаторов наибольшее распространение получили следующие типы магнитопроводов:

  • броневые;
  • стержневые;
  • кольцевые.

Силовой трансформатор низкой частоты, как понижающий, так и повышающий, имеет сердечник из отдельных пластин трансформаторного железа. Такая конструкция выбрана из соображения минимизации потерь из-за образования вихревых токов в сердечнике, которые нагревают его и снижают КПД трансформатора.

Броневые сердечники наиболее часто выполняются из Ш-образных пластин. Стержневые магнитопроводы могут изготавливаться из П-образных, Г-образных или прямых пластин.

Кольцевые магнитопроводы выполняются из тонкой ленты трансформаторной стали, намотанной на оправку и скрепленной клеящим составом.

Из ленты также могут выполняться броневые и стержневые сердечники, причем такая технология наиболее часто встречается у маломощных устройств.

Jpg?x15027″ alt=»Виды магнитопроводов»>

Виды магнитопроводов

Ниже приведена методика расчета трансформатора, где показано:

  • как рассчитать мощность трансформатора;
  • как выбрать сердечник;
  • как определить количество витков и сечение (диаметр) проводов обмоток;
  • как собрать и проверить готовую конструкцию.

Исходные данные, необходимые для расчета

Расчет сетевого трансформатора начинается с определения его полной мощности. Поэтому, перед тем, как рассчитать трансформатор, нужно определиться с мощностью потребления всех, без исключения, вторичных обмоток. Согласно мощности выбирается сечение сердечника. Опять же, от мощности определенным образом зависит и КПД. Чем больше полная мощность, тем выше КПД. Принято в расчетах ориентироваться на такие значения:

  • до 50 Вт – КПД 0. 6;
  • от 50 Вт до 100 Вт – КПД 0.7;
  • от 100 Вт до 150 Вт – КПД 0.8;
  • выше 150 Вт – КПД 0.85.

Количество витков сетевой и вторичной обмоток рассчитывается уже после выбора магнитопровода. Диаметр или поперечное сечение проводов каждой обмотки определяется на основании протекающих через них токов.

Выбор магнитопровода сердечника

Минимальное сечение сердечника в см2 определяется из габаритной мощности. Габаритная мощность трансформатора – это суммарная полная мощность всех вторичных обмоток с учетом КПД.

Итак, мощность трансформатора можно определить, это полная суммарная мощность всех вторичных обмоток:

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/formula-1.jpg?x15027″ alt=»»>

Умножая полученное значение на КПД, завершаем расчет габаритной мощности.

Определение площади стержня сердечника производится после того, как произведен расчет габаритной мощности трансформатора из такого выражения:

Зная площадь сечения центрального стержня магнитопровода, можно подбирать нужный из готовых вариантов.

Важно! Сердечник, на котором будут располагаться обмотки, должен иметь, по возможности, сечение, как можно более близкое к квадрату. Площадь сечения должна быть равной или несколько больше расчетного значения.

Качество работы и технологичность сборки также зависит от формы магнитопровода. Наилучшим качеством обладают конструкции, выполненные на кольцевом магнитопроводе (тороидальные). Их отличает максимальный КПД для заданной мощности, наименьший ток холостого хода и минимальный вес. Основная сложность заключается в выполнении обмоток, которые в домашних условиях приходится мотать исключительно вручную при помощи челнока.

Проще всего делать трансформаторы на разрезных ленточных магнитопроводах типа ШЛ (Ш-образный) или ПЛ (П-образный). Как пример, можно привести мощный трансформатор блока питания старого цветного телевизора.

Jpg?x15027″ alt=»Трансформатор телевизора УЛПЦТИ»>

Трансформатор телевизора УЛПЦТИ

Трансформаторы старого времени выпуска или современные дешевые выполнены с использованием отдельных Ш,- или П-образных пластин. Технологичность выполнения обмоток у них такая же, как у ленточных разрезных, но трудность состоит в сборке магнитопровода. Такие устройства практически всегда будут иметь повышенный ток холостого хода, особенно, если используемое железо низкого качества.

Расчет количества витков и диаметра проводов

Расчет трансформатора начинается с определения необходимого количества витков обмоток на 1 В напряжения. Найденное значение будет одинаковым для любых обмоток. Для собственных целей можно применить упрощенный метод расчета. Посчитать, сколько надо витков на 1 В можно, подставив площадь сечения стержня магнитопровода в см2 в формулу:

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/formula-2.jpg?x15027″ alt=»»>

где k – коэффициент, зависящий от формы магнитопровода и его материала.

На практике с достаточной точностью приняты следующие значения коэффициента:

  • 60 – для магнитопровода из Ш,- и П-образных пластин;
  • 50 – для ленточных магнитопроводов;
  • 40 – для тороидальных трансформаторов.

Большие значения связаны с невозможностью плотного заполнения сердечника отдельными металлическими пластинами. Как видно, наименьшее количество витков будет иметь тороидальный трансформатор, отсюда и выигрыш в массе изделия.

Зная, сколько витков нужно на 1 В, можно легко узнать количество витков каждой из обмоток:

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/formula-3.jpg?x15027″ alt=»»>где U – значение напряжения холостого хода на обмотке.

У маломощных трансформаторов (до 50 Вт) нужно получившееся количество витков первичной обмотки увеличить на 5%. Таким образом, компенсируется падение напряжения, которое возникает на обмотке под нагрузкой (в понижающих трансформаторах первичная обмотка всегда имеет большее количество витков, чем вторичные).

Диаметр провода рассчитываем с учетом минимизации нагрева вследствие протекания тока. Ориентировочным значением считается плотность тока в обмотках 3-7 А на каждый мм2 провода. На практике расчет диаметра проводов обмоток можно упростить, используя простые формулы, что дает допустимые значения в большинстве случаев:

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/formula-4.jpg?x15027″ alt=»Трансформатор телевизора УЛПЦТИ»>

Меньшее значение применяется для расчета диаметров проводов вторичных обмоток, поскольку у понижающего трансформатора они располагаются ближе к поверхности и имеют лучшее охлаждение.

Зная расчетное значение диаметра обмоточных проводов, нужно выбрать из имеющихся такие, диаметр которых наиболее близок к расчетному, но не менее.

После определения количества витков во всех обмотках, расчет обмоток трансформатора не лишним будет дополнить проверкой, поместятся ли обмотки в окно магнитопровода. Для этого подсчитайте коэффициент заполнения окна:

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/formula-5.jpg?x15027″ alt=»»>

Для тороидальных сердечников c внутренним диаметром D формула имеет вид:

Data-lazy-type=»image» data-src=»http://elquanta. ru/wp-content/uploads/2017/10/formula-6.jpg?x15027″ alt=»»>

Для Ш,- и П-образных магнитопроводов коэффициент не должен превышать 0.3. Если это значение больше, то разместить обмотку не получится.

Jpg?.jpg 489w, https://elquanta.ru/wp-content/uploads/2017/10/4-toroidalnyj-transformator.jpg 600w»>

Тороидальный трансформатор

Выходом из ситуации будет выбор сердечника с большим сечением, но это если позволяют габариты конструкции. В крайнем случае, можно уменьшить количество витков одновременно во всех обмотках, но не более чем на 5%. Несколько возрастет ток холостого хода, и не избежать повышенного нагрева обмоток, но в большинстве случаев это не критично. Также можно немного уменьшить провода по сечению, увеличив тем самым плотность тока в обмотках.

Важно! Увлекаться увеличением плотности тока нельзя, поскольку это вызовет сильный рост нагрева и, как следствие, нарушение изоляции и перегорание обмоток.

Изготовление обмоток

Намотка провода обмотки трансформатора производится на каркас, изготовленный из плотного картона или текстолита, за исключением тороидальных сердечников, в которых обмотка ведется непосредственно на магнитопровод, который перед намоткой нужно тщательно заизолировать. Можно использовать готовый пластиковый, который продается вместе с магнитопроводом.

Jpg?x15027″ alt=»Сборный каркас обмотки»>

Сборный каркас обмотки

Data-lazy-type=»image» data-src=»http://elquanta.ru/wp-content/uploads/2017/10/6-plastikovyj-karkas-600×427.jpg?x15027″ alt=»Пластиковый каркас»>

Пластиковый каркас

Между отдельными обмотками нужно прокладывать межобмоточную изоляцию. Важнее всего – хорошо заизолировать вторичную обмотку от первичной. В качестве изоляции можно использовать трансформаторную бумагу, лакоткань, фторопластовую ленту. Ленту из фторопласта нужно использовать с осторожностью. Несмотря на высочайшие электроизоляционные качества, тонкая лента фторопласта под действием натяжения или давления (особенно межу первичной и вторичной обмотками) способна «потечь» и обнажить отдельные витки обмотки. Особенно этим страдает лента для уплотнения сантехнических изделий.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/6-ftoroplastovaja-lenta-1-150×150. jpg 150w»>

Фторопластовая лента

В отдельных, ответственных случаях, в процессе намотки можно пропитать первичную обмотку (если трансформатор понижающий) изоляционным лаком. Пропитка готового устройства в домашних условиях эффекта почти не даст, поскольку лак не попадет в глубину обмотки. Для этих целей на производствах существует аппаратура вакуумной пропитки.

