Схемы компьютерных блоков питания ATX и AT. Cборка № 10
- Домой
- Новости
- Статьи
- Ноутбуки
- Ноутбуки Acer
- Ноутбуки Asus
- Ноутбуки Dell
- Ноутбуки HP
- Ноутбуки Lenovo
- Ноутбуки MSI
- Ноутбуки Samsung
- Ноутбуки Sony
- Ноутбуки Toshiba
- Программное обеспечение
- Компьютерное железо
- Компьютерные сети
- Жесткие диски
- Программирование
- Программирование
- Базы данных MySQL
- Ремонт автомобилей
- Другие темы
- Ноутбуки
- Магазин
- В продаже
- Программаторы SPI Flash
- Комплектующие для ноутбуков
- Адаптеры Optibay HDD Caddy
- Заказ, оплата, доставка
- В продаже
- Драйвера
- Аудио карты
- Модули Bluetooth
- Процессоры
- Карты Видеозахвата
- Чипсеты
- Контроллеры
- Настольные ПК
- HDD
- Сетевые карты
- WiFi сетевые карты
- Ноутбуки
- Модемы
- Мониторы
- Материнские платы
- Мыши
- Принтеры
- RAID контроллеры
- Роутеры
- SSD Диски
- ТВ-тюнеры
- USB флэшки
- Видеокарты
- WEB камеры
- Рули
- Контакты
Search
- Список рубрик
- Теги этой статьи
- схема
- питания
- блок
- power
- supply
- ATX
- ремонт
- SG6105
- Самые популярные статьи
Схемы блоков питания ATX. Полный список схем.
21/02/2016 282.9 K ПодробнееЗамена процессора в ноутбуке, совместимость, апгрейд.
20/11/2017 187.2 K ПодробнееСхемы блоков питания, сборка № 5, БП для ноутбуков.
14/09/2016 156.3 K ПодробнееСхемы блоков питания ATX, сборка № 9, БП «FSP».
12/09/2017 129.0 K ПодробнееЗамена процессора в ноутбуке. Апгрейд процессора Intel второго и третьего поколения Core i7 [Sandy Bridge и Ivy Bridge]
22/01/2019 121.2 K Подробнее
- Новые статьи на сайте
Схемы на ноутбуки Acer, eMachines
12/11/2020 50 ПодробнееСхемы на ноутбуки IBM Lenovo
10/11/2020 94 ПодробнееСхемы на ноутбуки Asus
14/10/2020 796 ПодробнееСхемы на материнские платы Asus
14/10/2020 1. 8 K ПодробнееСхемы на материнские платы Gigabyte
05/10/2020 1.8 K Подробнее
- Домой
- Статьи
- Компьютерное железо
- Схемы компьютерных блоков питания ATX и AT. Cборка № 10
05/01/2019
37.0 K
схема, питания, блок, power, supply, ATX, ремонт- Схема блока питания EuroCase LC-B350ATX
на микросхеме 2003 (BAY62520342E). - Нажмите для увеличения изображения
- Схема в формате PDF: EuroCase_LC-B350ATX.pdf
- Часть схемы блока питания Thermaltake Toughpower 650W
на микросхеме PS229. - Нажмите для увеличения изображения
- Схема блока питания Gembird 450W
на микросхемах AZ7500BP и LP7510. - Нажмите для увеличения изображения
- Схема блоков питания Enermax 500W ENP500AGT
на CM6805BSX, TNY176PN и ST9S313-DAG. - Нажмите для увеличения изображения
- Схема в формате PDF: Enermax_500W_ENP500AGT.pdf
- Схема блоков питания Patriot 400W A400-K
на SG6105. - Нажмите для увеличения изображения
- Схема в формате PDF: Patriot_model_A400-K.pdf
- Схема блоков питания Megabajt MGB-350S ATX
на TL494CN и WT7510. Часть 1. - Нажмите для увеличения изображения
- Часть 1 из 2. Схема в формате PDF: Megabajt_model_MGB-350S.pdf
- Детали в блоке питания Megabajt MGB-350S ATX
на TL494CN и WT7510. Часть 2. - Нажмите для увеличения изображения
- Часть 2 из 2. Схема деталей в формате PDF: Megabajt_model_MGB-350S.pdf
- Схема блоков питания Maxpower 230W PX-230W
на SG6105D. - Нажмите для увеличения изображения
- Схема в формате PDF: Maxpower-model-PX-230W-ver.-2.03.pdf
- Схема блоков питания Linkworld 350W LC-A350ATX-P4
на чипе 2003. - Нажмите для увеличения изображения
- Схема блоков питания JNC 400W KY-2128 rev.1.1
на чипах AMC110B, AP3843B и силовых полевиках IFRPC50. - Нажмите для увеличения изображения
- Схема в формате PDF: JNC-model-ATX400W.pdf
- Схема блоков питания JNC 200W ATX v. 2.02
на чипах
Блок питания AT
Предупреждение Для подачи напряжений к системной плате используются два 6-контактных разъема Р8 и Р9. Так как оба разъема конструктивно абсолютно одинаковы, а назначение контактов существенно различается, всегда существует опасность установить их неправильно. Для старых моделей блоков питания и системных плат это кончалось, как правило, выгоранием токо-проводящих проводников на материнской плате и выходом ее из строя. Маркировка разъемов не особо помогает, т. к. на самой материнской плате достаточно трудно рассмотреть номера разъемов. Существует правило, по которому происходит подключение — две пары черных и толстых проводов должны быть рядом (иногда они могут быть другого цвета). Учитывая такую особенность, всегда перед первым включением питания проверяйте — находятся ли в центре четыре одинаковых провода (по цвету и толщине). Предупреждение Устанавливайте разъемы питания так, чтобы рядом были по два черных провода (земля). Для проводов разъемов питания применяются стандартные цвета (табл. 6.1), хотя встречаются и другие варианты. Напряжения и цвета проводников в разъемах Р8 и Р9 Для питания
различных устройств, например дисководов, из блока питания выходят несколько
жгутов с 4-контактными разъемами , имеющими скошенные углы. На эти
разъемы выводятся напряжения +5 и +12 В. Таких разъемов обычно бывает от 3 до
5. Для питания 3-дюймового дисковода используют малогабаритный 4-контактный
разъем , который надо подключать к дисководу очень аккуратно, чтобы
не перепутать ориентацию или не установить его не на те контакты (со сдвигом).
Так как различных внешних устройств, в том числе и вентиляторов, может быть
больше количества разъемов, то используют переходники. Также переходники применяют,
когда у блока питания нет разъема для подключения 3-дюймового дисковода.
На блоке питания AT установлено две розетки для цепи 220 В, которые не являются равнозначными. Основная, к которой подключается питающее напряжение, снабжена тремя штырями для подключения сетевого провода , у которого третий проводник — это защитное заземление (зану-ление). Вторая розетка предназначена для подключения специального кабеля питания монитора . Напряжение 220 В к ней подается только после нажатия кнопки питания на лицевой панели компьютера. |
|
Russian HamRadio — Блоки питания для системных модулей типа IBM PC-XT/AT.
Блоки питания (БП) для системных модулей IBM PC XT/AT предназначены для преобразования входного переменного напряжения сети в выходные постоянные напряжения, обеспечивающие работу всех узлов и блоков компьютера.
Основной функцией источника электропитания является обеспечение стабильного заданного выходного напряжения при изменении я широких пределах входного напряжения, выходного тока и рабочей температуры. Степень, с которой источник электропитания обеспечивает стабильность выходного напряжения в вышеприведенных условиях, является основным показателем качества источника.
Процесс ремонта любого электронного устройства можно условно разбить на два этапа — установление причины неисправности и, непосредственно, её устранение. Первый этап является не только самым трудоёмким, но и наиболее важным в процессе ремонта.
В некоторых случаях неисправные элементы в электронных схемах видны невооруженным глазом. Их замена может привести к восстановлению работоспособности устройства, но, зачастую, сгоревший элемент является не причиной, а следствием возникшей неисправности. В этом случае, Вы будете удивлены, когда устраненная неисправность возникнет снова через некоторое время.
Установление причины отказа следует начинать с анализа ситуации, при которой возникла неисправность, в первую очередь, обращая внимание на симптомы, нехарактерные при нормальной работе устройства. Такими симптомами могут быть: посторонний фон, непериодические потрескивания, прослушиваемые во время разговора, произвольные обрывы связи, другие сбои в работе устройства.
А.Б.Головков. В.Б. Любицкий
Устройство и правильный ренонт блоков питания IBM PC-XT/AT. |
· Глава 1.1. ОСНОВНЫЕ ПАРАМЕТРЫ БЛОКОВ ПИТАНИЯ.
· Глава 1.2. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИМПУЛЬСНЫХ БП
· Глава 1. 3. ПРИНЦИП ПОСТРОЕНИЯ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ (ИБП).
· Глава 1.4. КОНСТРУКТИВНОЕ ОФОРМЛЕНИЕ ИБП.