Выводы обмоток делаются отрезками гибкого изолированного провода для проводов, диаметр которых менее 0.5 мм. Более толстый провод можно выводить напрямую. Места пайки гибкого и обмоточного проводов нужно дополнительно проложить несколькими слоями изоляции.

Обратите внимание! При пайке выводов нельзя оставлять на месте спайки острые концы проводов или застывшего припоя. Такие места нужно аккуратно обрезать бокорезами.

Сборка трансформатора

При сборке нужно учитывать следующие нюансы:

  1. Пакет сердечника должен собираться плотно, без щелей и зазоров;
  2. Отдельные части ленточного магнитопровода подогнаны друг к другу, поэтому менять местами их нельзя. Требуется аккуратность, поскольку при отслоении отдельных лент их невозможно будет установить на место;
  3. Деформированные пластины сборного сердечника нельзя выравнивать молотком – трансформаторная сталь теряет свои свойства при механических нагрузках;
  4. Пакет пластин сборного сердечника должен быть собран максимально плотно, поскольку при работе рыхлого сердечника будет издаваться сильный гул, увеличивающийся при нагрузке;
  5. Весь пакет сердечника любого типа нужно плотно стянуть по той же причине.

Обратите внимание! Качество сборки будет лучше, если торцы ленточного разрезного сердечника перед сборкой покрыть лаком. Также готовый собранный сердечник перед окончательной утяжкой можно покрыть лаком.

При этом можно добиться значительного понижения постороннего звука.

Проверка готового трансформатора заключается в измерении тока холостого хода и напряжения обмоток под номинальной нагрузкой и на нагрев при максимальной нагрузке. Все измерения рассчитанного и собранного трансформатора нужно проводить только после полной сборки, поскольку с незатянутым сердечником ток холостого хода может быть больше обычного в несколько раз.

Ток холостого хода сильно различается в трансформаторах различных типов и составляет от 10 мА для тороидальных трансформаторов, до 200 мА – с Ш-образным сердечником из низкокачественного трансформаторного железа.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2017/10/7-izmerenie-holostogo-toka-210×140.jpg 210w»>

Измерение холостого тока

Приведен расчет трансформатора, который при наличии навыков можно произвести за пару десятков минут. Для тех, кто сомневается в своих силах или боится сделать ошибку, расчет силового трансформатора можно выполнить, используя калькулятор для расчета, который может работать как в off-line, так и в on-line режимах. Согласно данной методике возможна перемотка перегоревшего трансформатора. Для неисправного трансформатора расчет также ведется от имеющегося сердечника и значения напряжения вторичных обмоток.

Видео

Расчет силового трансформатора

Трансформатор – это пассивный преобразователь энергии. Его коэффициент полезного действия (КПД) всегда меньше единицы. Это означает, что мощность потребляемая нагрузкой, которая подключена к вторичной обмотке трансформатора, меньше, чем мощность, потребляемая нагруженным трансформатором от сети. Известно, что мощность равна произведению силы тока на напряжение, следовательно, в повышающих обмотках сила тока меньше, а в понижающих – больше силы тока, потребляемого трансформатором от сети.

Параметры и характеристики трансформатора.

Два разных трансформатора при одинаковом напряжении сети могут быть рассчитаны на получение одинаковых напряжений вторичных обмоток. Но если нагрузка первого трансформатора потребляет больший ток, а второго маленький, значит, первый трансформатор характеризуется по сравнению со вторым большей мощностью. Чем больше сила тока в обмотках трансформатора, тем больше и магнитный поток в его сердечнике, поэтому сердечник должен быть толще. Кроме того, чем больше сила тока в обмотке, тем более толстым проводом она должна быть намотана, а это требует увеличения окна сердечника. Поэтому габариты трансформатора зависят от его мощности. И наоборот, сердечник определенного размера пригоден для изготовления трансформатора только до определенной мощности, которая называется габаритной мощностью трансформатора. Количество витков вторичной обмотки трансформатора определяет напряжение на ее выводах. Но это напряжение зависит также и от количества витков первичной обмотки. При определенном значении напряжения питания первичной обмотки напряжение вторичной зависит от отношения количества витков вторичной обмотки количеству витков первичной. Это отношение и называется коэффициентом трансформации. Если напряжение на вторичной обмотке зависит от коэффициента трансформации нельзя произвольно выбирать количество витков одной из обмоток. Чем меньше габариты сердечника, тем больше должно быть количество витков каждой обмотки. Поэтому размеру сердечника трансформатора соответствует вполне определенное количество витков его обмоток, приходящееся на один вольт напряжения, меньше которого брать нельзя. Эта характеристика называется количеством витков на один вольт..

Как и всякий преобразователь энергии, трансформатор обладает коэффициентом полезного действия – отношением мощности, потребляемой нагрузкой трансформатора, к мощности, которую нагруженный трансформатор потребляет от сети. КПД маломощных трансформаторов, которые обычно применяются для питания бытовой электронной аппаратуры, колеблется в пределах от 0,8 до 0,95. Более высокие значения имеют трансформаторы большей мощности.

Электрический расчет трансформатора

Перед расчетом трансформатора необходимо сформулировать требования, которым он должен удовлетворять. Они и будут являться исходными данными для расчета. Технические требования к трансформатору определяются также путем расчета, в результате которого определяются те напряжения и токи, которые должны быть обеспечены вторичными обмотками. Поэтому перед расчетом трансформатора производится расчет выпрямителя для определения напряжений каждой из вторичных обмоток и потребляемых от этих обмоток токов. Если же напряжения и токи каждой из обмоток трансформатора уже известны, то они являются техническими требованиями к трансформатору. Для определения габаритной мощности трансформатора необходимо определить мощности, потребляемые от каждой из вторичных обмоток и сложить их, учитывая также КПД трансформатора. Мощность, потребляемую от любой обмотки, определяют умножением напряжения между выводами этой обмотки на силу потребляемого от нее тока:

P– мощность, потребляемая от обмотки, Вт;

U– эффективное значение напряжения, снимаемого с этой обмотки, В;

I– эффективное значение силы тока, протекающего в этой же обмотке, А.

Суммарная мощность, потребляемая, например, тремя вторичными обмотками, вычисляется по формуле:

P S =U 1 I 1 +U 2 I 2 +U 3 I 3

Для определения габаритной мощности трансформатора, полученное значение суммарной мощности P S нужно разделить на КПД трансформатора:P г = , где

P г – габаритная мощность трансформатора; η – КПД трансформатора.

Заранее рассчитать КПД трансформатора нельзя, так как для этого нужно знать величину потерь энергии в обмотках и в сердечнике, которые зависят от параметров самих обмоток (диаметры проводов и их длина) и параметров сердечника (длина магнитной силовой линии и марка стали). И те и другие параметры становятся известными только после расчета трансформатора. Поэтому с достаточной для практического расчета точностью КПД трансформатора можно определить из таблицы 6.1.

Таблица 6.1

Суммарная мощность, Вт

КПД трансформатора

Наиболее распространены две формы сердечника: О – образная и Ш – образная. На сердечнике О – образной формы обычно располагаются две катушки, а на сердечнике Ш – образной формы — одна. Зная габаритную мощность трансформатора, находят сечение рабочего керна его сердечника, на котором находится катушка:

Сечением рабочего керна сердечника является произведение ширины рабочего керна а и толщины пакета с. Размеры а и с выражены в сантиметрах, а сечение – в квадратных сантиметрах.

После этого выбирают тип пластин трансформаторной стали и определяют толщину пакета сердечника. Сначала находят приблизительную ширину рабочего керна сердечника по формуле: a= 0,8

Затем по полученному значению а производят выбор типа пластин трансформаторной стали из числа имеющихся в наличии и находят фактическую ширину рабочего керна а. после чего определяют толщину пакета сердечника с:

Количество витков, приходящихся на 1 вольт напряжения, определяется сечением рабочего керна сердечника трансформатора по формуле: n=k/S, гдеN– количество витков на 1 В;k– коэффициент, определяемый свойствами сердечника;S- сечение рабочего керна сердечника, см 2 .

Из приведенной формулы видно, что чем меньше коэффициент k, тем меньше витков будут иметь все обмотки трансформатора. Однако произвольно выбирать коэффициентkнельзя. Его значение обычно лежит в пределах от 35 до 60. В первую очередь оно зависит от свойств пластин трансформаторной стали, из которых собран сердечник. Для сердечников С-образной формы, витых из тонкой ленты, можно братьk= 35. Если используется сердечник О — образной формы, собранный из П- или Г – образных пластин без отверстий по углам, берутk= 40. Такое же значениеkи для пластин типа УШ, у которых ширина боковых кернов больше половины ширины среднего керна.. Если используются пластины типа Ш без отверстий по углам, у которых ширина среднего керна ровно вдвое больше ширины крайних кернов, целесообразно взятьk= 45, а если Ш – образные пластины имеют отверстия, тоk= 50. Таки образом, выборkв значительной мере условен и им можно в некоторых пределах варьировать, если учесть, что уменьшениеkоблегчает намотку, но ужесточает режим трансформатора. При применении пластин из высококачественной трансформаторной стали этот коэффициент можно немного уменьшать, а при низком качестве стали приходится его увеличивать.

Зная необходимое напряжение каждой обмотки и количество витков на 1 В, легко определить количество витков обмотки, перемножим эти величины: W=Un

Такое соотношение справедливо только для первичной обмотки, а при определении количества витков вторичных обмоток нужно дополнительно вводить приближенную поправку для учета падения напряжения на самой обмотке от протекающего по ее проводу тока нагрузки: W=mUn

Коэффициент mзависит от силы тока, протекающего по данной обмотке (см. таблицу 6.2). Если сила тока меньше 0,2 А, можно приниматьm= 1. Толщина провода, которым наматывается обмотка трансформатора определяется силой тока, протекающей по этой обмотке. Чем больше ток, тем толще должен быть провод, подобно тому как для увеличения потока воды требуется использовать более толстую трубу. От толщины провода зависит сопротивление обмотки. Чем тоньше провод, тем больше сопротивление обмотки, следовательно, увеличивается выделяемая в ней мощность и она сильнее нагревается. Для каждого типа обмоточного провода существует предел допустимого нагрева, который зависит от свойств эмалевой изоляции. Поэтому диаметр провода может быть определен по формуле:d=p, гдеd– диаметр провода по меди, м;I- сила тока в обмотке, А;p- коэффициент, (таблица 6.3) который учитывает допустимый нагрев той или иной марки провода.

Таблица 6.2: Определение коэффициента m

Таблица 6.3: Выбор диаметра провода.

Марка провода

Выбрав коэффициент pможно определить диаметр провода каждой обмотки. Найденное значение диаметра округляют до большего стандартного.

Сила тока в первичной обмотке определяется с учетом габаритной мощности трансформатора и напряжения сети:

Практическая работа:

U 1 = 6,3 В,I 1 = 1,5 А;U 2 = 12 В,I 2 = 0,3 А;U 3 = 120 В,I 3 = 59 мА

Читайте также…

Что такое полная, активная и реактивная мощность?

ЧТО ТАКОЕ ПОЛНАЯ, АКТИВНАЯ И РЕАКТИВНАЯ МОЩНОСТЬ? ОТ СЛОЖНОГО К ПРОСТОМУ.

 

В повседневной жизни практически каждый сталкивается с понятием «электрическая мощность», «потребляемая мощность» или «сколько эта штука «кушает» электричества». В данной подборке мы раскроем понятие электрической мощности переменного тока для технически подкованных специалистов и покажем на картинке электрическую мощность в виде «сколько эта штука кушает электричества» для людей с гуманитарным складом ума :-). Мы раскрываем наиболее практичное и применимое понятие электрической мощности и намеренно уходим от описания дифференциальных выражений электрической мощности.

 

ЧТО ТАКОЕ МОЩНОСТЬ ПЕРЕМЕННОГО ТОКА?

В цепях переменного тока формула для мощности постоянного тока может быть применена лишь для расчёта мгновенной мощности, которая сильно изменяется во времени и для практических расчётов бесполезна. Прямой расчёт среднего значения мощности требует интегрирования по времени. Для вычисления мощности в цепях, где напряжение и ток изменяются периодически, среднюю мощность можно вычислить, интегрируя мгновенную мощность в течение периода. На практике наибольшее значение имеет расчёт мощности в цепях переменного синусоидального напряжения и тока.

Для того, чтобы связать понятия полной, активной, реактивной мощностей и коэффициента мощности, удобно обратиться к теории комплексных чисел. Можно считать, что мощность в цепи переменного тока выражается комплексным числом таким, что активная мощность является его действительной частью, реактивная мощность — мнимой частью, полная мощность — модулем, а угол φ (сдвиг фаз) — аргументом. Для такой модели оказываются справедливыми все выписанные ниже соотношения.

Активная мощность (Real Power)

Единица измерения — ватт (русское обозначение: Вт, киловатт — кВт; международное: ватт -W, киловатт — kW).

Среднее за период Τ  значение мгновенной мощности называется активной  мощностью, и

 

выражается формулой:  

В цепях однофазного синусоидального тока , где υ и Ι это  среднеквадратичные значения напряжения и тока,  а φ — угол сдвига фаз между ними.Для цепей несинусоидального тока электрическая мощность равна сумме соответствующих средних мощностей отдельных гармоник. Активная мощность характеризует скорость необратимого превращения электрической энергии в другие виды энергии (тепловую и электромагнитную). Активная мощность может быть также выражена через силу тока, напряжение и активную составляющую сопротивления цепи r или её проводимость g по формуле . В любой электрической цепи как синусоидального, так и несинусоидального тока активная мощность всей цепи равна сумме активных мощностей отдельных частей цепи, для трёхфазных цепей электрическая мощность определяется как сумма мощностей отдельных фаз. С полной мощностью S, активная связана соотношением . 

В теории длинных линий (анализ электромагнитных процессов в линии передачи, длина которой сравнима с длиной электромагнитной волны) полным аналогом активной мощности является проходящая мощность, которая определяется как разность между падающей мощностью и отраженной мощностью.

Реактивная мощность (Reactive Power)

Единица измерения — вольт-ампер реактивный (русское обозначение: вар, кВАР; международное: var).

Реактивная мощность — величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока, равна произведению среднеквадратичных значений напряжения U и тока I, умноженному на синус угла сдвига фаз φ между ними:

 (если ток отстаёт от напряжения, сдвиг фаз считается положительным, если опережает — отрицательным). Реактивная мощность связана с полной мощностью S и активной мощностью P  соотношением:  .

Физический смысл реактивной мощности — это энергия, перекачиваемая от источника на реактивные элементы приёмника (индуктивности, конденсаторы, обмотки двигателей), а затем возвращаемая этими элементами обратно в источник в течение одного периода колебаний, отнесённая к этому периоду.

Необходимо отметить, что величина sin φ для значений φ от 0 до плюс 90° является положительной величиной. Величина sin φ для значений φ от 0 до минус 90° является отрицательной величиной. В соответствии с формулой    

реактивная мощность может быть как положительной величиной (если нагрузка имеет активно-индуктивный характер), так и отрицательной (если нагрузка имеет активно-ёмкостный характер). Данное обстоятельство подчёркивает тот факт, что реактивная мощность не участвует в работе электрического тока. Когда устройство имеет положительную реактивную мощность, то принято говорить, что оно её потребляет, а когда отрицательную — то производит, но это чистая условность, связанная с тем, что большинство электропотребляющих устройств (например,асинхронные двигатели), а также чисто активная нагрузка, подключаемая через трансформатор, являются активно-индуктивными.

Синхронные генераторы, установленные на электрических станциях, могут как производить, так и потреблять реактивную мощность в зависимости от величины тока возбуждения, протекающего в обмотке ротора генератора. За счёт этой особенности синхронных электрических машин осуществляется регулирование заданного уровня напряжения сети. Для устранения перегрузок и повышения коэффициента мощности электрических установок осуществляется компенсация реактивной мощности.

Применение современных электрических измерительных преобразователей на микропроцессорной технике позволяет производить более точную оценку величины энергии возвращаемой от индуктивной и емкостной нагрузки в источник переменного напряжения

Полная мощность (Apparent Power)

Единица полной электрической мощности — вольт-ампер (русское обозначение: В·А, ВА, кВА-кило-вольт-ампер; международное: V·A, kVA).

Полная мощность — величина, равная произведению действующих значений периодического электрического тока I в цепи и напряжения U на её зажимах: ; соотношение полной мощности с активной и реактивной мощностями выражается в следующем виде:     где P — активная мощность, Q — реактивная мощность (при индуктивной нагрузке Q›0, а при ёмкостной Q‹0). Векторная зависимость между полной, активной и реактивной мощностью выражается формулой:

Полная мощность имеет практическое значение, как величина, описывающая нагрузки, фактически налагаемые потребителем на элементы подводящей электросети (провода, кабели, распределительные щиты, трансформаторы, линии электропередачи), так как эти нагрузки зависят от потребляемого тока, а не от фактически использованной потребителем энергии. Именно поэтому полная мощность трансформаторов и распределительных щитов измеряется в вольт-амперах, а не в ваттах.

 

Визуально и интуитивно-понятно все вышеперечисленные формульные и текстовые описания полной, реактивной и активной мощностей передает следующий рисунок 🙂 

Специалисты компании НТС-групп (ТМ Электрокапризам-НЕТ) имеют огромный опыт подбора специализированного оборудования для построения систем обеспечения жизненно важных объектов бесперебойным электропитанием. Мы умеем максимально качественно учитывать множество электрических и эксплуатационных параметров, которые позволяют выбрать экономически обоснованный вариант построения системы бесперебойного электропитанияс применением стабилизаторов напряжения, топливных электростанций, источников бесперебойного питания и др. сопутствующего оборудования.