· Глава 2.1. СХЕМОТЕХНИЧЕСКИЕ РЕШЕНИЯ ОСНОВНЫХ УЗЛОВ ИБП НА ОСНОВЕ СХЕМЫ УПРАВЛЕНИЯ ТИПА TL494.
· Глава 2.2. ВХОДНЫЕ ЦЕПИ.
· Главa 2.3. УПРАВЛЯЮЩАЯ МИКРОСХЕМА.
· Глава 2.4. СХЕМА ПУСКА.
· Глава 2.5. СОГЛАСУЮЩИЙ КАСКАД
· Глава 2.6. СИЛОВОЙ КАСКАД.
· Глава 2.7. ВЫХОДНЫЕ ЦЕПИ.
· Глава 2.8. СТАБИЛИЗАЦИЯ ВЫХОДНЫХ НАПРЯЖЕНИЙ ИБП.
· Глава 2.9. СХЕМЫ ЗАЩИТЫ.
· Глава 2.10. СХЕМА «МЕДЛЕННОГО ПУСКА».
· Глава 2. 11. СХЕМА ВЫРАБОТКИ СИГНАЛА PG (POWER GOOD).
· Глава 2.12. ПРИМЕР ПОСТРОЕНИЯ ОДНОГО ИЗ БЛОКОВ ПИТАНИЯ.
· Глава 3.1. СХЕМНЫЕ И КОНСТРУКТИВНЫЕ МЕРЫ БОРЬБЫ С ПОМЕХООБРАЗОВАНИЕМ.
· Глава 3.2. БОРЬБА С УРОВНЕМ ПОМЕХООБРАЗОВАНИЯ В СХЕМАХ ИБП.
· Глава 3.3. ВЕНТИЛЯТОР.
· Глава 4. ТЕХНИКА БЕЗОПАСНОСТИ ПРАВИЛА И МЕРЫ БЕЗОПАСНОСТИ ПРИ РЕМОНТЕ БП.
· Глава 5. ДИАГНОСТИКА И РЕМОНТ ОСОБЕННОСТИ РЕМОНТА ИБП.
· Глава 6.1. ЭЛЕМЕНТНАЯ БАЗА ИБП И СПОСОБЫ ЕЕ ДИАГНОСТИКИ. РЕЗИСТОРЫ.
· Глава 6.2. КОНДЕНСАТОРЫ.
· Глава 6.3. ТРАНСФОРМАТОРЫ И ДРОССЕЛИ.
· Глава 6. 4. ДИОДЫ.
· Глава 6.5. ТРАНЗИСТОРЫ.
· Глава 6.6. ИНТЕГРАЛЬНЫЕ СТАБИЛИЗАТОРЫ.
· Глава 7.1. НЕКОТОРЫЕ КЛЮЧЕВЫЕ МОМЕНТЫ, КОТОРЫЕ НЕОБХОДИМО УЧИТЫВАТЬ ПРИ ПОИСКЕ НЕИСПРАВНОСТЕЙ ИБП IBM PС.
· Глава 7.2. РЕМОНТ ВЕНТИЛЯТОРОВ.
· Глава 8.1. ПЕРЕЧЕНЬ НЕКОТОРЫХ ВЗАИМОЗАМЕНЯЕМЫХ ЭЛЕМЕНТОВ В БЛОКАХ ПИТАНИЯ IBM PC.
· Глава 8.2. ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ СИЛОВЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИБП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА.
· Глава 8.3. ПАРАМЕТРЫ НАИБОЛЕЕ РАСПРОСТРАНЕННЫХ МАЛОМОЩНЫХ ТРАНЗИСТОРОВ, ПРИМЕНЯЕМЫХ В ДВУХТАКТНЫХ СХЕМАХ ИВП ЗАРУБЕЖНОГО ПРОИЗВОДСТВА.
Материал подготовил M. Грибак (UA9XEQ), книга отсканирована Ю. Замятиным (UA9XPJ).
Лабораторный блок питания с ампер-вольтметром на базе компьютерного БП (0-30В, 11А max)
Обычно для переделки компьютерных блоков питания используют блоки ATX, собранные на микросхемах TL494 (KA7500), но в последнее время такие блоки не попадаются. Их стали собирать на более специализированных микросхемах, на которых сложнее сделать регулировку тока и напряжения с нуля. По этой причине был взят для доработки старый блок типа AT на 200W, который был в наличии.Содержание / Contents
1. Вмонтирована плата зарядного устройства от мобильного телефона Nokia AC-12E с доработкой. В принципе можно использовать и другие зарядные устройства.Доработка заключалась в перемотке III обмотки трансформатора и установке дополнительного диода и конденсатора. После переделки блок стал выдавать напряжения +8V для питания вентилятора и вольтметра-амперметра и +20V для питания микросхемы управления TL494N.
2. С платы блока AT выпаяны детали самозапуска первичной цепи и цепи регулировки выходного напряжения. Также были удалены все вторичные выпрямители.
Выходной выпрямитель переделан по мостовой схеме. Использованы три диодных сборки MBR20100CT. Дроссель перемотан — диаметр кольца 27 мм, 50 витков в 2 провода ПЭЛ 1 мм. В качестве нелинейной нагрузки применена лампа накаливания 26V 0,12A. С ней напряжение и ток хорошо регулируются от нуля.
Для обеспечения устойчивой работы микросхемы изменены цепи коррекции. Для грубой и точной регулировок напряжения и тока применено особое подключение потенциометров. Такое подключение позволяет плавно изменять напряжение и ток в любом месте при любом положении потенциометра грубой регулировки.
Особого внимания требует шунт, провода для регулировки и измерения должны подключатся непосредственно к его выводам, так как напряжение, снимаемое с него невелико. На схеме эти подключения показаны фиолетовыми стрелками. Измеряемое напряжение для цепи регулирования снимается с делителя с коррекцией для устранения самовозбуждения в цепях управления.
Верхний предел установки напряжения подбираются резисторами R38, R39 и R40. Верхний предел установки тока подбирается резистором R13.
3. Для измерения тока и напряжения применен вольтметр-амперметр
За основу взята схема «Суперпростой амперметр и вольтметр на супердоступных деталях (автовыбор диапазона)» от Eddy71.
В схему введена регулировка баланса ОУ при измерении тока, что позволило резко улучшить линейность. На схеме это потенциометр «Баланс ОУ», напряжение с которого поступает на прямой или инверсный входы (подбирается, куда подключить, на схеме обозначено зелеными линиями).
Автоматический выбор диапазона измерения реализован программно. Первый диапазон до 9,99A с указанием сотых долей, второй до 12A с указанием десятых долей ампера.
4. Программа для микроконтроллера написана на СИ (mikroC PRO for PIC)и снабжена комментариями.
Конструктивно все элементы размещены в корпусе блока AT. Плата зарядного устройства закреплена на радиаторе с силовыми транзисторами. Сетевые разъемы убраны и на их месте установлен выключатель и выходные зажимы. Сбоку на крышке блока находятся резисторы установки напряжения и тока и индикатор вольтметра-амперметра. Закреплены они на фальшпанели с внутренней стороны крышки.Чертежи выполнены в программе Frontplatten-Designer 1.0. Междукаскадный трансформатор блока AT не переделывается. Выходной трансформатор блока AT тоже не переделывается, просто средний отвод, выходящий из катушки, отпаивается от платы и изолируется. Выпрямительные диоды заменены на новые, указанные в схеме.
Шунт взят от неисправного тестера и закреплен на изоляционных стойках на радиаторе с диодами. Плата для вольтметра-амперметра использована от «Суперпростого амперметра и вольтметра на супердоступных деталях (автовыбор диапазона)» от Eddy71 с последующей доработкой (перерезаны дорожки, согласно схемы).
▼ Файловый сервис недоступен. Зарегистрируйтесь или авторизуйтесь на сайте. • How to Convert a Computer ATX Power Supply to a Laboratory Power Supply
• Суперпростой амперметр и вольметр на супердоступных деталях II (автовыбор диапазона)
• 3 digits Digital volt meter
Иван Внуковский, г. Днепропетровск
Иван Внуковский (if33)
Украина, г. Днепропетровск
Радиолюбитель, стаж более 40 лет. Работал на заводе инженером КБ, инженером по обслуживанию ЭВМ, механиком по ремонту бытовой техники. Сейчас на пенсии.
БП ATX мощный лабораторный БП и зарядник АКБ. — ИСТОЧНИКИ ПИТАНИЯ — radio-bes
Конструкция выходного дня.
Неожиданно наступила зима и за окном похолодало. А тут ещё бензин какой-то не тот залил. В общем король немецкого автопрома встал, где-то под Москвой как и 67 лет назад его старшие «проотцы». Аккумулятор сел, дальше пешком…. Для зарядки аккумулятора дома нашлась только пара сгоревших блоков ATX. Сразу добавлю, что эта «зарядка» не предназначена для восстановления, десульфатации и протчих не перспективных шаманских методов, чем занимались наши отцы (и я в том числе) в прошлой жизни из-за крайней убогости быта.