 

© Материал подготовлен специалистами компании НТС-групп (ТМ Электрокапризам-НЕТ) с использованием информации из открытых источников, в т.ч. из свободной энциклопедии ВикипедиЯ https://ru.wikipedia.org  

 

Пример расчета реактивной мощности трансформатора

В данном примере нужно будет определить реактивную мощность трансформатора при холостом ходе и при коэффициенте загрузки β=0,5.

Пример

Определить реактивную мощность трансформатора типа ТМЗ-1000-10/0,4 при холостом ходе и при коэффициенте загрузки β=0,5.

Исходные данные:

Технические характеристики трансформатора принимаем, согласно таблицы 2.110 [Л1., с.221] (ГОСТ 16555-75 (действующий)), также данные технические характеристики можете принимать из каталога завода-изготовителя:

  • I% = 1,2% — ток холостого хода, %;
  • Uк% = 5,5% — напряжение КЗ, %.
  • Sн = 1000 кВА – номинальная полная мощность трансформатора, кВА.

Решение

1. Определяем реактивную мощность трансформатора при холостом ходе по выражению 17 [Л2, с.26]:

2. Определим реактивную мощность, зависящую от нагрузки по выражению 18 [Л2, с.27] для номинальной нагрузки:

3. Определяем полную реактивную мощность по выражению 19 [Л2, с.28] для номинальной нагрузки:

4. Определим полную реактивную мощность при загрузке трансформатора на 50% (β=0,5) по выражению 19 [Л2, с.28]:

Как видно из результатов расчетов, реактивная мощность трансформатора состоит из двух частей — реактивной мощности холостого хода Q0, не зависящей от нагрузки, и реактивной мощности рассеяния Qp, зависящей от тока нагрузки. В результате при уменьшении нагрузки трансформатора от номинальной до холостого хода реактивная мощность уменьшается от 100 примерно до 10%.

Читать еще: «Выбор устройства компенсации реактивной мощности».

Литература:

  1. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г.
  2. Реактивная мощность (2-е издание) Минин Г.П. 1978 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Полная номинальная мощность трансформатора

Хочу привести реальный пример выбора мощности силового трансформатора в одном из недавно выпущенных мною проектов. Проект проходил экспертизу и получил замечание по выбору силового трансформатора, вернее нужно было обосновать мощность силового трансформатора.

По техническим условиям было разрешено 180 кВт по третьей категории электроснабжения. На данном этапе я делал лишь одну позицию (склад) с потребляемой мощностью 20 кВт, остальные позиции будут запроектированы позже.

Яркость является очень важным критерием при выборе. Потому что об этом можно сравнить различные типы ламп. Чем выше значение просвета, тем ярче источник света. Потребляемая мощность выражается в ваттах и ​​указывает, сколько энергии потребляет лампа. Это значение важно сегодня только для определения эффективности. Для этого разделите значение люменов на ватты. Чем выше значение, тем эффективнее лампа преобразует электричество в свет.

Он может макс. Достигните 100 и не должно быть ниже 80. Чем выше значение, тем лучше цветопередача, что может быть важно, например, при нанесении макияжа, выборе одежды или в столовой. Светлый цвет представлен на упаковке цветной температурой в Кельвине. Поэтому они особенно подходят для работы.

Естественно выбор силового трансформатора я делал исходя из мощности 180 кВт.

Вы, наверное, помните, что у меня же есть статья:

На эту тему имеется еще одна статья:

Так что обязательно ознакомьтесь, о чем я писал ранее.

В общем, суть такая, что если выбирать трансформатор по методическим указанием, то нам достаточно мощности силового трансформатора 160 кВА. Именно на это и ссылался эксперт. В проекте выбрана трансформаторная подстанция 250 кВА в металлическом корпусе. Самый дешевый вариант.

Срок службы особенно важен для дорогих ламп, которые должны эксплуатироваться в течение длительного времени. Длинная жизнь может оправдать высокую цену. Поэтому сохраните квитанцию, чтобы иметь возможность подавать жалобы позже. Коммутационное сопротивление особенно важно для работы на лестнице и в ванной, где свет часто включается и выключается. Для этих применений желательно, чтобы лампы сразу загорелись после включения. Прежде всего, энергосберегающие лампы с функцией теплого пуска менее хорошо подходят здесь.

Использование трансформаторов

Он измеряет, как долго лампочка должна достигать 60 процентов максимальной яркости. Энергосберегающие лампы обычно выдерживают низкие температуры менее хорошо, чем другие типы ламп. Многие лампы работают с трансформаторами. Эти трансформаторы имеют минимальную нагрузку, что должно быть выполнено для правильной работы. Например, если все галогенные лампы заменены светоизлучающими диодами, может случиться, что система ламп работает неправильно. При использовании обычных диммеров может произойти, что светодиоды мерцают или не загораются.

Я в свою очередь привел ссылку из ТКП 45-4.04-297-2014 п.11.20. Там сказано, что коэффициент загрузки однотрансформаторной подстанции должен быть 0,9-0,95. Там же написано, что выбор трансформатора должен производиться на основании технических характеристик трансформаторов от заводов-изготовителей.

Рассчитаем коэффициент загрузки трансформатора.

Какой свет для какого приложения?

Кроме того, диммеры, аналогичные трансформаторам, имеют более низкий предел мощности. Если этого не хватит, это может привести к описанным неисправностям. Многие лампы, доступные сегодня, не всегда идеальны для всех приложений. Б. не очень полезно устанавливать на лестничной клетке энергосберегающую лампу с медленным запуском. В местах, где вам нужен яркий свет быстро, следует позаботиться о том, чтобы использовать луковицы, которые быстро развивают свою полную светимость. Это особенно справедливо для светодиодов и галогенных ламп.

Кз=Sр/Sтр

– полная расчетная мощность, кВА;

Sтр – мощность силового трансформатора, кВА.

Sр=Р/cos=180/0,8=225кВА.

Коэффициент мощности я принял 0,8.

Кз(250)=225/250=0,9

Кз(160)=225/160=1,4

А теперь представим, лето, температура воздуха 30 градусов. Как вы думаете, металлическая оболочка будет сильно греться на солнце? В таких условия воздух вокруг трансформатора, на мой взгляд, будет тоже не менее 30 градусов, а скорее всего и больше, т.к. КТП будет под прямыми солнечными лучами. Утверждать не буду, это лишь мои догадки.

Правильный свет для каждой комнаты

Поэтому используйте галогенные лампы, если это имеет смысл. В короткое время горения очень высокая потребляемая мощность тогда не столько в весе. В других местах, например, в ванной комнате для макияжа, очень хорошая цветопередача галогенных ламп и некоторых люминесцентных ламп очень важна. Это так называемые. Вторая и третья цифры номера означают цветовую температуру. Потому что они особенно эффективны и могут переключаться при низких температурах.

  • Высокие синие компоненты в свете оказывают стимулирующее действие.
  • Галоген, потому что сразу яркий — но время горения обычно очень короткое.
Измерение тока является важным элементом во многих промышленных процессах и для управления энергией.

Следующая таблица показывает нормы максимально допустимых систематических нагрузок при температуре 30 градусов.


Проверим трансформатор 160 кВА. Sр=225 кВА – это не значит, что трансформатор постоянно будет загружен на такую мощность. На такую мощность он будет загружен лишь пару часов в день. В остальное время он будет загружен, скажем на 65 % от этой расчетной мощности.

Несмотря на то, что это существующий элемент во многих установках и приложениях, он традиционно вызывает определенные сомнения в выборе трансформатора интенсивности. Основными моментами для правильного выбора являются. Применение Механические характеристики Электрические характеристики. . Сначала мы должны различать, будет ли приложение, для которого предназначено измерение тока, предназначено для защиты или измерения.

Разница в основном заключается в свойстве поддержания прецизионной линейности меры до того, как режимы работы превысят ее диапазон измерения, будь то постоянный или временный. Защитные трансформаторы тока могут поддерживать свою линейность до токов, превышающих номинальный первичный, порядка 5-15 раз их первичного тока. Напротив, измерительные трансформаторы поддерживают свою линейность до 20% от первичного тока.

225*0,65=146,25 кВА.

Тогда К1=146,25/160=0,91, примем значение К1=0,9 – начальная загрузка трансформатора.

Согласно приведенной таблице и при температуре окружающей среды 30 градусов, К1=0,9 трансформатор 160 кВА в нормальном режиме с Sр=225 кВА (Кз=К2=1,4) сможет работать около…0 часов. В таких условиях максимальный коэффициент загрузки трансформатора 1,27 в течение 0,5 часа.

Защитные трансформаторы имеют диапазон ошибок порядка 5-10%, а измерительные трансформаторы имеют диапазон погрешности от 0, 2% до 3%. Принципиальным аспектом является то, что кабель или пластина вписываются в отверстие трансформатора тока. Этот момент часто игнорируется, предотвращая или задерживая установку связанного оборудования.

Перед приобретением трансформатора важно, чтобы он мог принять участок проводника или пластины, где он будет установлен. Это не приведет к прерыванию обслуживания и значительно сократит время и сложность установки. Характеристики для выбора трансформатора тока.

Конечно, следует еще привести таблицу норм допустимых аварийных перегрузок.


По этой таблице наш трансформатор сможет работать чуть больше 2 часов.

Не смотря на то, что трансформатор способен выдерживать аварийные перегрузки, следует иметь ввиду, что в таких режимах трансформатор очень сильно изнашивается и срок эксплуатации его сокращается.

Рабочее напряжение Первичный ток Вторичный ток Точность мощности. . Рабочее напряжение будет указывать на требуемый уровень изоляции трансформатора. Он может использоваться в проводниках с более высоким уровнем напряжения, если водитель обеспечивает необходимый уровень изоляции.

Мы должны выбрать трансформатор в соответствии с максимальным током, который пройдет через проводник. Если мы выберем трансформатор с более низким током, мы рискуем его насытить и в конечном итоге повредить сам трансформатор и оборудование, с которым оно связано, если оно недостаточно защищено, а также дать ошибочное измерение. Например, если мы должны измерить в цепи с магнитотермической величиной 63 А, мы должны выбрать трансформатор 75 А, который является сразу выше.

Разумеется, по графику нагрузки значительно проще выбрать мощность силового трансформатора. В наших условиях проектирования, я считаю всегда должен быть небольшой запас прочности оборудования (резерв мощности), поскольку энергосистема развивается, количество потребляемой электроэнергии увеличивается и все чаше в ТУ пишут одним из требований: проверка существующих трансформаторов, т.е. многие подстанции загружены до предела, а для небольших предприятий это может оказаться проблемой.

Выбор более низкого первичного тока даст нам более высокую точность в нижней части шкалы, но мы рискуем насытить его и повредить его. Вторичный выход измерительного трансформатора связан с оборудованием приемника и потерями, которые могут возникнуть в результате передачи измерительного сигнала между трансформатором и приемным оборудованием.

В трансформаторе первичный ток должен вызывать во вторичной обмотке необходимую мощность, чтобы иметь возможность передавать вторичный ток в измерительное оборудование. Напряженная мощность должна быть равна или больше потерь линии плюс потребление самого измерительного оборудования.

Вывод: трансформатор 160 кВА не сможет нормально работать при наших условиях эксплуатации, поэтому в проекте выбран трансформатор 250 кВА.

Кстати, энергонадзор согласовал КТП без проблем.

Вы согласны со мной либо нужно тупо руководствоваться методическими указаниями?

Для правильного выбора трансформатора любого вида по мощности подключаемых электроприборов к нему надо знать несколько важных правил. Это относится и к изучению теоретического материала, и к учету местных условий, параметров и «узких мест» местной электросети.

Мощность, потерянная из-за нагрева из-за прохождения тока через проводку вторичной цепи трансформатора, равна. Алекс Авила — Менеджер по продуктам Франческ Форнилес — Менеджер по продукции. Электрическая составляющая, которая имеет возможность изменять уровень напряжения и тока с помощью двух катушек, намотанных вокруг общего сердечника или центра. Ядро состоит из большого количества пластин или листов из сплава железа и кремния. Этот сплав уменьшает потери за счет магнитного гистерезиса и увеличивает удельное сопротивление железа.

Изменение напряжения или тока, подаваемых трансформатором, отменяется. Когда трансформатор увеличивает напряжение, ток понижается; и когда напряжение падает, ток поднимается. Это подводит нас к закону: энергия, передаваемая трансформатором, не может быть выше энергии, которая поступает в нее. Хотя первичная и вторичная обмотки изолированы картоном, восковой бумагой или пластиком, магнитное поле, существующее между двумя обмотками, передает мощность от первичной к вторичной. Существует связь между витками первичной обмотки и вторичной обмотки.

Из теоретических основ электротехники известно, что номинальная мощность любой обмотки простого двухобмоточного трансформатора одинакова и вычисляется по формуле SHOM = U*I (ВА) , как произведение напряжения обмотки на величину тока в ней. Однако, сам по себе такой трансформатор представляет собой две катушки индуктивности и его полная номинальная мощность складывается из двух составляющих — активной и реактивной мощности. Формула расчета полной мощности S2=P2+Q2 , её квадрат равен сумме квадратов составляющих, их принято изображать векторами под углом 900, гипотенузой этого прямоугольного треугольника является вектор полной мощности. Для удобства расчетов был введен нагрузочный коэффициент cosφ , где φ — угол между векторами активной и полной мощности.

Это соотношение определяет выходное напряжение трансформатора и равно, соотношение между обмотками обмотки и входным и выходным напряжениями. Когда первичная обмотка равна вторичной обмотке, напряжение и входной ток равны выходному напряжению и току. Эти трансформаторы служат только для гальванической изоляции, то есть мы можем касаться выходного тока, не подвергаясь электрическому току. Изменяя витки провода вторичной обмотки, выходное напряжение трансформатора изменяется. Пример: если для каждого поворота первичной обмотки мы приводим три витка вторичной обмотки; мы бы в случае применения напряжения на входе 10 вольт на выходе составляли 30 вольт.

Вы спросите — зачем нам это? А всё предельно просто — трансформатор выбирается с учетом максимально допустимого нагрева обмоток (иначе быстро стареет изоляция и выходит из строя весь трансформатор), а нагрев создается только активной составляющей мощности, которую можно рассчитать по формуле Р = UIcosφ , что такое cosφ нам уже известно, для трансформатора его расчетное значение принимается cosφ=0,8 . Значение Р в ваттах (Вт) является суммарной мощностью всех электроприборов, которые предполагается подключить к трансформатору, поскольку они, в подавляющем большинстве, потребители активной нагрузки. Но полная мощность трансформатора (которая пишется в его паспорте ) определена в единицах вольт-ампер (ВА, кВА) и соотношение её с активной мощностью потребителей на выходе можно определить по формуле S=P/0,8 , то есть выбирать мощность трансформатора надо примерно на 20% больше, чем та, которую вы предполагаете к нему подключить. Это строго по теории, но это не всё.

На самом деле есть много способов оценить и вычислить трансформатор, но из всех предлагаемых нами предложений легко и точно приводит к модели необходимого нам трансформатора. Отправной точкой является определение мощности для каждого канала усилителя, если он стереофонический, для каждого из двух каналов. Каждый канал обеспечит половину мощности усилителя.

Мы увидим пример с стереоусилителем мощностью 100 Вт, это означает, что каждый канал составляет 50 Вт, или мощность на канал составляет 50 Вт. То есть фактическое напряжение трансформатора для этого усилителя равно постоянному напряжению, потребляемому усилителем, разделенному на квадратный корень из 2. Теперь, для осторожности, целесообразно увеличить значение, полученное примерно в два или вольт.

Для трансформаторов небольшой мощности важно учесть еще и собственное и внешнее рассеивание от магнитного поля. Нагрев от него в ограниченном пространстве и при отсутствии принудительного охлаждения тоже существенен. Лучшие показатели в этом отношении дает тороидальный трансформатор, где обмотки равномерно намотаны вдоль сердечника. Неплохо смотрятся стержневые трансформаторы и автотрансформаторы. И еще один важный момент — качество электроэнергии в сети!

На этих 24 вольтах желательно добавить около 2 вольт, как уже было сказано, в результате чего. Мощность трансформатора определяет размер сердечника. Мощность — не что иное, как произведение умножения между напряжением и силой тока трансформатора. Например, в предыдущем случае мы вычисляем напряжение 24 вольта и ток 5 А, тогда мощность будет.

Как найти проволочный датчик вторичной обмотки. В этом случае усилитель потребляет 5 ампер, который мы получили, разделив мощность в ваттах усилителя или трансформатора между выходным напряжением. Стоит помнить, что если мы не знаем расходные усилители, достаточно разделить мощность между выходными напряжениями трансформатора.

Если трансформатор покупается для мест, где часто бывает понижение напряжения, то запас мощности следует увеличить, поскольку при сниженном напряжении увеличивается токовая составляющая мощности, а ведь именно она дает энергию нагрева обмоток. Итак, исходя из теоретического расчета и учета реального состояния электросети в районе установки трансформатора, можно однозначно рекомендовать приобретать трансформатор с 30% запасом по мощности от расчетного потребления. Это позволит работать ему долго и надежно.

Как найти проволочный датчик первичной обмотки. Чтобы найти проволочный датчик первичной обмотки, сначала у нас есть сила тока. Это достигается делением ваттов усилителя между напряжением гнезда или первичной обмоткой. В этом случае в сети общего пользования имеется напряжение 115 вольт.

Как найти основную зону трансформатора. Теперь основной раздел связан с общей мощностью следующим образом. Сечение сердечника равно квадратному корню от общей мощности трансформатора. Например, как мы видели ранее, мы получили 120 Вт мощности для трансформатора, поэтому основной раздел.

формула, как определить — Asutpp

Мощностные характеристики установки или сети являются основными для большинства известных электрических приборов. Активная мощность (проходящая, потребляема) характеризует часть полной мощности, которая передается за определенный период частоты переменного тока.