Это просто блок, позволяющий надёжно и наименьшими затратами зарядить «севший», но исправный аккумулятор. Суть его проста и внятна. Он выдаёт на выходе зарядный ток около 5-6 Ампер, при любой активной нагрузке, вплоть до короткого замыкания. При этом напряжение на выходе ни при каких обстоятельствах не превысит заданного значения. Я установил 14,6 вольт.
Сначала надо бы добиться работоспособности блока
По порядку для «чайников» о восстановлении блоков, общие правила:
- Если предохранитель в порядке, переходим к пункту 4.
- Если предохранитель сгорел, то сначала проверяем отсутствие «короткого» на разъёме ~220.
- Если «короткое», устраняем, это могут быть силовые транзисторы, диоды, конденсаторы. Заодно советую проверить диоды во вторичной цепи.
- После устранения «короткого» выпаиваем
предохранитель и вместо него запаиваем «кроватку», если её не установили
при изготовлении.
- Вместо предохранителя вставляем в «кроватку» заранее подготовленный резистор изготовленный из сгоревшего предохранителя и лампочки на 220 Вольт мощностью 100-200 Ватт.
- Лучше, если у Вас найдётся разделительный трансформатор, но если нет, не очень страшно. Достаточно просто не совать пальцы в силовую половину блока. Включаем блок в 220. Замыкаем «зелёный» и «чёрный» провода на большом разъёме. При отсутствии нагрузки исправный АТХ закрутит лопастями пытаясь взлететь. Лампочка (предохранитель) гореть не должна. Если так, можно вместо лампочки вставить предохранитель и приступить к переделке блока, но лучше пока оставить лампочку.
- Если лампочка не загорелась но АТХ не «поднимается», проверяем наличие питания микросхемы TL-494 (или её аналога). Если в блоке применена другая микросхема, дальше можно не читать, или читать из любопытства. Итак, на 12 ноге микросхемы (относительно 7-ой) проверяем наличие дежурного питания от 5, до 25 вольт. Если питания нет, значит не работает источник дежурного питания, именуемый в разных источниках как +USB, «дежурка» и т.п. Если +USB нет, тут есть 3 пути, искать неисправность дежурки, запитать TL494 от любого другого БП (адаптера), или пойти в ближайшую мастерскую и купить (попросить) другой АТХ. Дело в том, что «дежурка» сравнительно тяжело поддаётся ремонту. Обычно после замены транзистора или Viper-a, или ещё чего-то вскоре неисправность повторяется. Проблема не столько в сложности поиска неисправности, сколько в самих неисправностях. Это может быть межвитковое в импульсном трансформаторе, не достаточно «быстрый» электролитический конденсатор во вторичной цепи, потеря индуктивности дросселя во вторичной цепи (из-за перегрева феррита), обрыв резистора стартового тока «дежурки» и многое другое, что довольно трудно установить имея под руками только тестер. Но тем, кто потерпеливее пожелаю удачи.
- Несколько слов про АТ блок. Дело в том, что АТ
поднимаются без «дежурки». И вообще без всякой помощи. В этом смысле они
более живучие и, позволю себе вольность, более совершенные. Благодаря
некоторым хитростям в схемотехнике силового «полумоста» блок начинает
«всхлипывать » совершенно самостоятельно, без всяких «дежурок» и
микросхем. В этот момент с 12-и вольтовой обмотки через отдельный диод
заряжается конденсатор питания TL-494 (зелёная стрелка на схеме). Обычно
1-2 «всхлипа» и АТ поднимается, продолжая по той же как и в АТХ цепи
питать TL-494. В АТХ питание TL-494 после включения осуществляется от
«дежурки» затем питание поднимается и как и в АТ производится от +12
вольт. В обоих случаях конденсатор питания заряжается до амплитудного
значения напряжения приблизительно +24 вольта.
Итак, АТХ поднялся.
Тут не плохо проверить свой тестер подключив его + на 14 вывод TL-494. Микросхема TL494 имеет встроенный источник опорного напряжения на 5,0В, способный обеспечить вытекающий ток до 10мА для смещения внешних компонентов схемы. Опорное напряжение имеет погрешность 1% в диапазоне рабочих температур от 0 до 70°С.
- Теперь приступаем к вырезанию всего, что мешает нам наслаждаться пейзажем дырчатого гетинакса.
Вырезаем лишние диодные сборки, дроссели конденсаторы фильтров, все транзисторы обвязки TL-494. Что бы не по-нарезать чего попало, придётся немного углубится в принцип работы АТ-АТХ. Для начала пройдёмся по ногам микросхемы.
Частота внутреннего генератора определяется по формуле:
где R и С это резистор и конденсатор на выводах 6 и 5 соответственно, то есть это не вырезать.
Вывод 14 это выход внутреннего источника опорного напряжения +5 вольт.
Выводы 1,2,15 и 16 это входы 2-х встроенных компараторов, которые пользователь может использовать по своему усмотрению, т.е. управлять шириной выходных импульсов ШИМ. Оба компаратора совершенно одинаковы с той лишь разницей, что компаратор с выводами 15-16 срабатывает с «задержкой» 80 мВольт. В попавших мне АТХ этот компаратор не использовался, 16 вывод заземлён, а 15 соединён на Uref, т. е. 14 вывод.
Вывод 13 предназначен для перевода TL-494 в режим управления обратноходовыми однотактными преобразователями. При этом «мёртвое время» может быть увеличено до 96%. В нашем, «двухтактном» случае этот вывод так же соединяется на Uref.
Компаратор на выводах 1-2 мы будем использовать для установки выходного напряжения, для этого на вывод 2 подаём часть Uref, что и сделано в большинстве АТ и АТХ. Обычно это напряжение примерно 2,5 вольт, т.е. с Uref (+5Вольт) через резистивный делитель.
RC цепочка с вывода 2 на вывод 3 (FB или ОС) предназначена для ограничения скорости ШИМ при стабилизации напряжения и имеется во всех схемах АТ-АТХ. Её тоже вырезать нельзя.
Рисую упрощённую схему управления выходным напряжением.
Напряжение на выходе БП будет равно Uвых=Uref1(1+Roc/Rm). Теперь Вы должны сами с калькулятором в руках решить из каких резисторов составить делитель. Я это сделал как показано на схеме. Проверьте обязательно, если эта формула у Вас не заработала, значит Вы не всё урезали. Важно учесть, что без перемотки трансформатора более 18-20 вольт на 12-и вольтовом выходе получить не получится. В принципе БП может дать до 24 вольт, но это при отсутствии нагрузки и полностью «открытой» ШИМ, то есть, когда «мёртвое» время не более 4% от периода. Без дросселя БП будет чувствовать себя не очень комфортно. Ему будет трудно удержать выходное напряжение. Его будет «плющить и колбасить» как автомобиль с заклинившим амортизатором. Наша задача получить ограничение на уровне 14,6-14,8 Вольта. Для «убитых» аккумуляторов надо напряжение до 16 (и более) вольт. Для фанатов восстановления можно накрутить и столько.
На сладкое немного о выводе 4.
Это тоже вход компаратора, но с задержкой 120 мВольт. И тут дело даже не в задержке, а в том, что конструктор микросхемы предусмотрел использовать его для регулировки «мёртвого времени». Обычно в схемах АТХ-АТ его используют как «мягкий пуск» и для целей всяких защит. Вот эти защиты Вам и предстоит вырезать.
Работает ОНО так. При включении БП
конденсатор с выв.4 на Uref разряжен и на выводе 4 сразу появляется +5
вольт, что наглухо закрывает выходные ключи микросхемы. Затем
конденсатор заряжается через резистор (выв4-земля) и на выводе 4
напряжение падает до нуля. Это приводит к медленному нарастанию
выходного напряжения до момента когда оно стабилизируется ОС по
напряжению. В нашем случае вывод 4 целесообразно попутно задействовать
для ограничения выходного тока. По схеме видно, что при увеличении тока в
нагрузку увеличивается падение напряжения на измерительных резисторах
(4 резистора 0,22 ом), открывается транзистор 733 (такой p-n-p у меня был из выпаянных), что приводит к подъёму напряжения на выводе 4
и так до режима стабилизации тока. На полной схеме цепь стабилизации
тока обведена красным фломастером. Вот так простенько удалось добиться и
стабильного тока зарядки и защиты от короткого замыкания на выходе.
Кстати, на выходе советую ни каких электролитических конденсаторов не ставить, тогда при «коротком» не будет ни каких брызг и взрывов, вызывающих неприятные ощущения.
О выходном дросселе.
Можно применить другой сердечник, например Ш-образный с зазором 0,3 мм. А можно оставить оригинальное кольцо, намотав на нём 20-30 витков тем, что мы размотали или тем, что будет под рукой, диаметром не менее 0,75мм. Я намотал 35 витков в два провода диаметром 0,75мм. Обмотка вложилась в два слоя.