Определение

Активная и реактивная мощность может быть только у переменного тока, т. к. характеристики сети (силы тока и напряжения) у постоянного всегда равны. Единица измерений активной мощности  Ватт, в то время, как реактивной – реактивный вольтампер и килоВАР (кВАР). Стоит отметить, что как полная, так и активная характеристики могут измеряться в кВт и кВА, это зависит от параметров конкретного устройства и сети. В промышленных цепях чаще всего измеряется в килоВаттах.

Соотношение энергий

Электротехника используется активную составляющую в качестве измерения передачи энергии отдельными электрическими приборами. Рассмотрим, сколько мощности потребляют некоторые из них:

ПриборМощность бытовых приборов, Вт/час
Зарядное устройство2
Люминесцентная лампа ДРЛОт 50
Акустическая система30
Электрический чайник1500
Стиральной машины2500
Полуавтоматический инвертор3500
Мойка высокого давления3500

 

Исходя из всего, сказанного выше, активная мощность – это положительная характеристика конкретной электрической цепи, которая является одним из основных параметров для выбора электрических приборов и контроля расхода электричества.

Генерация активной составляющей

Обозначение реактивной составляющей:

Это  номинальная величина, которая характеризует нагрузки в электрических устройствах при помощи колебаний ЭМП и потери при работе прибора. Иными словами, передаваемая энергия переходит на определенный реактивный преобразователь (это конденсатор, диодный мост и т. д.) и проявляется только в том случае, если система включает в себя эту составляющую.

Расчет

Для выяснения показателя активной мощности, необходимо знать полную мощность, для её вычисления используется следующая формула:

S = U \ I, где U – это напряжение сети, а I – это сила тока сети.

Этот же расчет выполняется при вычислении уровня передачи энергии катушки при симметричном подключении. Схема имеет следующий вид:

Схема симметричной нагрузки

Расчет активной мощности учитывает угол сдвига фаз или коэффициент (cos φ), тогда:

S = U * I * cos φ.

Очень важным фактором является то, что эта электрическая величина может быть как положительной, так и отрицательной. Это зависит от того, какие характеристики имеет cos φ. Если у синусоидального тока угол сдвига фаз находится в пределах от 0 до 90 градусов, то активная мощность положительная, если от 0 до -90 – то отрицательная. Правило действительно только для синхронного (синусоидального) тока (применяемого для работы асинхронного двигателя, станочного оборудования).

Также одной из характерных особенностей этой характеристики является то, что в трехфазной цепи (к примеру, трансформатора или генератора), на выходе активный показатель полностью вырабатывается.

Расчет трехфазной сети

Максимальная и активная обозначается P, реактивная мощность – Q.

Из-за того, что реактивная обуславливается движением и энергией магнитного поля, её формула (с учетом угла сдвига фаз) имеет следующий вид:

QL = ULI = I2xL

Для несинусоидального тока очень сложно подобрать стандартные параметры сети. Для определения нужных характеристик с целью вычисления активной и реактивной мощности используются различные измерительные устройства. Это вольтметр, амперметр и прочие. Исходя от уровня нагрузки, подбирается нужная формула.

Из-за того, что реактивная и активная характеристики связаны с полной мощностью, их соотношение (баланс) имеет следующий вид:

S = √P2 + Q2, и все это равняется U*I .

Но если ток проходит непосредственно по реактивному сопротивлению. То потерь в сети не возникает. Это обуславливает индуктивная индуктивная составляющая – С и сопротивление – L. Эти показатели рассчитываются по формулам:

Сопротивление индуктивности: xL = ωL = 2πfL,

Сопротивление емкости: хc = 1/(ωC) = 1/(2πfC).

Для определения соотношения активной и реактивной мощности используется специальный коэффициент. Это очень важный параметр, по которому можно определить, какая часть энергии используется не по назначению или «теряется» при работе устройства.

При наличии в сети активной реактивной составляющей обязательно должен рассчитываться коэффициент мощности. Эта величина не имеет единиц измерения, она характеризует конкретного потребителя тока, если электрическая система содержит реактивные элементы. С помощью этого показателя становится понятным, в каком направлении и как сдвигается энергия относительно напряжения сети. Для этого понадобится диаграмма треугольников напряжений:

Диаграмма треугольников напряжений

К примеру, при наличии конденсатора формула коэффициента имеет следующий вид:

cos φ = r/z = P/S

Для получения максимально точных результатов рекомендуется не округлять полученные данные.

Компенсация

Учитывая, что при резонансе токов реактивная мощность равняется 0:

Q = QL — QC = ULI – UCI

Для того чтобы улучшить качество работы определенного устройства применяются специальные приборы, минимизирующие воздействие потерь на сеть. В частности, это ИБП. В данном приборе не нуждаются электрические потребители со встроенным аккумулятором (к примеру, ноутбуки или портативные устройства), но для большинства остальных источник бесперебойного питания является необходимым.

При установке такого источника можно не только установить негативные последствия потерь, но и уменьшить траты на оплату электричества. Специалисты доказали, что в среднем, ИБП поможет экономить от 20 % до 50 %. Почему это происходит:

  1. Значительно уменьшается нагрузка силовых трансформаторов;
  2. Провода меньше нагреваются, это не только положительно влияет на их работу, но и повышает безопасность;
  3. У сигнальных и радиоустройств уменьшаются помехи;
  4. На порядок уменьшаются гармоники в электрической сети.

В некоторых случаях специалисты используют не полноценные ИБП, а специальные компенсирующие конденсаторы. Они подходят для бытового использования, доступны и продаются в каждом электротехническом магазине. Для расчета планируемой и полученной экономии можно использовать все вышеперечисленные формулы.

Почему мощность трансформаторов указывается в кВА, а не в кВт? — Леонардо Энергия

кВА — единица измерения полной мощности.

Полная мощность состоит из активной и реактивной мощности. Активная мощность — это доля полной мощности, которая передает энергию от источника (генератора) пользователю. Реактивная мощность — это доля полной мощности, которая представляет собой бесполезное колебание энергии от источника к пользователю и обратно. Это происходит, когда из-за некоторой «инерции» в системе возникает фазовый сдвиг между напряжением и током.Это означает, что ток не меняет полярность синхронно с напряжением. Но тепло, выделяемое в обмотке, а также потери на вихревые токи, генерируемые в сердечнике трансформатора, зависят только от тока, независимо от того, совпадает ли он с напряжением или нет. Следовательно, нагрев всегда пропорционален квадрату амплитуды тока, независимо от фазового угла (сдвиг между напряжением и током). Таким образом, трансформатор должен быть рассчитан (и выбран) по полной мощности.Часто бывает полезно подумать о крайнем примере: представьте себе вариант использования, в котором единственной и исключительной нагрузкой является статический компенсатор var (и такие случаи действительно существуют). Будет ли тогда нагрузка равна нулю, потому что активная мощность равна нулю? Конечно, нет. — Внимание: в этой ситуации напряжение на выходных клеммах будет увеличиваться с нагрузкой на , а не падать!

► Прочтите наши ресурсы по распределительным трансформаторам

Дополнение:

Следует проявлять особую осторожность, если ток нагрузки трансформатора включает более высокие частоты, такие как гармоники .Тогда трансформатор может даже перегреться, хотя ток нагрузки TRMS, правильно измеренный измерителем TRMS, не превышает номинального тока!

Почему это? Это связано с тем, что потери в меди включают от 5% до 10% так называемых дополнительных потерь. Они возникают из-за вихревых токов в механических, электрически проводящих частях, изготовленных из ферромагнитных материалов, и особенно в обмотках низкого напряжения с их большими поперечными сечениями. Магнитные поля рассеяния, возникающие из-за отсутствия магнитной связи между обмотками ВН и НН (главный паразитный канал), индуцируют нечто, что можно назвать «вихревым напряжением» внутри проводников, которое приводит в движение вихревой ток, текущий по кругу через проводник. , перпендикулярно току основной нагрузки.Теперь амплитуда этого «вихревого напряжения» пропорциональна скорости изменения напряженности магнитного поля. Скорость изменения напряженности магнитного поля пропорциональна как амплитуде , так и частоте тока. Таким образом, вихревой ток увеличивается пропорционально току нагрузки и пропорционально рабочей частоте, поскольку ограничение вихревого тока является законом Ома. Дополнительная потеря мощности, вызванная вихревым током, равна вихревому току, умноженному на «вихревое напряжение».

Следовательно, дополнительные потери увеличиваются на квадрат тока нагрузки, возбуждающего магнитное поле рассеяния, и на квадрат частоты, в то время как «основные потери в меди» увеличиваются только на квадрат амплитуды тока нагрузки. Следовательно, трансформатор нагревается, когда ток нагрузки имеет ту же амплитуду, но на него накладываются составляющие с более высокой частотой выше номинальной. Эти дополнительные тепловые потери трудно определить количественно, особенно потому, что паразитное реактивное сопротивление трансформатора в некоторой степени ограничивает прохождение токов более высокой частоты, но в крайнем случае может увеличить дополнительные потери с 10% до 80% потерь в меди .Это означает, что трансформатор может работать примерно на 70% больше (из-за превышения температуры окружающей среды), чем указано для номинального (синусоидального) тока. Однако, поскольку омические тепловые потери зависят от квадрата тока, , достаточно ограничить ток нагрузки примерно до 65% от его номинального значения, чтобы избежать перегрева .

Активная, реактивная и полная мощность

Требуемая мощность электропитания электрической цепи зависит от

  • активной мощности — фактическая потребляемая мощность электрического сопротивления в цепи
  • реактивная мощность — воображаемая индуктивная и емкостная потребляемая мощность в цепи

Требуемый источник питания называется полной мощностью и представляет собой комплексное значение, которое может быть выражено в виде треугольника Пифагора, как показано на рисунке ниже.

Полная мощность — S

Полная мощность — это мощность, подаваемая в электрическую цепь (обычно от поставщика энергии в сеть) для покрытия реальной и реактивной мощности, потребляемой нагрузкой.

Полная мощность может быть рассчитана как

S = (Q 2 + P 2 ) 1/2 (1)

где

S = полная мощность, подаваемая в цепь ( вольт-ампер, ВА)

Q = потребляемая реактивная мощность в нагрузке (вольт-ампер, реактивная, ВАр)

P = активная потребляемая мощность в нагрузке (ватты, Вт)

Полная мощность измеряется в вольт-амперах (ВА) — напряжение системы переменного тока, умноженное на текущий ток.Полная мощность — это комплексное значение и векторная сумма активной и реактивной мощности, как показано на рисунке выше.

Однофазный ток

S = UI (2a)

где

U = электрический потенциал (В)

I = ток (A)

Трехфазный ток

S = 3 1/2 UI

= 1.732 U I (2b)

Active Power — P

Active — или Real или True — мощность выполняет фактическую работу в нагрузке. Активная мощность измеряется в Вт (Вт). — это мощность, потребляемая электрическим сопротивлением.

  • Истинная мощность — это ток в фазе с напряжением, умноженный на напряжение
Однофазный ток

P = UI cos φ

= UI PF (3a)

, где

φ = фазовый угол между электрическим потенциалом (напряжением) и током

PF = cos φ

= коэффициент мощности

Трехфазный ток

P = 3 1/2 UI cos φ

= 1.732 U I PF (3b)

Постоянный ток

P = U I (3c)

Реактивная мощность — Q

Реактивная мощность — это мнимая или комплексная мощность в емкостной или индуктивной нагрузке. Реактивная мощность представляет собой обмен энергией между источником питания и реактивными нагрузками, при котором полезная мощность не увеличивается и не теряется. Чистая средняя реактивная мощность равна нулю. Реактивная мощность накапливается и разряжается асинхронными двигателями, трансформаторами, соленоидами и конденсаторами.Чистая катушка индуктивности и чистый конденсатор не потребляют никакой энергии, поскольку в течение полупериода, какая бы мощность ни принималась от источника этими компонентами, та же самая мощность возвращается к источнику.

Реактивная мощность должна быть минимизирована, поскольку она увеличивает общий ток, протекающий в электрической цепи, не создавая никакой работы для нагрузки. Повышенные реактивные токи приводят только к невосстановимым потерям мощности из-за сопротивления линии электропередачи.

Увеличение реактивной и полной мощности приведет к уменьшению коэффициента мощности — PF .

Реактивная индуктивная мощность измеряется в реактивных вольт-амперах (ВАР).

  • Реактивная мощность — это ток, не совпадающий по фазе с напряжением, умноженным на напряжение
Однофазный ток

Q = UI sin φ (4a)

где

φ = фазовый угол

Трехфазный ток

Q = 3 1/2 UI sin φ

= 1.732 UI sin φ (4b)

ac — Важность полной мощности

Физическая ценность, которая важна, — это ток, который что-то должен проводить, и максимальная мощность, которую это может быть запрошено.

Давайте кратко поговорим о том, что все эти абстрактные математические концепции фактически представляют физически:

Реальная мощность (\ $ P \ $ ) — это скорость, с которой энергия потребляется для выполнения какой-либо работы (часто просто в виде отработанного тепла, или механического движения, или звука, или света и т. Д. четвертый).

Реактивная мощность (\ $ Q \ $) — это скорость, с которой энергия накапливается в цепи. Энергия, которая хранится в электрическом поле конденсатора или магнитном поле индуктора, все равно должна откуда-то поступать. Этот накопитель энергии забирает энергию из цепи, и делает это с определенной скоростью (отдавая мощность). В отличие от реальной мощности, реактивная мощность не просто потребляется, а возвращается обратно в цепь фазозависимым образом. Проще говоря: энергия, накопленная во время одного знака волны переменного тока, также будет возвращена в цепь во время противоположного знака волны.

Комплексная мощность (\ $ S \ $) — это объединенная активная и реактивная мощность. Комбинированная векторная сумма значений.

Полная мощность (\ $ \ left | S \ right | \ $) — величина \ $ S \ $ или длина гипотенузы / составного вектора.

Итак, сложная мощность уже представляет полную возможную мощность, о которой нам нужно беспокоиться.

Нельзя просто сложить их вместе, потому что они ортогональны друг другу. В конечном итоге это связано с тем, что реактивное сопротивление, которое измеряется в омах, как и реальное сопротивление, вызывает падение напряжения.Единственная разница в том, что капля скорее накапливает энергию, чем рассеивает ее.

Это падение приводит к тому, что напряжение и ток больше не совпадают по фазе. Например, конденсатор вызовет сдвиг напряжения за током, потому что часть этого тока будет заряжать этот конденсатор, и в результате произойдет зависящее от времени падение напряжения. Затем через 90 градусов в цикле переменного тока конденсатор разрядится и сохранит напряжение выше, чем можно было бы ожидать. В результате напряжение отстает от тока.Фазовый сдвиг.

Мощность, конечно же, \ $ V x I \ $. А при чисто резистивной нагрузке (без реактивной мощности, только активная мощность) напряжение и ток всегда совпадают по фазе, и, таким образом, полная мощность равна реальной мощности и представляет собой просто среднеквадратичное значение напряжения, умноженное на действующее значение тока.

Но когда из-за реактивных нагрузок напряжение и ток перестают совпадать по фазе, это не меняет кажущуюся мощность, но влияет на реальную мощность, уменьшая ее. Если напряжение отстает от тока, тогда, когда изначально у вас могло быть пиковое напряжение, скажем, 10 В, совпадающее с пиковым током, скажем, 1 А, в результате пиковая мощность 10 Вт, теперь у вас может быть только 9 В при достижении пикового тока.И пиковое напряжение больше не достигается, когда ток достигает своего пика. Это приводит к неизбежному снижению реальной мощности.

Итак, это ортогональные векторы, один может только отбирать мощность у другого, оба борются за кажущуюся мощность, которая не изменится для данного количества Ом, независимо от того, как эти омы разделены между реальным и реактивным импедансом. .

Угол — это, конечно, сдвиг фаз между напряжением и током. При 90 градусах напряжение достигает пика, когда ток равен нулю, а ток достигает пика, когда напряжение равно нулю.Вся мощность реактивная, но никаких работ не ведется.

Так почему это вообще имеет значение? Зачем нужно подбирать блок питания по полной мощности?

Потому что электроны все еще движутся, даже если они ничего не делают. Усилитель — это усилитель, и он не перестает быть усилителем только потому, что на самом деле ничего не делает.

100А, даже если он просто хранится в конденсаторе только для повторного высвобождения в следующем цикле без каких-либо действий, по-прежнему составляет 100А тока, проводимого через кабели.Это все еще 100А, которые трансформатор должен выдерживать при прохождении через его обмотки. Еще 100А ядро ​​должно выдерживать без перегрева.

В конечном счете, для такого рода вещей важно не то, сколько энергии фактически используется для выполнения работы, а , сколько энергии должно быть перенесено . И это всегда кажущаяся мощность.

Вот почему коэффициент мощности имеет большое значение. Коэффициент мощности — это отношение реальной мощности к полной мощности. А что касается таких вещей, как электрическая сеть (помня, что сама сеть должна беспокоиться о том, что ей нужно, чтобы переносил ), если вы используете 1 Вт мощности, но имеете большой конденсатор в сети, что приводит к 1 кВт мощности. полная мощность…. они собираются взимать с вас плату за это, потому что этот 1 кВт все еще должен проходить через сеть и по-прежнему приводит к резистивным потерям в линиях электропередачи, и, что еще хуже, это происходит без причины.

Это то, что не имеет конца тщательным теоретическим экзаменам, которые в значительной степени углубляются в математику, и это действительно правильный способ окончательно понять все это, но я думаю, что это может очень помочь иметь хорошее концептуальное представление о том, почему математика это то, что это такое, и почему все это имеет значение.Надеюсь, это помогло!

Выход трансформатора подключен к другому трансформатору. Измерение «активной мощности» на входе первого трансформатора

Реальная мощность, которую вы измеряете, когда к трансформатору не подключена нагрузка, представляет собой «потери в стали» в пластинах, состоящие из гистерезиса и потерь на вихревые токи. Реактивная мощность обусловлена ​​намагничиванием сердечника. В первичной обмотке будут небольшие потери в меди из-за тока намагничивания и потерь в сердечнике.