…спустя год…
Просматривая даташит на микросхему KA7500 (аналог TL-494) я обнаружил другое, более простое решение стабилизации тока БП. Авторы предлагают использовать второй компаратор (выв.15,16). С учётом того, что изначально этот компаратор смещён на 80 мВ, получается очень удобное решение. Мною оно повторено дважды. В приводимой схеме выходное напряжение 18 вольт, ток 5 ампер для питания схемы подогрева собачей будки. Для зарядки аккумуляторов естественно, можно использовать блок без перемотки, но всё-таки лучше перемотать. И провод желательно взять по толще, и виточков добавить.
При расчёте количества витков вторичной обмотки желательно, что бы на ХХ напряжение на выходе моста было больше стабилизированного примерно в 2 раза. Это обеспечит оптимальный ШИМ и, соответственно, надёжную стабилизацию.
Странно, но оно работает. А вообще-то не должно.
Не должно потому, что смещение 80 мВольт в каком-то даташите указано, а в
каком-то нет. И вообще это смещение маловато для стабильной работы.
Поэтому я промакетировал подобную ОС на «спицах» и вот что получилось.
Для удобства макетирования я выбрал компаратор
LM311. На 16-ую ногу (по TL-494) подал опорное напряжение 1 вольт. Вот
теперь всё красиво. Компаратор срабатывает на 6,1 Ампера.
Красный
луч-выход компаратора, а зелёный-ток через нагрузку (R3). Да и резистор
0,15 Ом сделать легче и греться будет меньше, чем 0,3.
Тогда схема чуток меняется.
Перемотка трансформаторов (перемотал 5 штук) ни разу не вызвала у меня проблемм. Просто нагреваю в шкафу до 150 — 200 градусов и в перчатках аккуратненько расшатываю.
Страничка эмбеддера » Лабораторный блок питания из ATX БП
Я немного увлекся гальванопластикой (про это еще расскажу), и для нее мне понадобился новый блок питания. Требования к нему примерно такие – 10А выходного тока при максимальном напряжении порядка 5В. Конечно-же, взгляд сразу упал на кучу ненужных компьютерных блоков питания.
Конечно, идея переделать компьютерный блок питания в лабораторный не нова. В интернетах я нашел несколько конструкций, но решил, что еще одна – не помешает. В процессе переделки, я сделал просто дофига ошибок, поэтому, если решитесь сделать и себе такой блок питания, учитывайте их, и у вас получится лучше!
Внимание! Несмотря на то, что складывается впечатление, что этот проект — для новичков, ничего подобного – проект довольно сложный! Имейте ввиду.
Конструкция
Мощность того блока питания, который я вытащил из-под кровати – 250Вт. Если я сделаю БП 5В/10А, то пропадает драгоценная моща! Не дело! Подымем напряжение до 25В, может сгодится, к примеру, для зарядки аккумуляторов – там нужно напряжение порядка 15В.
Для дальнейших действий нужно сначала найти схему на исходный блок. В принципе, все схемы БП известны и гуглятся. Что именно нужно гуглить – написано на плате.
Мне мою схему подкинул друг. Вот она. (Откроется в новом окне)
Да-да, нам придется лазить во всех этих кишках. В этом нам поможет даташит на TL494
Итак, первое, что нам нужно сделать – проверить, какое максимальное напряжение может выдать блок питания по шинам +12 и +5 вольт. Для этого удаляем предусмотрительно помещенную производителем перемычку обратной связи.
Резисторы R49-R51 подтянут плюсовой вход компаратора к земле. И, вуаля, у нас на выходе – максимальное напряжение.
Пытаемся стартовать блок питания. Ага, без компьютера не стартует. Дело в том, что его нужно включить, соединив вывод PS_ON с землей. PS_ON обычно подписан на плате, и он нам еще понадобится, поэтому не будем его вырезать. А вот непонятную схему на Q10, Q9 и Q8 отключим – она использует выходные напряжение и, после их вырезания не даст нашему БП запуститься. Мягкий старт у нас будет работать на резисторах R59, R60 и конденсаторе C28.
Итак, бп запустился. Появились выходные максимальные напряжения.
Внимание! Выходные напряжения – больше тех, на которые рассчитаны выходные конденсаторы, и, поэтому, конденсаторы могут взорваться. Я хотел поменять конденсаторы, поэтому мне их было не жалко, а вот глаза не поменяешь. Аккуратно!
Итак, подучилось по +12В – 24В, а по +5В – 9.6В. Похоже, запас по напряжению ровно в 2 раза. Ну и прекрасно! Ограничим выходное напряжение нашего БП на уровне 20В, а выходной ток – на уровне 10А. Таким образом, получаем максимум 200Вт мощи.
С параметрами, вроде бы, определились.
Теперь нужно сделать управляющую электронику. Жестяной корпус БП меня не удовлетворил(и, как оказалось, зря) – он так и норовит поцарапать что-то, да еще и соединен с землей (это помешает мерить ток дешевыми операционниками).
В качестве корпуса, я выбрал Z-2W, конторы Maszczyk
Я измерил излучаемый блоком питания шум – он оказался вполне небольшим, так что, вполне можно использовать пластиковый корпус.
После корпуса я сел за Corel Draw и прикинул, как должна выглядеть передняя панель:
Электроника
Я решил разбить электронику на две части – фальш-панель и управляющая электроника. Причина для такого разбиения – банально не хватило места на лицевой панели, чтобы вместить еще и управляющую электронику.
В качестве основного источника питания для своей электроники я выбрал standby источник. Было замечено, что если его хорошенько нагрузить, то он перестает пищать, поэтому идеальными оказались 7-сегментные индикаторы — и блок питания подгрузят и напряжение с током покажут.
Фальш-панель:
На ней индикаторы, потенциометры, светодиод. Для того, чтобы не тащить кучу проводов к 7-сегментникам, я использовал сдвиговые регистры 74AC164. Почему AC, а не HC ? У HC максимальный суммарный ток всех ножек – 50мА, а у AC – по 25мА на каждую ножку. Ток индикаторов я выбрал 20мА, тоесть 74HC164 точно бы не хватило по току.
Управляющая электроника – тут все слегка посложнее.
В процессе составления схемы, я конкретно налажал, за что и поплатился кучей перемычек на плате. Вам-же предоставляется исправленная схема.
Если кратко, то – U1A – диф. усилитель тока. При максимальном тока, на выходе получается 2.56В, что совпадает с опорным у АЦП контроллера.
U1B – собственно токовый компаратор – если ток превышает порог, заданный резисторами, tl494 “затыкается”
U2A – индикатор того, что БП работает в режиме ограничения тока.
U2B – компаратор напряжения.
U3A, U3B – повторители с переменников. Дело в том, что переменники относительно высокоомные, да еще и сопротивление их меняется. Это значительно усложнит компенсацию обратной связи. А вот если их привести к одному сопротивлению, то все становится значительно проще.
С контроллером все понятно – это банальная атмега8, да еще и в дипе, которая лежала в загашнике. Прошивка относительно простая, и сделана между паяниями левой лапой. Но, нем не менее, рабочая.
Контроллер работает на 8МГц от RC генератора (нужно поставить соответствующие фюзы)
По хорошему, измерение тока нужно перенести на “высокую сторону”, тогда можно будет мереть напряжение непосредственно на нагрузке. В этой схеме при больших токах в измеренном напряжении будет ошибка до 200мВ. Я слажал и каюсь. Надеюсь, вы не повторите моих ошибок.
Переделка выходной части
Выбрасываем все лишнее. Схема получается такой (кликабельно):
Синфазный дроссель я немного переделал – соединил последовательно обмотку которая для 12В и две обмотки для 5в, в итоге получилось около 100мкГн, что дофига. Еще я заменил конденсатор тремя включенными параллельно 1000мкФ/25В
После модификации, выход выглядит так:
Настройка
Запускаем. Офигиваем от количества шума!
300мВ! Пачки, похоже на возбуждение обратной связи. Тормозим ОС до предела, пачки не исчезают. Значит, дело не в ОС
Долго тыкавшись, я нашел, что причина такого шума – провод! О_о Простой двужильный двухметровый провод! Если подключить осциллограф до него, или включить конденсатор прямо на щуп осциллографа, пульсации уменьшаются до 20мВ ! Это явление я толком не могу объяснить. Может, кто-то из вас, поделится? Теперь, понятно что делать – в питающейся схеме должен быть конденсатор, и конденсатор нужно повесить непосредственно на клеммы БП.
Кстати, насчет Y – конденсаторов. Китайцы сэкономили на них и не поставили. Итак, выходное напряжение без Y-конденсаторов
А теперь – с Y конденсатором:
Лучше? Несомненно! Более того, после установки Y – конденсаторов сразу-же перестал глючить измеритель тока!
Еще я поставил X2 – конденсатор, чтобы хоть как-то поменьше хлама в сети было. К сожалению, похожего синфазного дросселя у меня нет, но как только найду – сразу поставлю.
Обратная связь.
Про нее я написал отдельную статейку, читайте
Охлаждение
Вот тут пришлось повозиться! После нескольких секунд под полной нагрузкой вопрос о необходимости активного охлаждения был снят. Больше всех грелась выходная диодная сборка.
В сборке стоят обычные диоды, я думал заменить их диодами Шоттки. Но обратное напряжение на этих диодах оказалось порядка 100 вольт, а как известно, высоковольтные диоды шоттки не намного лучше обычных диодов.
Поэтому, пришлось прикрутить кучу дополнительных радиаторов (сколько влезло) и организовать активное охлаждение.
Откуда брать питание для вентилятора? Вот и я долго думал, но таки придумал. tl494 питается от источника напряжением 25В. Берем его (с перемычки J3 на схеме) и понижаем стабилизатором 7812.
Для продуваемости пришлось вырезать крышку под 120мм вентилятор, и прицепить соответствующую решетку, а сам вентилятор поставить на 80мм. Единственное место, где это можно было сделать – это верхняя крышка, а поэтому конструкция получилась очень плохая – с верху может упасть какая-то металлическая хрень и замкнуть внутренние цепи блока питания. Ставлю себе 2 балла. Не стоило уходить от корпуса блока питания! Не повторяйте моих ошибок!
Вентилятор никак не крепится. Его просто прижимает верхняя крышка. Так вот хорошо с размерами я попал.
Результаты
Итог. Итак, этот блок питания работает уже неделю, и можно сказать, что он довольно надежен. К моему удивлению, он очень слабо излучает, и это хорошо!
Потроха:
Я попытался описать подводные камни, на которые сам нарвался. Надеюсь, вы не повторите их! Удачи!
Проектирование цепей источника питания — от простейшего до самого сложного
В статье подробно рассказывается, как спроектировать и построить хорошую схему источника питания рабочего стола, начиная с базовой конструкции и заканчивая достаточно сложным источником питания с расширенными функциями.
Проектирование рабочего места Не обойтись без источника питания
Будь то новичок в области электроники или опытный инженер, всем необходим этот незаменимый элемент оборудования, называемый блоком питания.
Это связано с тем, что никакая электроника не может работать без питания, а точнее, источника постоянного тока низкого напряжения, а блок питания — это устройство, которое специально предназначено для выполнения этой цели.
Если это оборудование так важно, то для всех в этой области становится обязательным изучить все мельчайшие подробности этого важного члена электронного семейства.
Давайте начнем и узнаем, как спроектировать схему источника питания, сначала простейшую, вероятно, для новичков, которые сочтут эту информацию чрезвычайно полезной.
Базовая схема источника питания требует трех основных компонентов для обеспечения желаемых результатов.
Трансформатор, диод и конденсатор.Трансформатор — это устройство, которое имеет два набора обмоток: первичную и вторичную.
Сеть 220 В или 120 В подается на первичную обмотку, которая передается на вторичную обмотку для создания там более низкого индуцированного напряжения.
Низкое пониженное напряжение, доступное на вторичной обмотке трансформатора, используется для предполагаемого применения в электронных схемах, однако, прежде чем это вторичное напряжение может быть использовано, его необходимо сначала выпрямить, то есть напряжение должно быть преобразовано в постоянный ток. первый.
Например, если вторичная обмотка трансформатора рассчитана на 12 вольт, то полученные 12 вольт от вторичной обмотки трансформатора будут 12 вольт переменного тока через соответствующие провода.
Электронная схема никогда не может работать с переменным током, поэтому это напряжение должно быть преобразовано в постоянное.
Диод — это одно устройство, которое эффективно преобразует переменный ток в постоянный, есть три конфигурации, с помощью которых могут быть сконфигурированы основные конструкции источника питания.
Использование одного диода:
Самая простая и грубая форма конструкции источника питания — это тот, в котором используется один диод и конденсатор.Поскольку один диод выпрямляет только половину цикла сигнала переменного тока, для этого типа конфигурации требуется большой конденсатор выходного фильтра для компенсации вышеуказанного ограничения.
Фильтрующий конденсатор гарантирует, что после выпрямления на участках падения или убывания результирующей схемы постоянного тока, где напряжение имеет тенденцию к падению, эти участки заполняются и покрываются накопленной энергией внутри конденсатора.
Вышеупомянутая компенсация за счет накопленной энергии конденсаторов помогает поддерживать чистый выход постоянного тока без пульсаций, что было бы невозможно только с помощью диодов.
Для конструкции источника питания с одним диодом вторичная обмотка трансформатора должна иметь только одну обмотку с двумя концами.
Однако вышеупомянутая конфигурация не может считаться эффективной конструкцией источника питания из-за ее грубого полуволнового выпрямления и ограниченных возможностей формирования выходного сигнала.
Использование двух диодов:
Использование пары диодов для создания источника питания требует трансформатора с центральной вторичной обмоткой с ответвлениями. На схеме показано, как диоды подключаются к трансформатору.
Хотя два диода работают в тандеме и охватывают обе половины сигнала переменного тока и производят двухполупериодное выпрямление, используемый метод неэффективен, поскольку в любой момент используется только одна половина обмотки трансформатора. Это приводит к плохому насыщению сердечника и ненужному нагреву трансформатора, что делает этот тип конфигурации источника питания менее эффективной и обычной конструкцией.
Использование четырех диодов:
Это лучшая и общепринятая форма конфигурации источника питания с точки зрения процесса выпрямления.
Продуманное использование четырех диодов делает работу очень простой, достаточно всего лишь одной вторичной обмотки, насыщение сердечника идеально оптимизировано, что приводит к эффективному преобразованию переменного тока в постоянный.
На рисунке показано, как создается двухполупериодный выпрямленный источник питания с использованием четырех диодов и конденсатора фильтра с относительно низким номиналом.
Этот тип диодной конфигурации широко известен как мостовая сеть. Возможно, вы захотите узнать, как построить мостовой выпрямитель.
Все вышеперечисленные конструкции источников питания обеспечивают выходы с обычным регулированием и поэтому не могут считаться идеальными, они не обеспечивают идеальных выходов постоянного тока и поэтому нежелательны для многих сложных электронных схем. Кроме того, эти конфигурации не включают функции управления переменным напряжением и током.
Однако вышеупомянутые функции могут быть просто интегрированы в вышеуказанные конструкции, а не в последнюю двухполупериодную конфигурацию источника питания за счет введения одной ИС и нескольких других пассивных компонентов.
Использование IC LM317 или LM338:
IC LM 317 — очень универсальное устройство, которое обычно объединяется с источниками питания для получения хорошо регулируемых и регулируемых выходов напряжения / тока. Несколько примеров схем источника питания, использующих эту микросхему
Поскольку указанная выше микросхема может поддерживать максимум 1,5 А, для более высоких выходных токов можно использовать другое подобное устройство, но с более высокими номиналами. IC LM 338 работает точно так же, как LM 317, но может выдерживать ток до 5 ампер.Ниже показан простой дизайн.
Для получения фиксированных уровней напряжения ИС серии 78ХХ могут использоваться с описанными выше схемами питания. ИС 78XX подробно описаны для вашего обращения.
В настоящее время бестрансформаторные источники питания SMPS становятся фаворитами среди пользователей из-за их высокой эффективности, высокой мощности, обеспечивающей функции при удивительно компактных размерах.
Хотя создание схемы источника питания SMPS в домашних условиях, безусловно, не для новичков в этой области, инженеры и энтузиасты, обладающие всесторонними знаниями в этой области, могут заняться построением таких схем дома.
Вы также можете узнать об аккуратной конструкции блока питания с переключателем режимов.
Есть несколько других форм источников питания, которые могут быть построены даже начинающими любителями электроники и не требуют трансформаторов. Хотя эти типы цепей питания очень дешевы и просты в сборке, они не могут поддерживать большой ток и обычно ограничиваются 200 мА или около того.
Конструкция бестрансформаторного источника питания
В следующих парах статей обсуждаются две концепции вышеупомянутых схем безтрансформаторного источника питания:
С использованием высоковольтных конденсаторов,
С помощью Hi-End ICs и FET
Обратная связь от одного из преданных читателей этого блога
Дорогой Свагатам Маджумдар,
Я хочу сделать блок питания для микроконтроллера и его зависимых компонентов…
Я хочу получить стабильный выход + 5В и + 3,3В от блока питания, я не уверен в возрасте усилителя, но я думаю, что всего 5А должно быть достаточно, также будет 5V Mouse и 5V Клавиатура, 3 микросхемы SN74HC595 и 2 модуля SRAM по 512 Кб … Так что я действительно не знаю, к какому возрасту усилителя нужно стремиться ….
Полагаю, 5 ампер достаточно? использовать и какие ДИОДЫ использовать? Я выбрал трансформатор после того, как прочитал где-то в Интернете, что мостовой выпрямитель вызывает ПАДЕНИЕ НАПРЯЖЕНИЯ на 1.4V в целом, и в вашем блоге выше вы заявляете, что мостовой чтец вызовет повышение напряжения? …
ТАК Я не уверен (в любом случае не уверен, что я новичок в электронике) ….. ПЕРВЫЙ трансформатор, который я выбрал был этот. Пожалуйста, посоветуйте мне, какой из них НАИЛУЧШИМ для моих нужд и какие ДИОДЫ тоже использовать …. Я хотел бы использовать блок питания для платы, очень похожей на эту ….
Пожалуйста, помогите мне и подскажите лучший способ сделать подходящий сетевой блок питания 220/240 В, который дает мне СТАБИЛЬНЫЕ 5 В и 3,3 В для использования с моим дизайном.Заранее спасибо.
Как получить постоянные 5 В и 3 В от цепи питания
Здравствуйте, вы можете добиться этого, просто используя микросхему 7805 для получения 5 В и добавив пару диодов 1N4007 к этим 5 В для получения примерно 3,3 В.
5 ампер выглядит слишком высоко, и я не думаю, что вам потребуется такой высокий ток, если только вы не используете этот источник питания с внешним каскадом драйвера, несущим более высокие нагрузки, такие как светодиод высокой мощности или двигатель и т.д.
Итак Я уверен, что ваше требование может быть легко выполнено с помощью вышеупомянутых процедур.
для питания MCU с помощью описанной выше процедуры вы можете использовать 0-9 В или 0-12 В с током 1 ампер, диоды могут быть 1N 4007 x 4 контакта
Диоды упадут на 1,4 В, когда на входе будет постоянный ток, но когда это будет AC как от трафарета, то мощность увеличится в 1,21 раза.
обязательно используйте конденсатор 2200 мкФ / 25 В после моста для фильтрации.
Надеюсь, эта информация просветит вас и ответит на ваши вопросы.
На изображении выше показано, как получить 5 В и 3.Постоянная 3В от заданной цепи питания.
Как получить переменное напряжение 9 В от IC 7805
Обычно IC 7805 рассматривается как фиксированный регулятор напряжения 5 В. Однако с помощью простого обходного пути ИС можно превратить в схему переменного регулятора напряжения от 5 В до 9 В, как показано выше.
Здесь мы видим, что предустановка на 500 Ом добавлена к центральному контакту заземления ИС, что позволяет ИС выдавать повышенное выходное значение до 9 В при токе 850 мА.Предустановку можно отрегулировать для получения выходных сигналов в диапазоне от 5 В до 9 В.
Создание фиксированной схемы регулятора 12 В
На приведенной выше диаграмме мы можем увидеть, как обычный стабилизатор 7805 IC может быть использован для создания фиксированного регулируемого напряжения 5 В. выход.
Если вы хотите получить фиксированный регулируемый источник питания 12 В, ту же конфигурацию можно применить для получения требуемых результатов, как показано ниже:
Регулируемый источник питания 12 В, 5 В
Теперь предположим, что у вас есть схемы, требующие двойное питание в диапазоне фиксированных 12 В и регулируемых источников 5 В.
Для таких приложений описанная выше конструкция может быть просто изменена путем использования микросхемы 7812, а затем микросхемы 7805 для получения вместе требуемых выходных регулируемых источников питания 12 В и 5 В, как показано ниже:
Схема источника питания по оптимальной цене — Отлично сделки по цепям питания от глобальных продавцов цепей питания
Отличные новости !!! Вы попали в нужное место для схемы питания.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема источника питания в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему питания на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в схеме питания и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести power supply circuit по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
Лучшая схема питания от аккумуляторной батареи — Отличные предложения по схеме питания от аккумуляторной батареи от глобальных продавцов схем питания от аккумуляторной батареи
Отличные новости !!! Вы попали в нужное место для схемы батарейного питания.К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.
Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.
AliExpress никогда не уступит по выбору, качеству и цене. Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, поскольку эта лучшая схема аккумуляторного питания в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что приобрели схему питания от аккумулятора на AliExpress.Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.
Если вы все еще не уверены в схеме питания от батареи и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам разобраться, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь.А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе. Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца.Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.
А если вы новичок на AliExpress, мы откроем вам секрет.Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, вы сможете приобрести battery power supply circuit по самой выгодной цене.
У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы.На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации. Начните лучший опыт покупок прямо здесь.
Список электрических схем источника постоянного тока Взаимодействие с другими людьми Стабилизированный источник питания с индикацией короткого замыканияПеред вами эффективный 4-х ступенчатый стабилизированный блок питания для тестирования электронных схем.Он обеспечивает хорошо регулируемый и стабилизированный выход, что важно для большинства электронных схем для получения надлежащих результатов. Схема обеспечивает аудиовизуальную индикацию короткого замыкания в тестируемой печатной плате, поэтому подача питания на «тестируемую» цепь может быть немедленно отключена, чтобы спасти ценные компоненты от повреждения …. [подробнее]
Регулируемый регулируемый источник питания постоянного тока 3-30 В, 3 АЭтот источник питания предназначен для использования в качестве вспомогательного или постоянного источника питания для всех общих цепей на основе стабилизированного постоянного напряжения от 3 до 30 В при условии, что потребление не превышает 3 А.Конечно, этот блок питания можно использовать и для других целей. Заменив триммер потенциометром, его можно даже использовать как регулируемый блок питания. Необходимо использовать радиатор хорошего качества …. [подробнее]
Принципиальная схема источника питания постоянного тока 9 В, 2 АОб этой схеме мало что можно сказать. Всю работу выполняет регулятор. 7809 может обеспечивать непрерывную выходную мощность до 2 А при сохранении низкого уровня шума и очень хорошо регулируемого питания.Схема будет работать без дополнительных компонентов, но для защиты от обратной полярности на входе предусмотрен диод 1N5400 (D1), а дополнительное сглаживание обеспечивается C1. Выходной каскад включает в себя C2 для дополнительной фильтрации, если питание логической схемы, чем конденсатор 100 нФ (C3), также желательно, чтобы удалить любой высокочастотный шум переключения …. [подробнее]
Регулируемый регулируемый источник питания 1,3-22 ВХотите регулируемое напряжение, которое можно отрегулировать в соответствии с вашим приложением? Этот регулируемый источник питания небольшой, простой в сборке и может быть адаптирован для получения полностью регулируемого напряжения в диапазоне от 1.От 3В до 22В при токах до 1А …. [подробнее]
Регулируемый предел тока для двойного источника питанияЭта схема ограничения тока, показанная в этом примере как часть небольшого настольного источника питания, в принципе может использоваться в сочетании с любым двухканальным источником тока. Часть схемы слева от схемы ограничивает ток на входе двойного регулятора напряжения (от IC4 до IC7), чтобы он был надежно защищен от перегрузки.Показанная схема обеспечивает выходное напряжение ± 15 В и ± 5 В. Стабилизаторы напряжения на выходах (7815/7805 и 7915/7905) в комментариях не нуждаются; но сама схема ограничения тока, построенная на LM317 и LM337, не так очевидна … [подробнее]
Четыре блока питания для гибридного усилителяЭтот источник питания был разработан для использования с «Простым гибридным усилителем», опубликованным в другом месте в этом выпуске. Конечно, он также подходит для использования в других приложениях.Мы использовали каскадный генератор для 170 В, импульсный источник питания для 16 В, последовательный стабилизатор для 12 В и отдельный трансформатор для источника питания 6,3 В. В качестве регулятора мы выбрали LT1074CT (IC1), что означает, что схема может быть построена из относительно стандартных компонентов и будет иметь высокий КПД. Потери мощности у этого устройства меньше по сравнению с линейным регулятором напряжения …. [подробнее]
Схема стабилизированного регулируемого источника питанияЭта схема источника питания очень проста и удобна в сборке, ее можно собрать на печатной плате общего назначения, найти ее материалы очень легко и недорого.Выходное напряжение стабилизировано и регулируется в диапазоне от 0 В до + 15 В постоянного тока, с максимальным током 1 А. Регулировка осуществляется с помощью P1. Q1 — это классический силовой транзистор, и его нужно разместить на холодном ребре (радиаторе), когда он постоянно работает в области наибольшего тока, он становится горячим. Тип трансформатора стандартный на рынке …. [подробнее]
Бестрансформаторный источник питания 5 ВВсе большее количество приборов потребляет очень малый ток от источника питания.Если вам нужно разработать устройство с питанием от сети, вы обычно можете выбрать между линейным и импульсным источником питания. Однако что, если общая потребляемая мощность устройства очень мала? Источники питания на основе трансформаторов громоздки, в то время как переключатели, как правило, делаются так, чтобы обеспечивать больший выходной ток, со значительным увеличением сложности, проблемами, связанными с компоновкой печатной платы и, по сути, пониженной надежностью … [подробнее]
Источник переменного тока постоянного токаЭта схема не является абсолютной новинкой, но она проста, надежна, «прочна» и защищена от коротких замыканий, с переменным напряжением до 24 В и ограничением переменного тока до 2 А.Вы можете адаптировать его к своим требованиям, как описано в примечаниях ниже …. [подробнее]
Высоковольтный регулятор с защитой от короткого замыканияСуществует множество схем регуляторов низкого напряжения. Иначе обстоит дело с более высокими напряжениями, такими как источники питания для схем клапанов. Вот почему мы решили разработать этот простой регулятор, способный выдерживать такие напряжения. Эта схема, очевидно, хорошо подходит для использования в сочетании с четырехъядерным источником питания для гибридного усилителя, опубликованным в другом месте в этом выпуске.Настоящий регулятор состоит всего из трех транзисторов. Четвертый был добавлен для функции ограничения тока …. [подробнее]
Цепь усилителя тока или токаРегуляторы напряжения, такие как серии LM708 и LM317 (и другие), иногда должны обеспечивать немного больше тока, чем они действительно могут выдержать. Если это так, эта небольшая схема может помочь. Можно использовать силовой транзистор, такой как 2N3772 или аналогичный…. [подробнее]
Продление срока службы батареи дымовой сигнализацииХотя дымовые извещатели — довольно дешевые устройства, стоимость батарей на 9 В быстро превышает их покупную цену. К этому добавляется раздражение случайными звуковыми сигналами от будильника, когда батарея подходит к концу своего срока службы. Эта схема позволяет запитывать типичные дымовые извещатели от источника питания 12 В в системе охранной сигнализации, сохраняя при этом стандартные батареи 9 В. Он продлевает срок службы батареи 9 В до «срока годности», поскольку батарея требуется только для включения дымовой сигнализации в случае отключения или короткого замыкания источника питания 12 В…. [подробнее]
Сильноточные регулируемые источники питанияВ приведенном ниже регуляторе высокого тока используется дополнительная обмотка или отдельный трансформатор для подачи питания на регулятор LM317, так что проходные транзисторы могут работать ближе к насыщению и повышать эффективность. Для хорошей эффективности напряжение на коллекторах двух параллельных транзисторов 2N3055 должно быть близко к выходному напряжению. LM317 требует пару дополнительных вольт на входной стороне, плюс падение эмиттера / базы 3055, плюс все, что теряется на (0.1 Ом) уравнительные резисторы (1 В при 10 А), поэтому используется отдельный трансформатор и схема выпрямителя / фильтра, которая на несколько вольт выше выходного напряжения …. [подробнее]
Импульсный блок питания мощностью 2 ВтВ этом небольшом импульсном источнике питания генератор триггера Шмитта используется для управления переключающим транзистором, который подает ток на небольшую катушку индуктивности. Энергия накапливается в катушке индуктивности, когда транзистор включен, и передается в цепь нагрузки при выключении транзистора.Выходное напряжение зависит от сопротивления нагрузки и ограничивается стабилитроном, который останавливает генератор, когда напряжение достигает примерно 14 вольт. Более высокие или более низкие напряжения могут быть получены регулировкой делителя напряжения, питающего стабилитрон. КПД составляет около 80% при использовании индуктора с высокой добротностью …. [подробнее]
Источник переменного напряжения и токаПоказан еще один метод использования операционных усилителей для регулирования источника питания.Силовой трансформатор требует дополнительной обмотку для питания ОУ с биполярным напряжением (+/- 8 вольт), а отрицательное напряжение также используется для генерации опорного напряжения под землю, так что выходное напряжение можно регулировать весь путь до 0. Ограничение тока осуществляется путем измерения падения напряжения на небольшом резисторе, включенном последовательно с отрицательной линией питания …. [подробнее]
Переменный источник питания 3-24 В / 3 АЭтот регулируемый источник питания может быть отрегулирован от 3 до 25 вольт и имеет ограничение по току до 2 ампер, как показано, но может быть увеличено до 3 ампер или более, выбрав меньший резистор измерения тока (0.3 Ом). Транзисторы 2N3055 и 2N3053 должны быть установлены на подходящих радиаторах, а резистор считывания тока должен быть рассчитан на 3 Вт или более. Регулировка напряжения контролируется 1/2 операционного усилителя 1558 или 1458 …. [подробнее]
Стабилизатор напряжения LM317T с проходным транзисторомВыходной ток LM317T можно увеличить, используя дополнительный силовой транзистор, чтобы разделить часть общего тока. Величина разделения тока устанавливается с помощью резистора, включенного последовательно с входом 317, и резистора, включенного последовательно с эмиттером проходного транзистора…. [подробнее]
Регулятор переменного напряжения LM317TLM317T — это регулируемый трехконтактный стабилизатор положительного напряжения, способный подавать более 1,5 А в диапазоне выходных напряжений от 1,25 до 37 В. Устройство также имеет встроенное ограничение тока и тепловое отключение, что делает его по существу защищенным от взрыва. [подробнее]
Источник питания 0-15 В / 1 АЭта схема источника питания, очень проста в изготовлении, подбирается из материалов, очень проста и экономична.Выходное напряжение стабилизировано и регулируется в диапазоне от 0 В до + 15 В постоянного тока, с максимальным током 1 А …. [подробнее]
Регулируемый источник питания 0-30 В постоянного тока / 2 АЭто простой источник питания с регулируемой схемой, основанный на известном LM 723, который управляет транзистором Q1 [2N3055]. Регулировка напряжения, расхода осуществляется потенциометром R1 от 0 до 30 В постоянного тока примерно. Чтобы мы достигли 30 В, трансформатор питания TR1 выдает весь ток, который он запрашивает нагрузке, иначе выходное напряжение будет находиться на уровне примерно 26 В.Существенным является использование хорошего радиатора для транзистора Q1, а также хорошего качества потенциометра вместо R1 …. [подробнее]
Блок питания + 50В 3А стабилизированный и регулируемыйМного раз нам требовался стабилизированный, вместе регулируемый источник питания и относительно высокое выходное напряжение. Эти спецификации его охватывают нашу схему. Это схема, которая может давать на своем выходе + 40В до + 60В 3А с одновременной стабилизацией…. [подробнее]
Приложения с регулятором напряжения L200Здесь существуют две схемы регулятора, которые используют IC L200 в качестве регулятора напряжения и тока компании SGS-Thomson, которые предоставляют эти схемы. В схеме на рис.1 мы можем регулировать выходное напряжение с помощью RV1, а на рис.2 мы можем регулировать также выходное напряжение-ток с помощью TR2 и TR1 соответственно. Более подробную информацию о характеристиках L200 вы можете увидеть в таблицах со списком.Вскоре будут добавлены также некоторые другие полезные схемы с L200 …. [подробнее]
Дополнительный ограничитель тока для вашего блока питанияЭта схема позволяет вам установить ограничение на максимальный выходной ток, доступный от вашего блока питания. Это очень полезно, когда вы запускаете проект в первый раз или проводите тест на выдержку. Установив верхний предел тока, доступного от вашего блока питания, вы можете защитить как свой блок питания, так и любое подключенное к нему устройство.Он предлагает простую и дешевую альтернативу источнику питания с ограничением тока … [подробнее]
Стендовый источник питания с ограничением токаЭто блок питания с регулируемым напряжением на 1 ампер. Он регулируется примерно от 3 В до 24 В: и имеет дополнительную функцию, позволяющую ограничивать максимальный выходной ток. Это неоценимо, когда (например) вы запускаете проект в первый раз или тестируете оборудование …. [подробнее]
Источник питания сигнализации с резервным аккумуляторомЭтот источник питания подходит для модульной охранной сигнализации.Однако у него есть и другие приложения. Он предназначен для обеспечения выходного напряжения 12 В при токе до 1 А. В случае сбоя в электросети автоматически включается резервная батарея. При восстановлении электросети аккумулятор заряжается …. [подробнее]
Двухканальный регулируемый источник питания постоянного токаЭтот простой блок обеспечивает двухканальный регулируемый выходной сигнал в диапазоне от ± 2,5 В до ± 15 В постоянного тока с точным отслеживанием положительного и отрицательного выходного напряжения, сохраняя при этом возможности ограничения тока и защиты от короткого замыкания «ведущей» схемы.Поскольку целью такой конструкции с двумя шинами является питание экспериментальных или находящихся в ремонте схем, максимальный выдаваемый ток был намеренно сохранен на уровне примерно 500-600 мА на шину, что позволило избежать использования дорогих силовых транзисторов и сложных схем … . [подробнее]
Дискретная виртуальная цепь заземленияВот простая схема виртуального заземления, основанная на дискретных компонентах. Этот простой дизайн разработан гуру миниатюризации Сиджосаэ.Стоит сделать буфер из общих дискретных компонентов. Транзисторы могут быть практически любой комплементарной парой малосигнальных транзисторов. Подходящими альтернативами являются PN2222A и PN2907A. Диоды относятся к обычным малосигнальным типам. Приемлемой альтернативой является 1N914. Эта схема имеет лучшие характеристики, чем простой резистивный делитель виртуальной земли, а стоимость деталей ниже, чем у любой другой схемы, упомянутой здесь. Однако это наименее точная из виртуальных цепей заземления с буферизацией …. [подробнее]
Схема регулируемого источника питания 5 ВЭта схема представляет собой небольшой источник питания + 5В, который пригодится при экспериментах с цифровой электроникой. Небольшие недорогие настенные трансформаторы с регулируемым выходным напряжением можно приобрести в любом магазине электроники и супермаркете. Эти трансформаторы легко доступны, но обычно их регулирование напряжения очень плохое, что делает их не очень удобными для экспериментаторов цифровых схем, если не может быть достигнуто каким-либо образом лучшее регулирование…. [подробнее]
Разработка блока питания 5 В в Proteus
Привет, друзья, надеюсь, у вас все хорошо и вы наслаждаетесь жизнью. В предыдущем посте мы видели, как использовать осциллограф в Proteus ISIS, сегодня я собираюсь поделиться новым и очень важным учебным пособием «Как спроектировать источник питания 5 В в Proteus?» Этот проект очень простой и базового уровня, но важность этого проекта в том, что он используется в качестве основы почти во всех крупных проектах электроники, разрабатываемых сейчас.Когда я начинаю работать над каким-либо проектом, первое, что мне нужно спроектировать, — это этот источник питания постоянного тока, потому что без включения компонентов мы не можем их использовать. 🙂
При разработке источника питания 5 В в Proteus ISIS мы будем использовать микросхему регулятора напряжения, которая широко известна как 7805. Этот регулятор напряжения используется для регулирования или изменения уровня напряжения питания. Как мы все знаем, большинство доступных на рынке батарей рассчитаны на 12 вольт. Например, если у вас дома есть ИБП, проверьте его аккумулятор, он будет на 12 В.Точно так же аккумулятор автомобиля или мотоцикла тоже на 12 В. Итак, 12 В стали стандартом электрических батарей. Теперь мы знаем, что все батареи рассчитаны на 12 В, но проблема возникает, когда мы имеем дело с чувствительными электронными компонентами, потому что все они рассчитаны на работу от 5 В. Теперь, как я описал ранее, доступный источник напряжения составляет 12 вольт, а рабочему оборудованию требуется 5 вольт для работы. Итак, нам нужен промежуточный источник или такой тип источника питания постоянного тока, который может преобразовывать напряжение источника (12 вольт) в рабочее напряжение (5 вольт).Эта проблема устраняется использованием микросхемы 7805 IC, поэтому она называется микросхемой регулирования напряжения.
Итак, дорогие Друзья, сегодня мы разработаем источник питания 5 В, который сможет изменять уровень напряжения и обеспечивать желаемое напряжение. Но, как я всегда говорю, эта практика делает мужчину идеальным. Попробуйте спроектировать его самостоятельно, чтобы вы также узнали реальное применение микросхемы регулятора напряжения. Итак, приступим к проектированию блока питания 5В в Proteus ISIS.Как разработать источник питания 5 В в Proteus
- Вы можете загрузить полную симуляцию источника питания 5 В в Proteus, нажав кнопку ниже:
[dt_button link = «https: // www.theengineeringprojects.com/Examples/DCPowerSupplyinProteus.rar «target_blank =» false «button_alignment =» default «animation =» fadeIn «size =» medium «bg_color_style =» default «bg_hover_color_style =» default «text_color_style =» default «text_hover_color» icon = «fa fa-chevron-circle-right» icon_align = «left»] Загрузить моделирование Proteus [/ dt_button]
- ИС 7805 регулирования напряжения имеет 3 контакта.
- Контакт №1 используется как входной контакт, и он подключен для подачи напряжения, он обозначен как (VI).На этот вывод подается постоянный ток +12 В.
- Контакт №2 называется общим контактом или контактом заземления. Он отмечен как (GND). На этот вывод подается общий вывод всей схемы.
- Контакт № 3 является выходным контактом 7805. Если на его вход подается 12 Вольт, то на этом контакте автоматически генерируется 5 Вольт. Этот штифт помечен как (VO).
- Теперь, переходя к проектированию оборудования, в первую очередь разместите все компоненты в рабочем пространстве Proteus, как показано на изображении ниже:
- В аппаратной реализации сначала подайте напряжение источника (12 вольт) на входной вывод 7805 IC.2 конденсатора также подключены параллельно источнику напряжения, и их номиналы составляют 1000 мкФ и 100 пФ соответственно.
- С другой стороны микросхемы мы также подключаем 2 конденсатора параллельно полученному выходному напряжению (5 вольт), и их номиналы составляют 100 пФ и 100 мкФ соответственно. И светодиод также подключен параллельно на стороне нагрузки.
- Если вы разместили все компоненты на своих идеальных местах и все соединения в порядке, то результирующая симуляция Proteus будет выглядеть, как показано на изображении ниже:
- Теперь, если вы внимательно посмотрите на изображение выше, вы увидите обратите внимание, что конденсаторы, подключенные через 12 В, имеют ВЫСОКИЙ номинал, а конденсаторы, подключенные к светодиоду, имеют низкий рейтинг.Целью применения конденсаторов является удаление шума из наших напряжений постоянного тока. Ведь мы все знаем, что доступные на рынке источники постоянного напряжения не так уж чисты. Итак, чтобы получить чистую волну постоянного тока, через него подключены конденсаторы.
- Теперь, когда вы запустите финальную симуляцию, она будет выглядеть, как показано на изображении ниже:
- Как вы можете видеть, когда я запустил симуляцию, светодиод начал светиться. Теперь важно отметить, что я применил сопротивление последовательно со светодиодом.Значение сопротивления очень низкое, и на этом резисторе возникают очень низкие напряжения. Этот резистор ограничивает ток, и если мы подключим светодиод напрямую, есть вероятность, что светодиод может перегореть.
- Мы можем обосновать это следующим образом: Из закона Ома: V = IR, и, переставив его, мы получаем: I = V / R.
- Теперь, если мы удалим резистор, тогда R = 0, что означает: I = V / 0, и это приводит нас к выводу, что: I = бесконечность или максимум в этом случае. Таким образом, единственная цель резистора — ограничить ток.
Хорошо, друзья, на сегодня все, я надеюсь, что теперь вы можете легко разработать блок питания 5 В в Proteus. Если есть вопросы, задавайте в комментариях. Подпишитесь на нас по электронной почте, чтобы получать эти руководства прямо в свой почтовый ящик. В следующем уроке я обсудил модуляцию переменного напряжения с использованием LM317 в Proteus ISIS.
Мощность в цепи переменного тока — Circuit Globe
Мощность трехфазной цепи переменного тока используется в крупных отраслях промышленности для работы тяжелых машин.Питание от однофазной сети переменного тока используется для работы небольших бытовых устройств. Величина мощности трехфазной цепи переменного тока в три раза больше, чем мощность однофазной цепи.
Рассмотрим, если P — это мощность однофазной цепи, то 3P — это мощность трехфазной симметричной цепи переменного тока. Мощность несимметричной трехфазной цепи определяется сложением мощности отдельной фазы.
Как рассчитать мощность цепи переменного тока?
В цепи постоянного тока значение напряжения и тока становится постоянным.Но в цепи переменного тока мгновенные значения тока и напряжения и, следовательно, мощность источника питания постоянно меняются со временем. Поэтому для измерения мощности цепей переменного и постоянного тока используются разные методы.
Мгновенная мощность цепи переменного тока непрерывно изменяется при изменении их напряжения и тока. Мгновенная мощность — это мощность цепи в определенный момент времени. Пусть p — мощность в любой момент, v — напряжение, а «i» — ток цепи.
Если синусоидальный ток и напряжение протекают через цепь переменного тока, а ток отстает от напряжения на угол Φ, в этом случае значение мгновенной мощности определяется выражением
Если напряжение и ток не совпадают по фазе друг с другом, то значение тока и напряжения становится равным
.Мгновенная мощность цепи выражается как
.Пусть, Θ = ωt
Средняя мощность схемы
Член cosΦ в данном выражении показывает, что ваттметр необходим для измерения мощности цепи переменного тока.
Как мощность цепи переменного тока зависит от коэффициента мощности?
Коэффициент мощности определяет общие потоки полезной мощности в цепи. Для понимания роли коэффициента мощности в цепи переменного тока рассмотрим три условия.
Питание переменного тока в чисто резистивной цепи
Резистор — это электрический компонент, потребляющий электрическую мощность цепи переменного тока.
В чисто резистивной цепи ток, протекающий через резистор, находится в фазе с напряжением питания, т.е.е., формы волн напряжения и тока синфазны друг с другом. Разность фаз нулевого градуса возникает между формой волны напряжения и тока.
Электропитание переменного тока в чисто индуктивной цепи
В чисто индуктивной цепи значения напряжения и тока не совпадают по фазе друг с другом.