Общие потери для одного трансформатора, питающего другой, будут включать некоторые потери в меди в первом трансформаторе из-за полного тока, подаваемого на второй трансформатор.Реальная и реактивная мощность второго трансформатора должна оставаться неизменной в измерениях, проводимых на первичной обмотке первого трансформатора.

Вот с чем можно сравнить свои результаты:

Я измерил потери холостого хода для трансформатора на 150 ВА с первичной обмоткой 120 В, 60 Гц. При 122,2 В входной ток 0,13 А, мощность 5,3 Вт, полная мощность 16,6 ВА и коэффициент мощности 0,31. Данные были получены с помощью Kill-A-Watt. Трансформатор весит около 6 кг.5 фунтов и имеет стек ламинирования 3-3 / 4 X 3-1 / 8 X ​​1-7 / 8 дюймов.

Данные для трансформатора мощностью около 100 ВА были 3,1 Вт и 9,1 ВА. Трансформатор на 25 или 50 ВА измеряет 3 Вт и 10,4 ВА на холостом ходу. Два больших трансформатора предназначались для промышленных товаров, продаваемых бумажным фабрикам и производителям автомобилей. Я считаю, что небольшой трансформатор использовался в потребительском продукте.

Сравнение данных Kill-A-Watt с данными, полученными с помощью других измерителей, заставляет меня думать, что они точны в пределах от 1 до 3 процентов.

Если счетчик показывает «много» мощности при только подключенных трансформаторах, и они не сгорают, значит, что-то не так с измерителем или вашим использованием. У My Kill-A-Watt есть кнопка Watt / VA, которая переключает дисплей между ваттами (реальная мощность) и VA (полная мощность).

Вот измеритель Kill-A-Watt, показывающий показания ватт и VA для лампы CFL.

Что такое треугольник силы? — Активная, реактивная и полная мощность

Треугольник мощности представляет собой прямоугольный треугольник, показывающий соотношение между активной мощностью, реактивной мощностью и полной мощностью.

Когда каждая составляющая тока, которая является активной составляющей (Icosϕ) или реактивной составляющей (Isinϕ), умножается на напряжение V, получается треугольник мощности, показанный на рисунке ниже:

Мощность, которая фактически потребляется или используется в цепи переменного тока, называется истинной мощностью или активной мощностью или реальной мощностью. Он измеряется в киловаттах (кВт) или МВт.

Мощность, которая течет вперед и назад, что означает, что она движется в обоих направлениях в цепи или реагирует на нее, называется Реактивная мощность .Реактивная мощность измеряется в киловольт-амперах, реактивная (кВАр) или мвар.

Произведение среднеквадратичного значения напряжения и тока известно как кажущаяся мощность . Эта мощность измеряется в кВА или МВА.

Следующая точка показывает взаимосвязь между следующими величинами и объясняется графическим представлением, называемым треугольником мощности, показанным выше.

  • Когда активная составляющая тока умножается на напряжение цепи V, получается активная мощность.именно эта мощность создает крутящий момент в двигателе, нагревает нагреватель и т. д. Эта мощность измеряется ваттметром.
  • Когда реактивная составляющая тока умножается на напряжение цепи, получается реактивная мощность. Эта мощность определяет коэффициент мощности, и она течет вперед и назад по цепи.
  • Когда ток в цепи умножается на напряжение в цепи, получается полная мощность.
  • Из треугольника мощности, показанного над мощностью, коэффициент может быть определен путем взятия отношения истинной мощности к полной мощности.

    Как мы знаем, просто мощность означает произведение напряжения и тока, но в цепи переменного тока, за исключением чисто резистивной цепи, обычно существует разность фаз между напряжением и током, и поэтому VI не дает реальной или истинной мощности в цепи.

Вт и вольт-ампер — что такое кВА и как она рассчитывается?

Вы когда-нибудь задумывались, почему некоторые номинальные мощности выражаются в Ваттах, некоторые — в АМПЕРАХ или АМПЕР, некоторые — в ВОЛЬТАХ, а некоторые — в кВА? На этой странице простым языком объясняется разница между номинальными значениями мощности и описывается, когда каждый из них следует использовать в вашем центре обработки данных и при планировании сетевой архитектуры.

КВА — это просто 1000 вольт ампер. вольт — электрическое давление. А — электрический ток. Термин, называемый кажущейся мощностью (абсолютное значение комплексной мощности, S), равен произведению вольт и ампер.

С другой стороны, ватт (Вт) — это мера реальной мощности. Реальная мощность — это количество фактической мощности, которая может быть получена из цепи. Когда напряжение и ток в цепи совпадают, реальная мощность равна полной мощности.Однако по мере того, как волны тока и напряжения совпадают в меньшей степени, передается меньше реальной мощности, даже если в цепи по-прежнему течет ток. Различия между реальной и полной мощностью и, следовательно, ваттами и вольтами ампер возникают из-за неэффективности передачи электроэнергии.

Результирующая неэффективность передачи электроэнергии может быть измерена и выражена в виде отношения, называемого коэффициентом мощности . Коэффициент мощности — это отношение (число от 0 до 1) активной и полной мощности.В случае коэффициента мощности 1,0 реальная мощность равна полной мощности. В случае коэффициента мощности 0,5 активная мощность примерно вдвое меньше полной мощности.

Развертывание систем с более высоким коэффициентом мощности приводит к меньшим потерям электроэнергии и может помочь повысить эффективность использования энергии (PUE). Большинство источников бесперебойного питания (ИБП) будут указывать средний коэффициент мощности и нагрузочную способность ИБП в реальном времени в дополнение к кВА.

Пример: У вас есть ИБП на 500 кВА (полная мощность) с 0.9 коэффициент мощности. Итоговая реальная мощность составляет 450 киловатт.

Некоторые полезные коэффициенты преобразования и формулы

  • ВА = Напряжение x Ампер
  • Вт = Напряжение (среднеквадратичное значение) x Ампер (среднеквадратичное значение) x Коэффициент мощности (PF) ( трехфазная цепь умножила бы напряжение на квадратный корень из 3 или приблизительно 1,732)
  • 1 BTU (британская тепловая единица) = Вт x 3,413
  • 1 BTU = 1055.053 джоулей (Дж)
  • 1 ватт = 3,413 БТЕ / час
  • 1 тонна = 200 БТЕ / мин
  • 1 тонна = 12000 БТЕ / час
  • 1 тонна = 3,517 киловатт

Понимание коэффициента мощности и его важности

Коэффициент мощности — это показатель того, насколько эффективно вы используете электроэнергию. Чтобы обеспечить нас электроэнергией, работают различные виды энергии. Вот что делает каждый.

Рабочая мощность — «истинная» или «реальная» мощность, используемая всеми электрическими приборами для выполнения работы по нагреванию, освещению, движению и т. Д.Мы выражаем это как кВт или киловатт. Распространенными видами резистивных нагрузок являются электрическое отопление и освещение.

Индуктивная нагрузка, такая как двигатель, компрессор или балласт, также требует реактивной мощности для создания и поддержания магнитного поля для работы. Мы называем эту нерабочую мощность кВАр или киловольт-ампер-реактивной.

В каждом доме и на предприятии есть как резистивные, так и индуктивные нагрузки. Соотношение между этими двумя типами нагрузок становится важным по мере добавления индуктивного оборудования.Рабочая мощность и реактивная мощность составляют полную мощность, которая называется кВА, киловольт-ампер. Мы определяем полную мощность по формуле, кВА2 = кВ * А.

Идя еще дальше, коэффициент мощности (PF) — это отношение рабочей мощности к полной мощности, или формула PF = кВт / кВА. Высокий коэффициент мощности приносит пользу как потребителю, так и коммунальному предприятию, в то время как низкий коэффициент мощности указывает на плохое использование электроэнергии.

Вот пример. Операция штамповки стали выполняется при 100 кВт (рабочая мощность), а счетчик кажущейся мощности регистрирует 125 кВА.Чтобы найти коэффициент мощности, разделите 100 кВт на 125 кВА, чтобы получить коэффициент мощности 80%. Это означает, что только 80% входящего тока выполняет полезную работу, а 20% теряется из-за нагрева проводов. Поскольку Edisto Electric должна обеспечивать потребности всех клиентов как в кВт, так и в кВА, чем выше коэффициент мощности, тем эффективнее становится наша распределительная система.

Улучшение PF может максимизировать допустимую нагрузку по току, повысить напряжение в оборудовании, снизить потери мощности и снизить счета за электроэнергию. Самый простой способ улучшить коэффициент мощности — добавить в электрическую систему конденсаторы коррекции коэффициента мощности.Конденсаторы коррекции коэффициента мощности действуют как генераторы реактивного тока. Они помогают компенсировать нерабочую мощность, используемую индуктивными нагрузками, тем самым улучшая коэффициент мощности. Взаимодействие между конденсаторами PF и специализированным оборудованием, таким как приводы с регулируемой скоростью, требует хорошо спроектированной системы.

Конденсаторы коррекции

PF могут включаться каждый день при запуске индуктивного оборудования. Включение конденсатора может вызвать очень кратковременное состояние «перенапряжения».

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *