Схема разрядного устройства для пальчиковых аккумуляторов: Page not found — amperus.jimdo.com

Содержание

Russian Hamradio — Разрядное устройство для четырех аккумуляторов.

Вашему вниманию предлагается автоматическое разрядное устройство для четырех одиночных Ni-Cd или Ni-MH аккумуляторов. Устройство позволяет с высокой точностью оценить емкость каждого аккумулятора, так как имеет четыре независимых канала разрядки стабильным током с возможностью наращивания их числа.

В настоящее время появилось много портативных устройств, для питания которых используются Ni-Cd и Ni-MH аккумуляторы. Большое число циклов заряд-разряд (около 1000) такие аккумуляторы могут обеспечить только при условии их правильного применения. Например, в большинстве цифровых фотоаппаратов и аудиоплееров используются пальчиковые аккумуляторы типоразмера АА.  При больших перерывах в их использовании происходит постепенная саморазрядка аккумуляторов и впоследствии — потеря емкости.

Для восстановления емкости аккумуляторов необходимо произвести не менее трех циклов зарядка-разрядка (такая функция, например, есть в некоторых моделях мобильных телефонов Siemens, укомплектованных Ni-MH аккумуляторами).

Рис.1

Предлагаемое устройство, схема которого приведена на рис.1, обеспечивает разрядку аккумуляторов типоразмера АА (можно и других типоразмеров) до напряжения 1В током 0,5 или 1А. Разряжать током 1 А рекомендуется только аккумуляторы с емкостью более 1 А/ч.

В данном устройстве для обеспечения простоты и надежности исключены какие-либо регулировки. Источником опорного напряжения является интегральный параллельный стабилизатор DA1 типа TL431, а делитель напряжения из резисторов R2 — R6 обеспечивает ряд выходных напряжений для стабилизаторов разрядного тока — 1, 0,5 и 0,25В.

В качестве регулирующего элемента выбран полевой транзистор, так как он в статическом режиме практически не потребляет энергии по цепи управления и обладает намного меньшей крутизной передаточной характеристики, чем биполярный транзистор, что позволяет подключать его затвор непосредственно к выходу операционного усилителя.

Принцип работы устройства рассмотрим на примере первого канала, выполненного на ОУ DA2.1 и DA2.4.

При подключении заряженного аккумулятора на неинвертирующий вход микросхемы DA2.1 поступает напряжение с аккумулятора. Оно превышает опорное напряжение 1 В, поступающее на инвертирующий вход этого ОУ. В результате уровень на выходе DA2.1 максимален (близок к напряжению питания). Светодиод HL1 при этом светится. Начинает работать стабилизатор тока, который выполнен на элементах DA2.4 и VT1. Датчиком тока здесь являются два включенных параллельно резистора R27, R28.

При снижении напряжения на разряжаемом аккумуляторе до 1 В на выходе DA2.1 уровень начинает снижаться, при этом в определенный момент открываются диоды сборки VD1, что приводит к снижению напряжения на затворе VT1 и, в результате, к снижению разрядного тока. Светодиод HL1 гаснет, что свидетельствует о конце разрядки аккумулятора. Емкость аккумулятора можно определить, умножив значение разрядного тока на время, прошедшее от начала процесса до момента погасания соответствующего светодиода.

Резисторы, установленные в цепях затворов VT1—VT4, и конденсаторы между выходами и инвертирующими входами обеспечивают их устойчивость.

Вместо диодных сборок VD1—VD4 можно применить любые кремниевые диоды, например, КД521 или КД522 с любыми буквенными индексами. Транзисторы VT1—VT4 — любые МОП транзисторы с сопротивлением канала не более 0,4 Ом в открытом состоянии и мощностью рассеяния не менее 1 Вт, например IRF540, IRF640, BUZ11 и т. д. В качестве DA2, DA3 можно использовать К1401УД2, выводы питания при этом поменять между собой.

Резисторы R2—R6, R27—R34 с допуском 5%, у остальных отклонение номинала от указанного на схеме может быть до 50%. Транзисторы VT1—VT4 на теплоотвод можно не устанавливать, т. к. мощность рассеяния на них не превышает 1 Вт.

В авторском варианте устройство размещено в корпусе от зарядного устройства ЗУ-95 отечественного производства, пришлось только извлечь из него металлические штыри, играющие роль сетевой вилки.

Питать устройство можно от любого стабилизированного или нестабилизированного источника напряжением 10… 15 В, ток потребления не превышает 30 мА.

Сергей Мищенко

C4-2006

Материал подготовил Б. Дергачёв

Зарядное устройство для аккумуляторных батареек своими руками

Можно конечно купить и отличное готовое устройство смотри фотку выше, но если тратить на это кровные рублики совсем не хочется, то можно собрать и своими руками. Причем схема ЗУ для пальчиковых батареек очень простая и практически не нуждается в наладке и регулировке

Для наших целей нам подойдет почти любой блок питания рассчитанный на напряжение 5-20 вольт. Возьмем за прототип радиолюбительской разработки схему простейшего из них.

Схема состоит из следующих радиокомпонентов: сопротивления R1, двух светодиодов и штепсельного гнезда. Светодиоды рекомендуется использовать разных цветов. Параллельно одному из них припаиваем выводы для параллельного подключения аккумулятора. Свечение светодиода в соответствии с законом Ома зависит от степени разряда, при полном разряде светодиод гореть не будет). В процессе зарядки свечение светодиода увеличивается. Одинаковое свечение обоих светодиодов говорит о окончании процесса заряда. Номинал сопротивления R1 подбираем в соответствии с рабочим током светодиода из справочника. Например рабочему току светодиода, который равен 20 мА, и напряжению блока питания

Эти конструкции позваляют заряжать портативных Ni-Mn и Ni-Cd аккумуляторы с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью первой схемы можно заряжать один аккумулятор током на 100 мА, вторая схема позволяет заряжать уже две батареи стандарта AA или AAA

Батарейный отсек был позаимствован из старой детской игрушки. О его переделке расскажу чуть подробней. Дело в том, что обычно плюсы и минусы клемм питания установлены противоположно. Но нам надо, что бы в верхней части были две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю перенёс наверх, а общую минусовую вырезал из пивной банки, припаяв пружинки. Для пайки использовал паяльную кислоту, по окончанию пайки поверхность обязательно хорошо промыть в проточной воде.

Так как различные пальчиковые аккумуляторы обладают разной емкостью, необходимо разное время для зарядки этих батарей. Аккумуляторы емкостью 1400 мА/ч потребуется заряжать около 14 часов, а для батарей 700 мА/ч потребуется около 7 часов.

За основу взят обычный стабилизатор тока. Конструкция позволяет изменять зарядный ток с помощью переменного сопротивления в от 10 до 500 мА.

Для правильной зарядки батареи напряжение на выходе схемы должно быть на 25 % больше напряжения заряжаемого аккумулятора

Эта радиолюбительская самоделка зарядного устройства используется для зарядки двух никель-кадмиевых аккумуляторов постоянным током. Схема ЗУ имеет два режима работы, автоматическое отключение и генерация звукового сигнала по окончанию процесса зарядки.

Фонарики, цифровые плееры, диктофоны, электронные часы, игрушки, пульты дистанционного управления и портативная медицинская техника — работу всех этих и многих других устройств обеспечивают источники питания.

Устроены источники питания предельно просто: два электрода — отрицательный анод и положительный катод — погружены в емкость с электролитом и упакованы в металлический корпус.

При замыкании контактов начинается движение электронов от одного электрода к другому, возникает электрический ток. Со временем запас активного вещества на аноде истощается, электронов становится меньше. С другой стороны, снижается способность электролита проводить ток. Вот почему батарейка разряжается.

Классификация батареек

Элементы питания различаются по форме и по внутреннему составу, точнее, по типу химической реакции, которая приводит к образованию электрического тока.

Виды батареек по форме

  1. Наиболее привычны нам «пальчиковые» (маркировка АА) и «мизинчиковые» (маркировка ААА). Они имеют цилиндрическую форму и питают большинство типов электронной техники.
  2. Элементы формата «бочонок» (маркировки C и D) тоже производят в форме цилиндра, только размеры их побольше, что обеспечивает больший запас мощности. Такие источники применяют, например, в туристических фонарях, радиоприемниках, проигрывателях и магнитофонах.
  3. Прямоугольные гальванические элементы, именуемые в народе «крона» — по названию известного бренда.
  4. Дисковые батарейки (CR) — так назывемые «таблетки», используются в наручных часах, лазерных указках, игрушках

Рабочее напряжение цилиндрических элементов питания — 1,6 Вольта. А «крона» обеспечивает напряжение целых 9 вольт.

По типу химической реакции

  • Солевые. Отличаются малой мощностью, можно хранить от 1 года до 3 лет.
  • Щелочные или «алкалиновые». Название происходит от импортной маркировки Alkaline. Они способны справиться с более мощной нагрузкой. Срок хранения — от 3 до 5 лет.
  • Литиевые. Лучше всех справляются с высокой нагрузкой. Срок хранения — от 5 до 7 лет.

Какие батарейки можно заряжать в зарядном устройстве

Химические процессы, протекающие в обычном гальваническом элементе, необратимы. Исчерпав свой ресурс, он перестает вырабатывать электрический ток. Определить их просто: обычно на корпусе такого элемента питания присутствует надпись «do not recharge» — «перезарядке не подлежит». Продлить ему жизнь можно единственным способом — попытаться поместить в менее энергоемкое устройство. Так, например, батарейки, которые не подходят для радиоуправляемой машинки, могут подойти для работы пульта от телевизора.

Единственный тип батареек, которые можно правильно перезаряжать большое число раз — это аккумуляторные. Их можно отличить по маркировке rechargeable battery. Рабочее напряжение аккумуляторных батареек ниже, чем у обычных — 1.2 Вольта. Аккумуляторные элементы питания дороже обычных: чем больше их мощность и количество циклов перезарядки, тем выше цена. Кроме того, вам потребуется специальное зарядное устройство, которое приобретается отдельно. Часто такие зарядные устройства снабжены индикатором, который покажет, насколько зарядился аккумулятор. Время зарядки аккумуляторных батареек составляет 8—12 часов.

Подзарядка в домашних условиях

Возникает вопрос: можно ли заряжать алкалиновые батарейки в зарядном устройстве? Существует сравнительно безопасный способ зарядить алкалиновый элемент питания, но эффективность его под вопросом. Для этой экстренной меры вам потребуется зарядное устройство на 4 аккумулятора. В первые три отсека слева направо вставляем разряженнные алкалиновые элементы, которые будут заряжаться. А в четвертый (тот что справа) — аккумулятор. Длительность «лечения» — от 5 до 10 минут. После этого алкалиновые элементы снова можно использовать, но не долго.

Энтузиастами придуманы многочисленные способы, как зарядить пальчиковую батарейку в домашних условиях. Конечно, это не полноценная подзарядка. Ведь сами химические реакции внутри такого источника питания необратимы. Например, если аккуратно помять элемент питания плоскогубцами или постучать им о любую твердую поверхность, это позволит слегка реанимировать электролит и извлечь несколько дополнительных процентов мощности. Только не повредите корпус, иначе электролит вытечет, и источник питания не будет работать.

Нагревать разряженные гальванические элементы нельзя — высока опасность взрыва.

Если вы хотите, чтобы гальванические элементы прослужили дольше, не используйте их на морозе: они быстро теряют заряд. Обращайте внимание на дату выпуска: батарейки имеют свойство саморазряжаться. Не стоит использовать различные типы батареек одновременно, а также старые с более свежими. Это также уменьшает их срок службы.

  • Самоделкин 24 марта 2013
  • Самодельные зарядные и АКБ

Уже более 4-х лет верой и правдой мне служит самодельное зарядное устройство для заряда аккумуляторов «аа» и «ааа» (Ni-Mh, Ni-Ca) с функцией разряда акб до фиксированного значения напряжения (1 Вольт) . Блок разряда аккумуляторов создавался для возможности проведения КТЦ (Контрольно-тренировочный цикл), говоря проще: для восстановления емкости аккумуляторовпотрепанных неправильными китайскими зарядниками с формулой последовательного заряда 2-х или 4-х акб. Как известно, такой способ заряда укорачивает жизнь аккумуляторам, если вовремя их не реставрировать.



Технические характеристики зарядного устройства:

  • Количество независимых каналов заряда: 4
  • Количество независимых каналов разряда: 4
  • Ток заряда: 250 (мА)
  • Ток разряда 140 (мА)
  • Напряжение отключения разряда 1 (В)
  • Индикация: светодиодная

Собиралось зарядное не на выставку, а что называется из подручных средств, то есть утилизировалось окружающее добро, которое и выкинуть жалко и хранить особо не зачем.

Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов:

  • Корпус от CD-Rom
  • Силовой трансформатор от магнитолы (перемотанный)
  • Полевые транзисторы с материнских плат и плат HDD
  • Прочие компоненты или покупались или выкусывались:)

Как уже отмечалось, зарядка состоит из нескольких узлов, которые могут жить абсолютно автономно друг от друга. То есть, одновременно можно работать с 8 аккумуляторами: от 1 до 4 заряжать + от 1 до 4 разряжать. На фото видно, что кассеты для аккумуляторов, установлены под форм-фактор «АА» в простонародье «пальчиковых аккумуляторов», если необходимо работать с «мини-пальчиковыми акб» «ААА» достаточно подложить под минусовую клему гайку небольшого калибра. При желании можно продублировать держателями под размер «ааа». Наличие акб в держателе индицируется светодиодом (отслеживается прохождение тока).

Блок заряда

Заряд осуществляется стабилизированным током, у каждого канала свой стабилизатор тока. Для того, что бы ток заряда был неизменным при подключении как 1 так и 2,3,4 аккумуляторов, перед стабилизаторами тока установлен параметрический стабилизатор напряжения. Естественно, кпд этого стабилизатора не на высоте и потребуется установить все транзисторы на теплоотвод. Заранее планируйте вентиляцию корпуса и размеры радиатора, учитывая то что в закрытом корпусе температура на радиаторе будет выше чем в разобранном состоянии. Можно модернизировать схему, введя возможность выбора тока заряда. Для этого схему необходимо дополнить одним переключателем и одним резистором на каждый канал, который будет увеличивать ток базы транзистора и соответственно повышать ток заряда проходящий через транзистор в аккумулятор. В моем случае блок заряда собран навесным монтажом.

Блок разряда акб


Блок разряда более сложен и требует точности в подборе компонентов. В основе лежит компаратор типа lm393, lm339 или lp239 функцией которого является подача сигнала «логической единицы», либо «ноля» на затвор полевого транзистора. При открытии полевого транзистора он подключает к аккумулятору нагрузку в виде резистора значение которого определяет ток разряда. При снижении напряжения на аккумуляторе до установленного порога отключения 1 (Вольт). Компаратор захлопывается и устанавливает на своем выходе логический ноль. Транзистор выходит из насыщения и отключает нагрузку от аккумулятора. Компаратор имеет гистерезис, который обуславливает повторное подключение нагрузки не при напряжении 1,01 (В) а при 1,1-1,15 (В). Смоделировать действие компаратора вы сможете скачав модель разрядного устройства для Proteus. Подобрав значения резисторов вы сможете перестроить устройство на нужное вам напряжение. Например: подняв порог отключения до 3 Вольт можно сделать разрядное для li-on и Li-Po аккумуляторов.
Вы можете скачать плату разрядного устройства в формате Sprint Layout она проектировалась для применения компаратора lm393 в DIP-корпусе. Питание компараторов должно осуществляться от стабилизированного источника напряжением 5 вольт, его роль выполняет TL-431 усиленный транзистором.

Автомобильное зарядное устройство схема

Автомобильное зарядное устройство

  Необходимость в дополнительном зарядном устройстве для автомобильной аккумуляторной батареи помимо бортового регулятора напряжения никто не подвергает сомненью. Существует огромное количество схем ЗУ, различающихся по многим параметрам и техническим решениям.

Простое зарядное устройство

  Конечно, если на вашем автомобиле установлена новая аккумуляторная батарея и совершенный регулятор напряжения, то необходимость в дополнительном зарядном устройстве скорее всего не понадобится. Однако все может произойти, и возникнет потребность в ЗУ. Что бы не городить огород, можно собрать несложное, но достаточно качественное устройство по приведенной ниже схеме. В качестве регулирующего элемента для изменения зарядного тока применяется конденсатор, что является удачным техническим решением, снимающим целый ряд трудностей.

Приставка-автомат к зарядному устройству

  Описываемая ниже приставка не является собственно зарядным устройством. Она призвана облегчить выполнение необходимых определенных профилактических операций для поддержания аккумуляторной батареи в рабочем состоянии.

Двухрежимное зарядно-разрядное устройство

 Схема двухрежимного зарядно-разрядного устройства для автомобильного аккумулятора с целью продления жизни последнего.

Электромеханическая защита в зарядных устройствах

Бестрансформаторное автомобильное зарядное устройство с режимом тренировки аккумулятора

 Схема бестрансформаторного зарядного устройства для автомобильных аккумуляторов ёмкостью 70 Ач мощностью 150 Вт и максимальным током 7 А с режимом тренировки.

 

 Здесь описаны зарядные устройства только для аккумуляторов автомобилей (мотоциклов). Схемы ЗУ для батареек и пальчиковых аккумуляторов приводятся в соответствующем разделе.

 

Способы соединения элементов питания.

«Питайтесь» правильно!

При питании радиоаппаратуры от батареек и аккумуляторов полезно знать распространённые схемы соединения батарей и аккумуляторов. Дело в том, что каждый вид батареек имеет допустимый разрядный ток.

Разрядный ток – наиболее оптимальное значение тока, который потребляется от батареи. Если потреблять от батарейки ток, превышающий разрядный, то надолго этой батарейки не хватит, она не сможет полностью отдать свою расчётную мощность.

Наверное, замечали, что для электромеханических часов используются “пальчиковые” (формата АА) или “мизинцевые” (формата ААА) батарейки, а для переносного лампового фонаря батарейки побольше (формат R14 или R20), которые способны отдать значительный ток и имеют большую ёмкость. Размер батарейки имеет значение!

Иногда требуется обеспечить батарейное электропитание прибора, который потребляет значительный ток, но стандартные батареи (например R20, R14) не могут дать необходимый ток, он для них выше разрядного. Что делать в этом случае?

Ответ прост!

Необходимо взять несколько однотипных батареек и соединить их в батарею.

Параллельное соединение элементов питания.

Так, например, если необходимо обеспечить значительный ток для аппарата применяют параллельное соединение батареек. В таком случае общее напряжение составной батареи будет равно напряжению одного элемента питания, а разрядный ток будет во столько раз больше, сколько батареек применяется.

На рисунке составная батарея из трёх 1,5 вольтовых батареек G1, G2, G3. Если учесть, что среднее значение разрядного тока для 1 батарейки формата АА 7-7,5 mA (при сопротивлении нагрузки 200 Ом), то  разрядный ток составной батареи составит 3 * 7,5 = 22,5 mA. Вот так, приходится брать количеством.

Последовательное соединение элементов питания.

Бывает, что необходимо обеспечит напряжение 4,5 – 6 вольт, применяя батарейки на 1,5 вольта. В таком случае нужно соединить батарейки последовательно, как на рисунке.

Разрядный ток такой составной батареи составит значение для одного элемента, а общее напряжение будет равно сумме напряжений трёх батареек. Для трёх элементов формата АА (“пальчиковых”) разрядный ток составит 7-7,5 mA (при сопротивлении нагрузки 200 Ом), а суммарное напряжение – 4,5 Вольт.

Итак, подведём итоги.

  • Если необходимо обеспечить значительный ток, то применяется параллельное соединение элементов питания. Рассчитать значения напряжения и разрядного тока для параллельно составленной батареи питания:

    I=IG1* N  — общий разрядный ток параллельно составленной батареи.

     где N – количество однотипных элементов питания.

    IG1 – разрядный ток одного элемента питания.

    U=UG1 — общее напряжение параллельно составленной батареи.

    где UG1 – напряжение одного элемента питания.

    Понятно, что никакого выигрыша по напряжению при параллельном соединении мы не получим.

  • Если требуется обеспечить напряжение в разы большее напряжения отдельного элемента питания, то применяется последовательная схема соединения.

    Рассчитать значения напряжения и разрядного тока для последовательно составленной батареи питания:

    U=UG1* N — общее напряжение последовательно составленной батареи.

    I=IG1 — общий ток последовательно составленной батареи.

    В таком случае мы получаем выигрыш по напряжению.

  • А как быть, если необходимо получить выигрыш и по напряжению и по току? Тогда применяется смешанное соединение элементов питания.

    Взгляните на рисунок, думаю, Вам всё станет понятно.

    При таком соединении составная батарейка из 6 элементов типоразмера АА обеспечит напряжение 4,5 Вольт и разрядный ток на нагрузке в 200 Ом – 2 * 7,5 = 15mA.

Рассчитывается всё довольно просто. Сначала, вычисляем напряжение на 3 последовательно соединённых элементах одного из плеч. Ток последовательно соединённых элементов будет равен току одного элемента.

Далее складываем токи каждого плеча из трёх элементов. В данном случае у нас два плеча. Напряжение параллельно соединённых элементов равно напряжению одного элемента. Здесь 3 последовательно соединённых батарейки представляют как бы один элемент питания на 4,5 Вольт.

В радиолюбительской практике не всегда необходимо вычислять разрядный ток, так как потребляемый приборами ток, как правило, нестабилен, всё зависит от режима работы конкретного аппарата.

Понятно, что магнитола потребляет больший ток в режиме воспроизведения, нежели в режиме прослушивания радио. В режиме воспроизведения ток потребления возрастает из-за работы двигателя протяжки ленты, тогда как в режиме радио необходимо лишь усилить принятый сигнал.

Необходимо просто правильно оценивать токовую нагрузку на составную батарею, ведь некоторые приборы могут потреблять значительный ток и в таких случаях можно добавить пару дополнительных элементов питания. В таком случае автономное время работы Вашего прибора возрастёт.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

 

Зарядное устройство для телефона от батареек своими руками. Зарядные устройства для пальчиковых аккумуляторов. Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов

Всем мозгочинам , здравствуйте! Полагаю все вы относитесь к той части населения планеты, у которой в ходу смартфоны, и думаю, за последние пару лет вы несколько раз меняли их на более продвинутые. Во всех «устаревших» смартфонах есть литий-ионные аккумуляторы, использовать которые в новых моделях не представляется возможности, и таким образом у вас остаются хорошие, но бесполезные аккумуляторы… А так ли это?

Лично у меня накопилось три телефонных аккумулятора (и телефоны я менял отнюдь не из-за неисправности батарей), они не нагревались и не разбухли, и их можно использовать для запитывания каких-нибудь гаджетов. Емкость среднего аккумулятора после 2 лет использования составляет около 80% от изначальной, это как раз период в течение которого я обычно приобретаю новый мозгосмартфон . А если задуматься еще о усилиях по получению исходных материалов, производству самих аккумуляторов и расходов на транспортировку…

Учитывая все высказанное было бы настоящим позором позволить им медленно «умирать» или просто выбросить их. В этой мозгостатье и ролике я расскажу вам, как своими руками сделать самоделку , позволяющую «дать новую жизнь» аккумуляторов от старых телефонов, то есть сделать внешний аккумулятор для гаджетов, он же POWERBANK.

Шаг 1: Материалы

Ну что, начнем с того, что же нужно для создания своего собственного внешнего аккумулятора. Из материалов необходимы:

  • литий-ионный аккумулятор,
  • плата зарядки и защиты для литий-ионных аккумуляторов, рассчитанная на 5В, максимальный входящий ток 1А (чем меньше, тем более продолжительней будет «вторая жизнь» аккумулятора),
  • повышающий преобразователь постоянного тока с выходными значениями5В и макс. 600МА
    провода,
  • несколько штырьковых разъемов,
  • канцелярский зажим,
    кусочек акрила,
  • винты,
  • и выключатель.

Еще понадобятся:

  • пара плоскогубцев,
  • стриппер,
  • паяльник,
  • и клеевой пистолет,
  • а еще дрель и бормашинка.
Шаг 2: Как работают платы?

Для начала ознакомимся с платой зарядки и защиты для литий-ионных аккумуляторов. Три ее важных функций это зарядка, защита от превышения тока и защита от слишком малого напряжения.

Литий-ионные батареи заряжаются по определенной схеме — когда они почти полностью заряжены, снижается их потребление тока. Мозгоплата распознает это и как только напряжение батареи достигнет 4.2В, останавливает зарядку. На выходе платы есть схема защиты предотвращающая превышение тока и чрезмерное понижение напряжения. В современные телефонные аккумуляторы такая защита уже встроена, но в данной самоделке эта плата позволит использовать незащищенные аккумуляторы, которые можно найти в старых ноутбуках. Зарядный ток платы можно настраивать посредством резистора, и он должен быть в пределах 30-50% от номинальной емкости аккумулятора.

DC преобразователь конвертирует постоянное напряжение батареи в квадратную волну и пропускает ее через небольшую катушку. Вследствие индукционных процессов образуется более высокое напряжение, которое обратно конвертируется в постоянное и может использоваться для запитывания гаджетов, рассчитанных на 5В.

Теперь, более менее зная с чем имеем дело, можно приступать собственно к сборке мозгоподелки .

Шаг 3: Проектирование

Прежде чем приступить к создания корпуса для самоделки , обмеряем компоненты и делаем чертеж. Так в моем мозгоустройстве аккумулятор будет крепиться с помощью канцелярского зажима, который прикручен к корпусу, платы будут располагаться поверх друг друга, контакты вход/выход будут сверху в верхней части корпуса, а контакты идущие к аккумуляторам — в нижней.

У некоторых аккумуляторов бывает нестандартное положение полярности контактов, поэтому эту «нестандартность» нужно учесть в нашем устройстве, то есть добавить штырьковые разъемы. Для этого берем разъем с тремя штырьками и вырываем средний, а сами штырьки загибаем с одной стороны, чтобы было удобней прикладывать их к контактам аккумулятора. Либо взять разъем с четырьмя штырьками, крайние из которых подсоединить к положительному выводу, а средние — к отрицательному, и тем самым менять полярность контактов просто подключая аккумулятор к левой или правой паре штырьков.

Шаг 4: Изготовление корпуса

А вот теперь займемся сборкой корпуса. Для этого берем линейку и острым ножом размечаем линии, процарапывая их примерно по 10 раз, чтобы затем не прикладывать к заготовке большие усилия и уже не использовать линейку. Процарапав линии на достаточную глубину прикладываем к ним плоскогубцы и сгибаем заготовку, пока она не сломается по этим линиям. «Наломав» таким образом все необходимые детали мозгокорпуса, зачищаем их и подгоняем друг к другу. Затем крепим их к устойчивой поверхности и с помощью бормашинки делаем отверстия и прорези под винты, выключатель, входы, выходы и штырьковые разъемы.

Шаг 5: Сборка электроцепи

До того, как приступить к сборке мозгоустройства собираем сначала электроцепь, и ориентируемся при этом на представленную схему. Небольшой выключатель здесь служит для включения/отключения преобразователя постоянного тока.

Шаг 6: Окончательная сборка

С помощью клеевого пистолета склеиваем платы друг с другом, а затем и с одной их деталей корпуса. Далее склеиваем весь корпус, и привинчиваем к нему канцелярский зажим.

Через штырьковый разъем подсоединяем аккумулятор и пробуем самоделку в действии. Если она не работает, то подключаем кабель зарядки.

Шаг 7: Использование!

Что ж, теперь аккумуляторы ваших старых телефонов снова в деле!

Предложенный мной вариант корпуса конечно не идеален, но для демонстрации всей концепции сгодиться. Могу даже поспорить, что вы предложите гораздо лучшее решение 🙂

На этом все, всем мозгоудачи !

Создание своими руками солнечной USB зарядки для телефона — один из самых интересных и полезных проектов на . Сделать самодельное зарядное устройство не слишком сложно — необходимые компоненты не очень дорогие и их легко достать. Солнечные зарядные USB устройства идеально подходят для зарядки небольших устройств, например, телефона.


Слабым местом всех самодельных солнечных зарядок являются аккумуляторы. Большинство собираются на базе стандартных никель-металл-гидридных аккумуляторов — дешёвых, доступных и безопасных в эксплуатации. Но к сожалению у NiMH аккумуляторов слишком низкие напряжение и ёмкость, чтобы их можно было серьёзно рассматривать в качестве , энергопотребление которых с каждым годом только растёт.


Например, аккумулятор iPhone 4 на 2000 мА*ч ещё можно полностью перезарядить от самодельной солнечной зарядки с двумя или четырьмя аккумуляторами АА, но вот iPad 2 оснащён аккумулятором на 6000 мА*ч, который уже не так просто перезарядить с помощью подобного зарядного устройства.


Решением данной проблемы является замена никель-металл-гидридных аккумуляторов на литиевые.


Из этой инструкции вы узнаете, как своими руками сделать солнечную USB зарядку с литиевым аккумулятором. Во-первых, по сравнению с это самодельное зарядное устройство обойдётся вам очень дёшево. Во-вторых, собрать его очень просто. И самое главное — эта литиевая USB зарядка безопасна при эксплуатации.

Шаг 1: Необходимые компоненты для сборки солнечной USB зарядки.


Электронные компоненты:

  • Солнечная батарея на 5 В или выше
  • Литий-ионный аккумулятор на 3,7 В
  • Контроллер зарядки литий-ионного аккумулятора
  • Повышающая USB схема постоянного тока
  • Разъём 2,5 мм с креплением на панель
  • Разъём 2,5 мм с проводом
  • Диод 1N4001
  • Провод

Конструкционные материалы:

  • Изолента
  • Термоусадочные трубки
  • Двухсторонняя лента из пеноматериала
  • Припой
  • Жестяная коробка (или другой корпус)

Инструменты:

  • Паяльник
  • Пистолет для склеивания горячим клеем
  • Дрель
  • Дремель (не обязателен, но желателен)
  • Кусачки
  • Инструмент для зачистки проводов
  • Помощь друга

В этом руководстве рассказывается как сделать зарядное устройство для телефона на солнечной энергии. Вы можете отказаться от использования солнечных батарей и ограничиться только изготовлением обычной USB зарядки на литий-ионных аккумуляторах.


Большинство компонентов для этого проекта можно купить в интернет магазинах электроники, но повышающую USB схему постоянного тока и контроллер заряда литий-ионного аккумулятора найти будет не так просто. Далее в этом руководстве я расскажу, где можно достать большинство необходимых компонентов и для чего каждый из них нужен. Исходя из этого вы сами решите какой вариант вам лучше всего подходит.


Шаг 2: Преимущества зарядных устройств с литиевыми аккумуляторами.


Может быть вы не догадываетесь, но скорей всего литий-ионный аккумулятор прямо сейчас лежит у вас в кармане или на столе, а может и в вашем кошельке или . В большинстве современных электронных устройств используются литий-ионные аккумуляторы, характеризующиеся большой ёмкостью и напряжением. Их можно перезаряжать множество раз. Большинство аккумуляторов формата АА по химическому составу являются никель-металл-гидридными и не могут похвастаться высокими техническими характеристиками.

С химической точки зрения разница между стандартным никель-металл-гидридным аккумулятором АА и литий-ионным аккумулятором заключается в химических элементах, содержащихся внутри элемента питания. Если вы посмотрите на периодическую таблицу элементов Менделеева, то увидите, что литий находится в левом углу рядом с самыми химически активными элементами. А вот никель расположен в середине таблицы рядом с химически неактивными элементами. Литий обладает такой высокой химической активностью из-за того, что у него только один валентный электрон.


И как раз именно по этой причине на литий много нареканий — иногда он может выходить из-под контроля из-за своей высокой химической активности. Несколько лет назад компания Sony, лидер в производстве аккумуляторов для ноутбуков, изготовила партию некачественных аккумуляторов для ноутбуков, некоторые из которых самопроизвольно возгорались.

Именно поэтому при работе с литий-ионными аккумуляторами мы должны придерживаться определенных мер предосторожности — очень точно поддерживать напряжение во время зарядки. В этой инструкции используются аккумуляторы на 3,7 В, которые требуют заряжающего напряжения 4,2 В. При превышении или уменьшении этого напряжения химическая реакция может выйти из-под контроля со всеми вытекающими последствиями.

Вот почему при работе с литиевыми батареями необходимо проявлять предельную осторожность. Если обращаться с ними осторожно, то они достаточно безопасны. Но если вы будете делать с ними недопустимые вещи, то это может привести к большим неприятностям. Поэтому их следует эксплуатировать только строго по инструкции.

Шаг 3: Выбор контроллера заряда литий-ионного аккумулятора.


Из-за высокой химической реактивности литиевых аккумуляторов вы должны быть на сто процентов уверены, что схема контроля напряжения заряда вас не подведёт.

Хотя можно изготовить собственную схему контроля напряжения, но лучше просто купить уже готовую схему, в работоспособности которой вы будете уверены. На выбор доступны несколько схем контроля заряда.

На данный момент Adafruit выпускает уже второе поколение контроллеров заряда для литиевых аккумуляторов с несколькими доступными значениями входящего напряжения. Это весьма неплохие контроллеры, но у них слишком большой размер. Вряд ли на их базе получится собрать компактное зарядное устройство.

В интернете можно купить небольшие модули контроллеров зарядки литиевых аккумуляторов, которые и используются в данном руководстве. На базе этих контроллеров я также собрал множество других . Они мне нравятся за компактность, простоту и наличие светодиодной индикации заряда аккумулятора. Как и в случае с Adafruit, при отсутствии солнца литиевый аккумулятор можно зарядить через USB порт контроллера. Возможность зарядки через USB порт является крайне полезной опцией для любого зарядного устройства на солнечных батареях.

Независимо от того, какой контроллер вы выбрали, вы должны знать как он работает и как его правильно эксплуатировать.

Шаг 4: USB порт.


Через USB порт можно заряжать большинство современных устройств. Это стандарт во всём мире. Почему бы просто не подключить USB порт напрямую к аккумулятору? Зачем нужна специальная схема для зарядки через USB?

Проблема заключается в том, что по стандарту USB напряжение составляет 5 В, а литий-ионные аккумуляторы, которые мы будем использовать в данном проекте, имеют напряжение всего 3,7 В. Поэтому нам придётся воспользоваться повышающей USB схемой постоянного тока, которая увеличивает напряжение до достаточного для зарядки различных устройств. В большинстве коммерческих и самодельных USB зарядок, наоборот, используются понижающие схемы, так как они собираются на базе аккумуляторов на 6 и 9 В. Схемы с понижением напряжения более сложные, поэтому в солнечных зарядных устройствах их лучше не применять.


Схема, которая применяется в данной инструкции, была выбрана в результате длительного тестирования различных вариантов. Она практически идентична схеме Minityboost Adafruit, но стоит дешевле.

Конечно вы можете купить онлайн недорогое зарядное USB устройство и разобрать его, но нам нужна схема, преобразующая 3 В (напряжение двух батареек АА) в 5 В (напряжение на USB). Разборка обычной или автомобильной USB зарядки ничего не даст, так как их схемы работают на понижение напряжения, а нам наоборот нужно повышать напряжение.

Кроме того следует учесть, что схема Mintyboost и используемая в проекте схема способны работать с гаджетами Apple, в отличии от большинства других зарядных USB устройств. Устройства от Apple проверяют информационные пины на USB, чтобы знать куда они подключены. Если гаджет Apple определит, что информационные пины не работают, то он откажется заряжаться. У большинства других гаджетов такая проверка отсутствует. Поверьте мне — я перепробовал множество дешёвых схем зарядки с интернет-аукциона eBay — ни от одной из них мне не удалось зарядить свой айфон. Вы же не хотите, чтобы от вашей самодельной USB зарядки нельзя было заряжать гаджеты Apple.

Шаг 5: Выбор аккумулятора.

Если вы немного погуглите, то обнаружите огромный разных размеров, ёмкостей, напряжений и стоимости. Поначалу во всём этом многообразии будет несложно запутаться.

Для нашего зарядного устройства мы будет использовать литий-полимерный (Li-Po) аккумулятор на 3,7 В, который очень напоминает аккумулятор для айпода или мобильного телефона. Действительно, нам нужен аккумулятор исключительно на 3,7 В, так как схема зарядки рассчитана именно на это напряжение.

То, что аккумулятор должен быть оснащён встроенной защитой от перезаряда и переразряда, даже не обсуждается. Обычно эта защита называется «PCB protection» («схема защиты»). Поищите по этим ключевым словам на интернет-аукционе eBay. Из себя она представляет всего лишь небольшую печатную плату с чипом, которая защищает аккумулятор от чрезмерного заряда и разряда.

При выборе литий-ионного аккумулятора смотрите не только на его ёмкость, но и на его физический размер, который преимущественно зависит от выбранного вами корпуса. В качестве корпуса у меня выступила жестяная коробка Altoids, так что я был ограничен в выборе аккумулятора. Я сначала думал купить аккумулятор на 4400 мА*ч, но из-за его больших размеров мне пришлось ограничиться аккумулятором на 2000 мА*ч.

Шаг 6: Подсоединение солнечной батареи.


Если вы не собираетесь делать зарядное устройство с возможностью подзарядки от солнца, то можете пропустить этот этап.

В этом руководстве используется солнечная батарея в жестком пластиковом корпусе на 5,5 В и 320 мА. Вам подойдет любая большая солнечная батарея. Для зарядного устройства лучше всего выбирать батарею, рассчитанную на напряжение 5 — 6 В.


Возьмите провод за кончик, разделите его на две части и немного зачистите концы. Провод с белой полоской отрицательный, а полностью чёрный провод — положительный.


Припаяйте провода к соответствующим контактам с обратной стороны солнечной батареи.

Закройте места пайки с помощью изоленты или горячего клея. Это защитит их и поможет снизить нагрузку на провода.

Шаг 7: Сверлим жестяную коробку или корпус.


Так как в качестве корпуса я использовал жестяную коробку Altoids, то мне пришлось немного поработать дрелью. Кроме дрели нам понадобится ещё и такой инструмент, как дремель.

Перед тем, как начать работу с жестяной коробкой, сложите в неё все компоненты, чтобы убедиться на практике, что она вам подходит. Продумайте, как лучше всего в ней разместить компоненты, и только потом сверлите. Места расположения компонентов можете обозначить маркером.


После обозначение мест можете приниматься за работу.

Вывести USB порт можно несколькими способами: сделать небольшой надрез прямо вверху на коробке или же сбоку на коробке просверлить отверстие соответствующего размера. Я решил сделать отверстие сбоку.


Сначала приложите USB порт к коробке и обозначьте его место. Внутри обозначенной области просверлите дрелью два или больше отверстий.


Зашлифуйте отверстие дремелем. Обязательно соблюдайте технику безопасности, чтобы не травмировать пальцы. Ни в коем случае не держите коробку в руках — зажмите её в тиски.

Просверлите отверстие диаметром 2,5 мм для USB порта. При необходимости расширьте его с помощью дремеля. Если вы не планируете устанавливать солнечную батарею, то в отверстии 2,5 мм нет необходимости!

Шаг 8: Подключение контроллера зарядки.


Одна из причин, по которой я выбрал этот компактный контроллер зарядки, это его высокая надёжность. У него четыре контактные площадки: две впереди рядом с портом mini-USB, куда подаётся постоянное напряжение (в нашем случае от солнечных батарей), и две сзади для аккумулятора.


Чтобы подключить разъём 2,5 мм к контроллеру зарядки, необходимо подпаять два проводка и диод от разъёма к контроллеру. Кроме того желательно воспользоваться термоусадочными трубками.


Зафиксируйте диод 1N4001, контроллер зарядки и разъём 2,5 мм. Расположите разъём перед собой. Если смотреть на него слева направо, то левый контакт будет отрицательным, средний — положительным, а правый вообще не используется.


Один конец проводка припаяйте к отрицательной ножке разъёма, а другой к отрицательному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Ещё один проводок припаяйте к ножке диода, рядом с которой нанесена метка. Припаивайте его как можно ближе к основанию диода, чтобы сэкономить побольше свободного места. Припаяйте другую сторону диода (без метки) к средней ножке разъёма. Опять же, постарайтесь припаять максимально близко к основанию диода. И в завершение подпаяйте проводок к положительному контакту на плате. Кроме того желательно воспользоваться термоусадочными трубками.

Шаг 9: Подключение аккумулятора и USB схемы.


На данном этапе потребуется всего лишь подпаять четыре дополнительных контакта.


Нужно подсоединить аккумулятор и USB схему к плате контроллера зарядки.


Сначала отрежьте несколько проводков. Подпаяйте их к положительным и отрицательным контактам на USB схеме, которые расположены на нижней стороне платы.


После этого соедините вместе эти проводки с проводками, идущими от литий-ионного аккумулятора. Убедитесь, что вы соединили вместе отрицательные проводки и соединили вместе положительные проводки. Напоминаю, что красные провода у нас положительные, а чёрные — отрицательные.


После того, как вы скрутили проводки вместе, приварите их к контактам на аккумуляторе, которые находятся на обратной стороне платы контроллера зарядки. Перед пайкой проводки желательно продеть в отверстия.

Теперь можно поздравить вас — вы на 100% справились с электрической частью этого проекта и можете немного расслабиться.


На этом этапе неплохой идеей будет проверить работоспособность схемы. Так как все электрические компоненты подсоединены, то всё должно работать. Попробуйте зарядить айпод или любой другой гаджет, оснащённый USB портом. Устройство не будет заряжаться, если аккумулятор разряжен или неисправен. Кроме того поместите зарядное устройство на солнце и посмотрите будет ли заряжаться аккумулятор от солнечной батареи — при этом должен загореться маленький красный светодиод на плате контроллера зарядки. Также вы можете зарядить аккумулятор через mini-USB кабель.

Шаг 10: Электрическая изоляция всех компонентов.


Перед тем, как разместить все электронные компоненты в жестяной коробкой, мы должны быть уверены, что она не сможет стать причиной короткого замыкания. Если у вас пластиковый или деревянный корпус, то пропустите этот этап.

На дне и по бокам жестяной коробки наклейте несколько полос изоленты. Именно в этих местах будет находиться USB схема и контроллер зарядки. На фотографиях видно, что контроллер зарядки у меня остался незакреплённым.

Постарайтесь тщательно всё заизолировать, чтобы не произошло короткого замыкания. Перед тем, как наносить горячий клей или наматывать изоленту, убедитесь в прочности пайки.

Шаг 11: Размещение электронных компонентов в корпусе.


Так как 2,5 миллиметровый разъём необходимо закрепить с помощью болтов, то разместите его в первую очередь.



На моей USB схеме сбоку имелся переключатель. Если у вас такая же схема, то сначала проверьте работает ли переключатель, который нужен для включения и отключения «режима зарядки».


И наконец нужно закрепить аккумулятор. С этой целью лучше использовать не горячий клей, а несколько кусочков двустороннего скотча или изоленты.


Шаг 12: Эксплуатация самодельного зарядного устройства на солнечных батареях.


В завершение поговорим о правильной эксплуатации самодельной USB зарядки.

Заряжать аккумулятор можно через mini-USB порт или от солнца. Красный светодиод на плате контроллера зарядки указывает на процесс зарядки, а синий на полностью заряженный аккумулятор.

Уже более 4-х лет верой и правдой мне служит самодельное зарядное устройство для заряда аккумуляторов «аа» и «ааа» (Ni-Mh, Ni-Ca) с функцией разряда акб до фиксированного значения напряжения (1 Вольт). Блок разряда аккумуляторов создавался для возможности проведения КТЦ (Контрольно-тренировочный цикл), говоря проще: для восстановления емкости аккумуляторов потрепанных неправильными китайскими зарядниками с формулой последовательного заряда 2-х или 4-х акб. Как известно, такой способ заряда укорачивает жизнь аккумуляторам, если вовремя их не реставрировать.

Технические характеристики зарядного устройства:

  • Количество независимых каналов заряда: 4
  • Количество независимых каналов разряда: 4
  • Ток заряда: 250 (мА)
  • Ток разряда 140 (мА)
  • Напряжение отключения разряда 1 (В)
  • Индикация: светодиодная

Собиралось зарядное не на выставку, а что называется из подручных средств, то есть утилизировалось окружающее добро, которое и выкинуть жалко и хранить особо не зачем.

Из чего можно самому сделать зарядку для «АА» и «ААА» аккумуляторов:

  • Корпус от CD-Rom
  • Силовой трансформатор от магнитолы (перемотанный)
  • Полевые транзисторы с материнских плат и плат HDD
  • Прочие компоненты или покупались или выкусывались:)

Как уже отмечалось, зарядка состоит из нескольких узлов, которые могут жить абсолютно автономно друг от друга. То есть, одновременно можно работать с 8 аккумуляторами: от 1 до 4 заряжать + от 1 до 4 разряжать. На фото видно, что кассеты для аккумуляторов, установлены под форм-фактор «АА» в простонародье «пальчиковых аккумуляторов», если необходимо работать с «мини-пальчиковыми акб» «ААА» достаточно подложить под минусовую клему гайку небольшого калибра. При желании можно продублировать держателями под размер «ааа». Наличие акб в держателе индицируется светодиодом (отслеживается прохождение тока).

Блок заряда

Заряд осуществляется стабилизированным током , у каждого канала свой стабилизатор тока. Для того, что бы ток заряда был неизменным при подключении как 1 так и 2,3,4 аккумуляторов, перед стабилизаторами тока установлен параметрический стабилизатор напряжения. Естественно, кпд этого стабилизатора не на высоте и потребуется установить все транзисторы на теплоотвод. Заранее планируйте вентиляцию корпуса и размеры радиатора, учитывая то что в закрытом корпусе температура на радиаторе будет выше чем в разобранном состоянии. Можно модернизировать схему, введя возможность выбора тока заряда. Для этого схему необходимо дополнить одним переключателем и одним резистором на каждый канал, который будет увеличивать ток базы транзистора и соответственно повышать ток заряда проходящий через транзистор в аккумулятор. В моем случае блок заряда собран навесным монтажом.

Блок разряда акб


Блок разряда более сложен и требует точности в подборе компонентов. В основе лежит компаратор типа lm393, lm339 или lp239 функцией которого является подача сигнала «логической единицы», либо «ноля» на затвор полевого транзистора. При открытии полевого транзистора он подключает к аккумулятору нагрузку в виде резистора значение которого определяет ток разряда. При снижении напряжения на аккумуляторе до установленного порога отключения 1 (Вольт). Компаратор захлопывается и устанавливает на своем выходе логический ноль. Транзистор выходит из насыщения и отключает нагрузку от аккумулятора. Компаратор имеет гистерезис, который обуславливает повторное подключение нагрузки не при напряжении 1,01 (В) а при 1,1-1,15 (В). Смоделировать действие компаратора вы сможете скачав . Подобрав значения резисторов вы сможете перестроить устройство на нужное вам напряжение. Например: подняв порог отключения до 3 Вольт можно сделать разрядное для li-on и Li-Po аккумуляторов.
Вы можете она проектировалась для применения компаратора lm393 в DIP-корпусе. Питание компараторов должно осуществляться от стабилизированного источника напряжением 5 вольт, его роль выполняет TL-431 усиленный транзистором.

Всё ещё много электронных устройств имеют батареечное питание от стандартных пальчиковых или мини пальчиковых аккумуляторных батареек АА и ААА. Особенно это касается прожорливых китайских игрушек с моторчиками и лампочками. Для заряда таких 1,4-вольтовых элементов питания можно купить готовое промышленное ЗУ, которое вешается на розетку. Но если вы хотите немного сэкономить, а также исключить опастность поражения током (если зарядным пользуется ребёнок), рекомендуем собрать вот такое несложное зарядное устройство своими руками. Оно не зависит от наличия сети 220В и способно взять энергию от любого подходящего USB девайса — ноутбука, планшета и т.д. То есть заряжать батарейки можно и от автомобиля (при наличии специального юсб-адаптера в прикуриватель). Любой порт USB может выдавать 5V с током до 500 мА. Это делает порт USB для различных компактных устройств, в том числе для этого зарядного устройства.

Рисунок печатной платы ЗУ

Итак, зарядное устройство предназначено для зарядки двух АА NiMH или NiCd ячеек аккумуляторов любой ёмкости при токе около 470 мА. Таким образом оно будет заряжать 700mAh NiCd около 1,5 часов, 1500mAh NiMH около 3,5 часов, и 2500mAh NiMH в около 5,5 часов. Здесь режим не 0,1С, поэтому заряд ускоренный.

Схема зарядного устройства включает в себя блок автоматического отсечения напряжения в зависимости от температуры батареек, поэтому их можно оставить в зарядном устройстве на неопределенный срок, в том числе после отключения.

Основа зарядного устройства — Z1A, одна половина двойного компаратора напряжения LM393 . Выход (контакт 1) может быть в одном из двух состояний, плавающем или низком. Во время зарядки, выход управляет транзистором через R5. Элемент Z1B является другим компаратором той-же микросхемы LM393 , и выполняет ту-же сравнительную функцию, как и Z1A. Только он управляет светодиодным индикатором, означающим, что зарядка продолжается. Резистор R6 ограничивает ток светодиода до 10 мА. Термистор TR1 должен иметь контакт с корпусом АКБ. При сильном перегреве — он даст сигнал на прекращение процесса заряда. Транзистор TIP31 — маломощный составной.

В USB кабеле контакты [+5 VSB] и находятся по краям разъема. Обычно от контакта [+5 VSB] идет красный провод, а от — черный. Но перед подключением к схеме обязательно надо промерять полярность мультиметром.

Устройство собрано на небольшой печатной плате, файл которой находится . Пока зарядил два аккумулятора с проверкой тестером до 3-х вольт с 2,5В за 2 часа. Дальнейшая работа с устройством никаких проблем не выявила. Сборка и испытание схемы зарядного — Igoran .

Обсудить статью ЗАРЯДНОЕ УСТРОЙСТВО ДЛЯ БАТАРЕЕК

На сегодняшний момент, достаточно много различных устройств, работающих на батарейках. И тем досаднее, когда в самый неподходящий момент наше устройство перестает работать, потому что батарейки попросту сели, а их заряда недостаточно для нормального функционирования прибора.

Приобретать каждый раз новые батарейки довольно затратно, а вот попытаться изготовить своими руками самодельное устройство для зарядки пальчиковых аккумуляторов вполне себе стоит.

Многие умельцы отмечают, что предпочтительнее заряжать подобные аккумуляторы (AA или AAA) с помощью постоянного тока, потому что такой режим наиболее выгоден в плане безопасности для самих батареек . Вообще, переданная сила заряда от сети составляет порядка 1,2-1,6 от значения емкости самого аккумулятора. К примеру, никель-кадмиевый аккумулятор, емкость которого будет составлять 1А/ч, будет заряжаться током емкостью 1,6 А/ч. При этом, чем меньше показатель данной мощности, тем лучше для процесса зарядки.

В современном мире существует достаточно много бытовых приборов, оснащенных специальным временным таймером, отсчитывающим определенный промежуток, затем сигнализируя об его окончании. При изготовлении своими руками устройства для зарядки пальчиковых аккумуляторов, можно также применить данную технологию , которая уведомит вас об окончании процесса заряда аккумуляторов.

AAпредставляет собой прибор, генерирующий постоянный ток, заряжая мощностью до 3 А/ч. При изготовлении использовалась самая обычная, даже классическая схема, которую вы видите ниже. Основой, в данном случае, является транзистор VT1.

Напряжение на данном транзисторе обозначено с помощью светодиода красного цвета VD5, выполняющий роль индикатора, при включении прибора в сеть. Резистор R1 задает определенную мощность токов, проходящих через данный светодиод, в результате чего колеблется напряжение в нем. Значение коллекторного тока формируется сопротивлением от R2 до R5, которые включены в VT2 — так называемую «эмиттерную цепь». При этом, меняя значения сопротивления, можно контролировать степень зарядки. R2 постоянно включен в VT1, задавая ток постоянного действия с минимальным значением — 70 мА. Чтобы повысить мощность заряда, необходимо подключать остальные резисторы, т.е. R3,R4 и R5.

Читайте так же: Обозреваем шкафы управления задвижкой

Стоит отметить, что зарядное устройство функционирует только тогда, когда осуществлено подключение аккумуляторов .

После включения прибора в сеть, на резисторе R2 появляется определенное напряжение, передающееся на транзистор VT2. Затем, ток протекает дальше, в результате чего начинает интенсивно гореть светодиод VD7.

Рассказ про самодельное устройство

Зарядка от USB-порта

Можно изготовить зарядное устройство для никель-кадмиевых батарей на основе обычного USB-порта . При этом, заряжаться они будут током емкостью примерно 100 мА. Схема, в таком случае, будет следующей:

На сегодняшний момент, существует достаточно много различных зарядных устройств, продающихся в магазинах, но их стоимость может быть достаточно высокой. Учитывая, что главный смысл различных самоделок — это именно экономия денежных средств, то самостоятельная сборка еще более целесообразна в данном случае.

Данную схему можно доработать, добавив дополнительную цепь для зарядки пары аккумуляторов AA. Вот, что в итоге получилось:

Чтобы было более наглядно, вот те комплектующие, которые использовались в процессе сборки:

Понятно, что без элементарного инструментария нам не обойтись, поэтому перед началом сборки необходимо удостовериться, что у вас в наличии есть все необходимое:

  • паяльник;
  • припой;
  • флюс;
  • тестер;
  • пинцет;
  • различные отвертки и нож.

Читайте так же: Обзор зарядных устройств для пальчиковых аккумуляторов

Интересный материал про изготовление своими руками, рекомендуем к просмотру

Тестер необходим для того, чтобы проверить работоспособность наши радиодетали. Для этого нужно сравнить их сопротивление, после чего сверить с номинальным значением.

Для сборки нам также понадобится корпус и батарейный отсек. Последний можно взять из детского симулятора Тетрис, а корпус может быть изготовлен из обычного пластмассового футляра (6,5см/4,5см/2см).

Крепим отсек для батарей на корпусе, используя шурупы. В качестве основы для схемы прекрасно подойдет плата от приставки Денди, которую нужно выпилить. Удаляем все ненужные компоненты, оставляя только гнездо питания. Следующим шагом будет пайка всех деталей, основываясь на нашей схеме.

Шнур питания для устройства можно взять обычный шнур от компьютерной мыши, обладающий входом USB, а также часть питающего провода со штекером. При пайке нужно строго соблюдать полярность, т.е. припаивать плюс к плюсу и т.д. Подключаем шнур к USB, проверяя напряжение, которое подается на штекер. Тестер должен показывать 5В.

Тренировка NiMH аккумуляторов. Есть ли смысл? / Хабр

Пролог

Началось все с того, что моя фотомыльница наотрез отказалась работать со свежевынутыми из зарядного устройства аккумуляторами — четырьмя NiMH размера АА. Их бы взять, как обычно, да выбросить. Но почему-то в этот раз любопытство возобладало над здравым смыслом (или это может жаба подала голос), и захотелось понять — а нельзя ли из этих батарей выдавить еще хоть чего-нибудь. Фотоаппарат весьма охоч до энергии, но ведь есть и более скромные потребители — мышки беспроводные или клавиатуры, например.

Собственно параметров, интересных потребителю, два — емкость батареи и ее внутреннее сопротивление. Возможных манипуляций тоже немного — разрядить да зарядить. Измеряя в процессе разряда ток и время можно оценить емкость аккумулятора. По разнице напряжения аккумулятора на холостом ходу и под нагрузкой можно оценить внутреннее сопротивление. Повторив цикл разряд-заряд (т. е. выполнив «тренировку») несколько раз, можно понять имеет ли вообще это действо смысл.

Соответственно сформировался такой план — делаем управляемые разрядник и зарядник с возможностью непрерывного измерения параметров процесса, производим над измеренными величинами простые арифметические действия, повторяем процесс нужное число раз. Сравниваем, делаем выводы, выбрасываем наконец аккумуляторы.

Измерительный стенд

Сплошной сборник велосипедов. Состоит из аналоговой части (на схеме ниже) и микроконтроллера. В моем случае интеллектуальной частью был ардуино, хотя это совершенно не принципиально — лишь бы был необходимый набор входов/выходов.

Сделан стенд был из того, что нашлось в радиусе трех метров. Если кому-то захочется повторить, то вовсе не обязательно в точности следовать схеме. Выбор параметров элементов может быть весьма широким, далее я это немного прокомментирую.

Блок разряда представляет собой управляемый стабилизатор тока на ОУ IC1B (LM324N) и полевом транзисторе Q1. Транзистор практически любой, лишь бы хватило допустимых напряжений, токов и рассеиваемой мощности. А они тут все небольшие. Резистор обратной связи и одновременно часть нагрузки (вместе с Q1 и R20) для аккумулятора — R1. Его максимальная величина должна быть такой, чтобы обеспечить требуемый максимальный ток разряда. Если исходить из того, что разряжать аккумулятор можно до 1 В, то для обеспечения тока разряда, например, в 500 мА резистор R1 не должен быть больше 2 Ом. Управляется стабилизатор трехбитным резистивным ЦАП (R12-R17). Тут расчет такой — напряжение на прямом входе ОУ равно напряжению на R1 (которое пропорционально току разряда). Меняем напряжение на прямом входе — меняется ток разряда. Для масштабирования выхода ЦАП к нужному диапазону имеется подстроечный резистор R3. Лучше, чтобы он был многооборотный. Номиналы R12-R17 могут быть любыми (в районе десятков килоом), главное, чтобы выполнялось соотношение их величин 1/2. Особой точности от ЦАП не требуется, поскольку ток разряда (напряжение на R1) в процессе измеряется непосредственно инструментальным усилителем IC1D. Его коэффициент усиления равен K=R11/R10=R9/R8. Выход подается на АЦП микроконтроллера (А1). Изменением номиналов R8-R11 усиление можно подогнать к желаемому. Напряжение на батарее измеряется вторым усилителем IC1C, K=R5/R4=R7/R6. Зачем управление током разряда? Дело тут в основном вот в чем. Если разряжать постоянным большим током, то ввиду большого внутреннего сопротивления у изношенных батарей минимально допустимое напряжение 1 В (а другого ориентира для прекращения разряда нет) будет достигнуто раньше, чем аккумулятор на самом деле разрядится. Если разряжать постоянным малым током, то процесс растянется слишком надолго. Поэтому разряд ведется ступенчато. Восьми ступеней мне показалось достаточно. Если охота больше/меньше, то можно изменить разрядность ЦАП. Кроме того, включая-выключая нагрузку, можно прикинуть внутреннее сопротивление аккумулятора. Думаю, что дальнейших пояснений алгоритм работы контроллера при разряде не требует. По окончании процесса Q1 оказывается заперт, батарея полностью отключается от нагрузки, а контроллер включает блок заряда.

Блок заряда. Тоже стабилизатор тока, только неуправляемый, зато отключаемый. Ток задается источником опорного напряжения на IC2 (2.5 В, точность 1% согласно даташиту) и резистором R21. В моем случае ток заряда был классическим — 1/10 от номинальной емкости аккумулятора. Резистор обратной связи — R20. Источник опорного напряжения можно использовать любой другой — на ваш вкус и наличие деталей. Транзистор Q2 работает в более жестком режиме, чем Q1. Ввиду заметной разницы между напряжением Vcc и напряжением батареи на нем рассеивается заметная мощность. Это плата за простоту схемы. Но радиатор спасает положение. Транзистор Q3 служит для принудительного запирания Q2, т. е. для отключения блока заряда. Управляется сигналом 12 микроконтроллера. Еще один источник опорного напряжения (IC3) нужен для работы АЦП контроллера. От его параметров зависит точность измерений нашего стенда. Светодиод LED1 — для индикации состояния процесса. В моем случае он не горит в процессе разряда, горит при заряде и мигает, когда цикл закончен.
Напряжение питания выбирается таким, чтобы обеспечить открытие транзисторов и работу их в нужных диапазонах. В данном случае у обоих транзисторов напряжение отпирания затвора довольно велико — порядка 2-4 В. Кроме того, Q2 «подперт» напряжением батареи и R20, поэтому отпирающее напряжение на затворе стартует примерно от 3,5-5,5 В. В свою очередь LM323 не может поднять напряжение на выходе выше Vcc минус 1,5 В. Поэтому Vcc должно быть достаточно велико и в моем случае равно 9 В.

Алгоритм управления зарядом ориентировался на классический вариант контроля момента начала падения напряжения на батарее. Однако на деле оказалось все не совсем так, но об этом позже.
Все измеряемые величины в процессе «исследований» писались в файл, потом производились расчеты и строились графики.

Думаю, что с измерительным стендом все ясно, поэтому перейдем к результатам.

Результаты измерений

Итак, имеем заряженные (но неработающие) батареи, которые разряжаем и измеряем запасенную емкость, а заодно и внутреннее сопротивление. Выглядит это примерно так.

Графики в осях время, часы (X) и мощность, Вт (Y) для лучшей и худшей из батарей. Видно, что запасенная энергия (площадь под графиками) существенно разная. В числовом выражении измеренная емкость аккумуляторов составила 1196, 739, 1237 и 1007 мА*ч. Не густо, учитывая, что номинальная емкость (которая указана на корпусе) — 2700 мА*ч. И разброс весьма велик. А что же внутреннее сопротивление? Оно составило 0.39, 0.43, 0.32 и 0.64 Ом соответственно. Ужасно. Понятно почему мыльница отказывалась работать — батареи просто не в состоянии отдать большой ток. Ну что ж, приступим к тренировке.

Цикл первый. Опять отдаваемые мощности лучшей и худшей батареи.

Прогресс виден невооруженным глазом! Числа это подтверждают: 1715, 1444, 1762 и 1634 мА*ч. Внутреннему сопротивлению тоже похорошело, но очень неравномерно — 0.23, 0.40, 0.1, 0.43 Ом. Казалось бы есть шанс. Но увы — дальнейшие циклы разряда/заряда ничего не дали. Значения емкости, как и внутреннего сопротивления, изменялись от цикла к циклу в пределах около 10%. Что лежит где-то недалеко от пределов точности измерений. Т.е. длительная тренировка, во всяком случае для моих аккумуляторов, ничего на дала. Но зато стало ясно, что батареи сохранили больше половины емкости и вполне еще поработают на малом токе. Хоть какая-то экономия в хозяйстве.

Теперь хочу немножко остановиться на процессе заряда. Возможно мои наблюдения будут полезны кому-то, кто соберется конструировать интеллектуальное зарядное устройство.
Вот типичный график заряда (слева шкала напряжения на аккумуляторе в вольтах).

После начала заряда наблюдается провал напряжения. В разных циклах он может быть больше или меньше по глубине, немного разной длительности, иногда отсутствует. Далее в течение примерно 10 часов идет равномерный рост и затем выход почти на горизонтальное плато. Теория гласит, что при малом токе заряда не наблюдается падение напряжения в конце заряда. Я набрался терпения и все-таки дождался этого падения. Оно мало (на графике на глаз почти и не заметно), ждать его нужно очень долго, но оно всегда есть. После десяти часов заряда и до спада напряжение на батарее хоть и растет, но крайне незначительно. На итоговом заряде это почти не сказывается, каких-то неприятных явлений типа нагрева батареи не наблюдается. Таким образом при конструировании слаботочных зарядных устройств снабжать их интеллектом никакого смысла нет. Достаточно таймера на 10-12 часов, причем никакой особой точности при этом не требуется.

Однако такая идиллия была нарушена одним из элементов. Примерно через 5-6 часов заряда возникали весьма заметные колебания напряжения.

Сначала я было списал это на конструктивный недостаток моего стенда. На фото видно, что собрано все было навесным монтажом, а контроллер подключен довольно длинными проводами. Однако повторные эксперименты показали, что такая ерунда стабильно возникает с одним и тем же аккумулятором и никогда не возникает с другими. К своему стыду причину такого поведения я не нашел. Тем не менее (и на графике это хорошо видно) среднее значение напряжение растет так, как надо.

Эпилог

В итоге имеем четыре аккумулятора, которым точными научными методами найдена экологическая ниша. Имеем разочарование в возможностях процесса тренировки. И имеем один необъясненный эффект, возникающий при заряде.
На очереди батарейка побольше — автомобильный аккумулятор. Но там нагрузочные резисторы на пару порядков мощнее надо. Где-то едут по просторам Евразии.

На этом все. Спасибо за внимание.

Самодельные зарядные устройства для аккумуляторов серии аа. Зарядное устройство АА

Питание от батареек есть у многих электронных устройств. Особенно любят ими укомплектовывать игрушки с моторами и лампочками производители в Китае. Заряжаются такие устройства с помощью с помощью пальчиковых батареек классов АА и ААА. Чтобы зарядить такие элементы питания обычно используют розетку, вставляя туда готовые промышленные зарядки.

Можно сделать процесс зарядки батареек более экономичным и безопасным. Для этого понадобится изготовить зарядное устройство самостоятельно. Дополнительными преимуществами его станут: не зависимость от наличии сети в 220 В и возможность питания от любой техники, имеющей usb-вход. В качестве источника энергии подойдут ноутбук, планшет и даже автомобиль (при наличии адаптера на прикуриватель). Подойду любые usb-порты, способные выдавать 5V при силе тока до 500 мА.

Для изготовления простого разрядного устройства потребуется электрическая схема, представленная на рисунке:

На базе этой схемы создается печатная плата зарядного устройства:

Проектируемое зарядное устройство будет способно питать две батарейки АА с NiCd или NiMH ячейками. Получать энергию от него смогут аккумуляторы любой емкости при силе тока в районе 470 мА. С помощью ускоренного режима заряда батарейки 700 mAh будут готовы к полноценной работе через 1,5 часа, 1500 mAh – через 3,5, а самые мощные 2500 mAh – через 5,5.

Если температура батареек существенно увеличится, то зарядное устройство автоматически отсечет напряжение с помощью специального блока. Можно не опасаться оставлять его без присмотра на долгое время.

В качестве основы для зарядного устройства взят элемент Z1А, половина двойного компаратора напряжения LM393. «Контакт 1» является выходом и имеет два состояния: плавающее и низкое. Этот выход во время питания батареи через R5 управляет транзистором. Элемент Z1В на схеме отвечает за светодиодный индикатор, сигнализирующий о зарядке батареек. С помощью резистора R6 ток светодиода ограничен до 10 мА. АКБ имеет прямой контакт с термистором TR1, который дает сигнал к прекращению заряда при сильном перегреве. TIP31 представляет собой маломощный составной транзистор.

По краям разъема usb-кабеля выведены контакты +5VSB (красный провод) и GND (черный провод). Но специалисты рекомендуют перед подключением к схеме в обязательном порядке измерять мультиметром полярность.

Зарядное устройство собрано на компактной печатной плате, схему которой можно найти в архиве:

В тестовом режиме зарядное устройство отлично справляется со своими функциями. Два аккумулятора вполне возможно зарядить за пару часов. Дальнейшая бесперебойная работа показывает его надежность.

USB-зарядник для Ni-Mh аккумуляторов своими руками Зарядное устройство для литиевых аккумуляторов своими руками Как сделать простой Повер Банк своими руками: схема самодельного power bank

Разбор больше 11 схем для изготовления ЗУ своими руками в домашних условиях, новые схемы 2017 и 2018 года, как собрать принципиальную схему за час.

ТЕСТ:

Чтобы понять, обладаете ли вы необходимой информацией об аккумуляторах и зарядных устройствах для них, следует пройти небольшой тест:
  1. По каким основным причинам происходит разрядка автомобильного аккумулятора на дороге?

А) Автомобилист вышел из транспорта и забыл выключить фары.

Б) Аккумуляторная батарея слишком нагрелась под воздействием солнечных лучей.

  1. Может ли аккумулятор выйти из строя, если автомобилем не пользуются долгое время (стоит в гараже без запуска)?

А) При долгом простое аккумуляторная батарея выйдет из строя.

Б) Нет, батарея не испортится, ее потребуется только зарядить и она снова будет функционировать.

  1. Какой источник тока используется для подзарядки АКБ?

А) Есть только один вариант — сеть с напряжением в 220 вольт.

Б) Сеть на 180 Вольт.

  1. Обязательно снимать аккумуляторную батарею при подключении самодельного устройства?

А) Желательно производить демонтаж батареи с установленного места, иначе возникнет риск повредить электронику поступлением большого напряжения.

Б) Необязательно снимать АКБ с установленного места.

  1. Если перепутать «минус» и «плюс» при подключении ЗУ, то аккумуляторная батарея выйдет из строя?

А) Да, при неправильном подключении, аппаратура сгорит.

Б) Зарядное устройство просто не включится, потребуется переместить на положенные места необходимые контакты.

Ответы:

  1. А) Не выключенные фары при остановке и минусовая температура – наиболее распространенные причины разряда АКБ на дороге.
  2. А) АКБ выходит из строя, если долго не подзаряжать ее при простое автомобиля.
  3. А) Для подзарядки применяется напряжение сети в 220 В.
  4. А) Не желательно производить зарядку батареи самодельным устройством, если она не снята с автомобиля.
  5. А) Не следует путать клеммы, иначе самодельный аппарат перегорит.

Аккумулятор на автотранспорте требуют периодической зарядки. Причины разряжения могут быть разные — начиная от фар, что хозяин забыл выключить, и до отрицательных температур в зимний период на улице. Для подпитки АКБ потребуется хорошее зарядное устройство. Такое приспособление в больших разновидностях представлено в магазинах автозапчастей. Но если нет возможности или желания покупки, то ЗУ можно сделать своими руками в домашних условиях. Имеется также большое количество схем — их желательно все изучить, чтобы выбрать наиболее подходящий вариант.

Определение: Зарядное устройство для автомобиля предназначается для передачи электрического тока с заданным напряжением напрямую в АКБ.

Ответы на 5 часто задаваемых вопросов

  1. Потребуется ли производить какие-то дополнительные меры, перед тем как приступать к зарядке аккумуляторной батареи на своём автомобиле? – Да, потребуется почистить клеммы, поскольку во время работы на них появляются кислотные отложения. Контакты очень хорошо нужно почистить, чтобы ток без трудностей поступал к батарее. Иногда автомобилисты используют смазку для обработки клемм, ее тоже следует убрать.
  2. Чем протереть клеммы зарядных устройств? — Специализированное средство можно купить в магазине или приготовить самостоятельно. В качестве самостоятельно изготовленного раствора используют воду и соду. Компоненты смешиваются и перемешиваются. Это отличный вариант для обработки всех поверхностей. Когда кислота соприкоснется с содой, то произойдет реакция и автомобилист обязательно ее заметит. Это место и потребуется тщательно протереть, чтобы избавиться от всей кислоты. Если клеммы ранее обрабатывались смазкой, то она убирается любой чистой тряпкой.
  3. Если на аккумуляторе стоят крышки, то их нужно вскрывать перед началом зарядки? — Если крышки имеются на корпусе, то их обязательно снимают.
  4. По какой причине необходимо откручивать крышечки с аккумуляторной батареи? — Это нужно, чтобы газы, образующиеся в процессе зарядки, беспрепятственно выходили из корпуса.
  5. Есть необходимость обращать внимание на уровень электролита в аккумуляторной батарее? – Это делается в обязательном порядке. Если уровень ниже требуемого, то необходимо добавить дистиллированную воду внутрь аккумулятора. Уровень определить не составит труда – пластины должны быть полностью покрыты жидкостью.

Ещё важно знать: 3 нюанса об эксплуатации

Самоделка по способу эксплуатации несколько отличается от заводского варианта. Это объясняется тем, что у покупного агрегата имеются встроенные функции, помогающие в работе. Их сложно установить на аппарате, собранном дома, а потому придется придерживаться нескольких правил при эксплуатации.

  1. Зарядное устройство, собранное своими руками не будет отключаться при полной зарядке аккумулятора. Именно поэтому необходимо периодически следить за оборудованием и подключать к нему мультиметр – для контроля заряда.
  2. Нужно быть очень аккуратным, не путать «плюс» и «минус», иначе зарядное устройство сгорит.
  3. Оборудование должна быть выключено, когда происходит соединение с зарядным устройством.

Выполняя эти простые правила, получится правильно произвести подпитку АКБ и не допустить неприятных последствий.

Топ-3 производителей зарядных устройств

Если нет желания или возможности своими руками собрать ЗУ, то обратите внимание на следующих производителей:

  1. Стек.
  2. Сонар.
  3. Hyundai.

Как избежать 2-х ошибок при зарядке аккумуляторной батареи

Необходимо соблюдать основные правила, чтобы правильно подпитать батарею на автомобиле.

  1. Напрямую к электросети аккумуляторную батарею запрещено подключать. Для этой цели и предназначается зарядные устройства.
  2. Даже если устройство изготавливается качественно и из хороших материалов, всё равно потребуется периодически наблюдать за процессом зарядки, чтобы не произошли неприятности.

Выполнение простых правил обеспечит надежную работу самостоятельно сделанного оборудования. Гораздо проще следить за агрегатом, чем после тратиться на составляющие для ремонта.

Самое простое зарядное устройство для АКБ

Схема 100% рабочего ЗУ на 12 вольт


Посмотрите на картинке на схему ЗУ на 12 В. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Максимальный ток, получаемый при заряде составляет 6 А. Но аппарат также подходит и для других аккумуляторов – литий-ионных, поскольку напряжение и выходной ток можно отрегулировать. Все основные компоненты для сборки устройства можно найти на сайте Aliexpress.

Необходимые компоненты:

  1. dc-dc понижающий преобразователь.
  2. Амперметр.
  3. Диодный мост КВРС 5010.
  4. Концентраторы 2200 мкФ на 50 вольт.
  5. трансформатор ТС 180-2.
  6. Предохранители.
  7. Вилка для подключения к сети.
  8. «Крокодилы» для подключения клемм.
  9. Радиатор для диодного моста.

Трансформатор используется любой, по собственному усмотрению Главное, чтобы его мощность была не ниже 150 Вт (при зарядном токе в 6 А). Необходимо установить на оборудование толстые и короткие провода. Диодный мост фиксируется на большом радиаторе.

Посмотрите на картинке на схему зарядного устройства Рассвет 2 . Она составлена по оригинальному ЗУ. Если освоить эту схему, то самостоятельно получится создать качественную копию, ничем не отличающуюся от оригинального образца. Конструктивно устройство представляет собой отдельный блок, закрывающийся корпусом, чтобы защитить электронику от влаги и воздействия плохих погодных условий. На основание корпуса необходимо подсоединить трансформатор и тиристоры на радиаторах. Потребуется плата, что будет стабилизировать заряд тока и управлять тиристорами и клеммы.

1 схема умного ЗУ


Посмотрите на картинке принципиальную схему умного зарядного устройства . Приспособление необходимо для подключения к свинцово-кислотным аккумуляторам, имеющим емкость — 45 ампер в час или больше. Подключают такой вид аппарата не только к аккумуляторам, что ежедневно используются, но также к дежурным или находящимся в резерве. Это довольно бюджетная версия оборудования. В ней не предусмотрен индикатор, а микроконтроллер можно купить самый дешевый.

Если имеется необходимый опыт, то трансформатор собирается своими руками. Нет необходимости устанавливать также и звуковые сигналы оповещения — если аккумулятор подключится неправильно, то загоревшаяся лампочка разряда будет уведомлять об ошибке. На оборудование необходимо поставить импульсный блок питания на 12 вольт — 10 ампер.

1 схема промышленного ЗУ



Посмотрите на схему промышленного зарядного устройства от оборудования Барс 8А. Трансформаторы используются с одной силовой обмоткой на 16 Вольт, добавляется несколько диодов vd-7 и vd-8. Это необходимо для того, чтобы обеспечить мостовую схему выпрямителя от одной обмотки.

1 схема инверторного устройства


Посмотрите на картинке схему инверторного зарядного устройства. Это приспособление перед началом зарядки разряжает аккумуляторную батарею до 10,5 Вольт. Ток используется с величиной С/20: «C» обозначает ёмкость установленного аккумулятора. После этого процесса напряжение повышается до 14,5 Вольт, при помощи разрядно-зарядного цикла. Соотношение величины заряда и разряда составляет десять к одному.

1 электросхема ЗУ электроника


1 схема мощного ЗУ



Посмотрите на картинке на схему мощного зарядного устройства для автомобильного аккумулятора. Приспособление применяется для кислотных АКБ, имеющих высокую емкость. Устройство с легкостью заряжает автомобильный аккумулятор, имеющий емкость в 120 А. Выходное напряжение устройство регулируется самостоятельно. Оно составляет от 0 до 24 вольт. Схема примечательна тем, что в ней установлено мало компонентов, но дополнительные настройки при работе она не требует.


Многие уже могли видеть советское зарядное устройство . Оно похоже на небольшую коробку из металла, и может показаться совсем ненадежной. Но это вовсе не так. Главное отличие советского образца от современных моделей — надежность. Оборудование обладает конструктивной мощностью. В том случае, если к старому устройству подсоединить электронный контроллер, то зарядник получится оживить. Но если под рукой такого уже нет, но есть желание его собрать, необходимо изучить схему.

К особенностям их оборудования относят мощный трансформатор и выпрямитель, с помощью которых получается быстро зарядить даже сильно разряженную батарею. Многие современные аппараты не смогут повторить этот эффект.

Электрон 3М


За час: 2 принципиальные схемы зарядки своими руками

Простые схемы

1 самая простая схема на автоматическое ЗУ для авто АКБ



Несложное компактное зарядное устройство для NiMH и NiCd аккумуляторов с дополнительными полезными функциями, такими как автоматическое отключение и контроль температуры.


USB порт есть почти во всех современных компьютерах и ноутбуках. Сила тока отдаваемым USB 2.0 может быть более 500 миллиампер, при напряжении 5 Вольт, то есть минимум 2,5 Ватт, а USB третьего поколения еще больше. Использование такого источника энергии очень удобно, так как многие зарядки для смартфонов/планшетов также идут с разъёмом юсб, да и компьютер часто находиться под рукой. Сегодня мы сделаем зарядку для пальчиковых (AA) и мизинчиков (AAA) NiMH/NiCd аккумуляторных батарей от USB порта. Промышленные ЗУ для аккумуляторов от USB можно пересчитать по пальцам и обычно они заряжают маленьких током, что значительно увеличивает время подзарядки. К тому же собрав простенькую схемку мы получаем прекрасное зарядное устройство со световой индикацией и температурных датчиком стоимость которого весьма мала 1-2$.


Наше зарядное устройство подзаряжает сразу два NiCd/NiMH аккумулятора током более 470 mA, что делает зарядку очень быстрой. Перезаряжаемые батареи могут нагреваться, что несомненно негативно будет влиять на них, уменьшится ёмкость, пиковая отдаваемая сила тока, время нормальной эксплуатации. Чтобы такого не было в схеме реализовано автоматические прекращение подачи энергии, как только температура аккумуляторов будет 33 и более градусов по Цельсию. За эту полезную функцию отвечает NTC термистор с сопротивлением 10 кОм, при нагреве его сопротивление уменьшается. Он вместе с постоянным резистором R4 образует делитель напряжения. Термистор обязательно должен быть в тесном контакте с аккумуляторами, чтобы хорошо воспринимать изменение температуры.


Главной деталью схемы является сдвоенный компаратор-микросхема LM393.

Аналоги, которыми можно заменить LM393: 1040СА1, 1401CA3, AN1393, AN6916.


При заряде транзистор греется, его нужно обязательно ставить на радиатор. Вместо TIP32 возможно взять почти любой PNP структуры со схожей мощностью, я использовал КТ838А. Полным отечественным аналогом является транзистор КТ816, он имеет иную цоколевку и корпус.

USB кабель можно отрезать от старой мышки/клавиатуры или купить. А возможно вообще штекер юсб припаять прямо на плату.

Если при подаче питания светодиод горит, но схема ничего не заряжает то нужно увеличить сопротивление токоограничительного резистора R6. Для проверки нормальной работы схемы между землей и третьим выводом микросхемы (Vref) должно быть около 2,37 Вольт, а на втором контакте (Vtmp) LM393 1,6-1,85 Вольт.

Заряжать желательно два одинаковых аккумулятора, чтобы их ёмкость была примерно равна. А то получиться так, что один уже зарядился полностью, а второй только на половину.

Зарядный ток можно самостоятельно выставить, изменяя сопротивление резистора R1. Формула расчета: R1 = 1,6 * нужный ток.

К примеру, я хочу, чтобы мои аккумуляторы заряжались током 200 mA, подставляем:

R1 = 1,6 * 200 = 320 Ом


Это значит, что, установив переменный/подстрочный резистор мы можем добавить такую необычную функцию для зарядных устройств как самостоятельный выбор зарядного тока. Если, к примеру, аккумулятор нуждается в заряде током не более 0,1C то выкрутив резистор мы с легкостью выставим нужно нам значение. Это очень актуально для вот таких миниатюрных промышленных аккумуляторов, у которых ёмкость крайне мала и обусловлена их размерами.


При нагреве аккумуляторов зарядка будет отключаться. Это может увеличить время заряда, поэтому рекомендую ставить охлаждение в виде небольшого вентилятора.


Если у вас NiCd аккумуляторы, то их перед зарядкой нужно разрядить до 1 Вольта, то есть чтобы было использовано 99% ёмкости. Иначе будет чувствоваться негативный эффект памяти.

Когда банки будут полностью заряжены зарядный ток упадет примерно до 10 мА. Этот ток предотвратит естественный саморазряд никель-металлогидридных/камдиевых аккумуляторов. У первых наблюдается 100% разряд за год, а у второго типа примерно 10%.


Печатная плата для зарядного устройства существует в нескольких версиях, в одной из них USB гнездо удобно расположено прям на плате, то бишь возможно эксплуатировать USB шнур типа папа-папа.


Скачать платы в формате.lay можно тут

Если в используете различные устройства в которых все еще используются пальчиковые батарейки, то их приходится часто менять, например в металл детекторе или GPS-Глонас туристическом навигаторе eTrex. Но есть решение этой проблемы замена обычных батареек на никелевые батареи стандарта АА. Вот тут и понадобится вам зарядка аккумуляторов АА

Для наших целей нам подойдет почти любой блок питания рассчитанный на напряжение 5-20 вольт. Возьмем за прототип радиолюбительской разработки схему простейшего из них.

Схема состоит из следующих радиокомпонентов: сопротивления R1, двух светодиодов и штепсельного гнезда. Светодиоды рекомендуется использовать разных цветов. Параллельно одному из них припаиваем выводы для параллельного подключения аккумулятора. Свечение светодиода в соответствии с законом Ома зависит от степени разряда, при полном разряде светодиод гореть не будет). В процессе зарядки свечение светодиода увеличивается. Одинаковое свечение обоих светодиодов говорит о окончании процесса заряда. Номинал сопротивления R1 подбираем в соответствии с рабочим током . Например рабочему току светодиода, который равен 20 мА, и напряжению блока питания

U бп. R 1 = U бп /I 1 = U бп /0,02 = 50U бп

Значение номинала резистора округляем в большую сторону. Так как сопротивление R1 работает длительное время, то его мощность должна быть 1 Вт. Параметры нашего ЗУ: Uбп = 25 В; R1 = 1,3 кОм. Время зарядки 8 — 24 ч.

Эти конструкции позваляют заряжать портативных Ni-Mn и Ni-Cd аккумуляторы с рабочим напряжением 1,2-1,4 В от USB-порта. С помощью первой схемы можно заряжать один аккумулятор током на 100 мА, вторая схема позволяет заряжать уже две батареи стандарта AA или AAA

Батарейный отсек был позаимствован из старой детской игрушки. О его переделке расскажу чуть подробней. Дело в том, что обычно плюсы и минусы клемм питания установлены противоположно. Но нам надо, что бы в верхней части были две изолирование плюсовые клеммы, а внизу одна общая минусовая. Для этого я нижнюю перенёс наверх, а общую минусовую вырезал из пивной банки, припаяв пружинки. Для пайки использовал паяльную кислоту, по окончанию пайки поверхность обязательно хорошо промыть в проточной воде.

Так как различные пальчиковые аккумуляторы обладают разной емкостью, необходимо разное время для зарядки этих батарей. Аккумуляторы емкостью 1400 мА/ч потребуется заряжать около 14 часов, а для батарей 700 мА/ч потребуется около 7 часов.

Зарядное устройство для батареек – это необходимость, если вы сторонник экономического и рационального подхода к энергетике. Общеизвестно, что одна выкинутая батарейка загрязняет достаточно большую площадь плодородных грунтов, а для ее утилизации используются значительные производственные мощи. Универсальное зарядное устройство для батареек, например, Robiton (Робитон) или Сamelion с индикацией сможет сохранить ваши средства и помочь окружающей среде.

Согласитесь, в современном мире элементы питания играют огромную роль. Их можно найти в любом бытовом приборе, начиная от настенных часов и фотоаппаратов и заканчивая детскими игрушками. Разберемся подробнее, сколько заряжать по времени батарейку и можно ли зарядить обычные, дешевые элементы питания.

Существуют самоделки и профессиональные интеллектуальные зарядные устройства. Последние подходят для всех типов аккумуляторов батарейного типа. Ну а самодельные приборы характеризуются в зависимости от заложенной комплектации.

Заряжаются в фабричных изделиях (Robiton, Сamelion) батарейки типа АА, ААА, С, Д и Крона. Вы можете полностью восполнить емкость разряженного элемента питания, либо же периодически подзаряжать его.

Приборы можно условно разделить на два типа:

  1. Простые. Обладают только функцией зарядки, причем вы не знаете, сколько по времени займет восполнение емкости. По стоимости они гораздо дешевле. Если у вас не так много аккумуляторов и заряжаете вы их редко, такие устройства для вас вполне приемлемы.
  2. Многофункциональные. Многие приборы обладают индикатором, который показывает степень заполненности батареи, уровень заряда. Мощность можно регулировать, а различные конфигурации позволяют использовать их и для дисковых батареек, и для пальчиковых.

Зарядное устройство для всех видов элементов питания получило широкое распространение. Существуют даже модели на солнечных батареях. Приобрести самодельные дешевые устройства можно на рынке или с рук мастеров. Но, в любом случае, стоит отдавать предпочтения профессиональным приборам, ведь только так вам предоставляют гарантию.

Какие батарейки можно заряжать

Без зарядного устройства не было бы вопроса, какие батарейки можно заряжать. Постараемся на него ответить.

Универсальное зарядное устройство, работающее на солнечных батареях или же от сети, может восполнять напряжение в аккумуляторах различного типа. Можно в осполнить емкость солевых, , серебряных элементов питания.

Внимательно выбирать стоит не только зарядный элемент, но и батарейки. Как правило, самые дешевые солевые или щелочные элементы питания не подлежат перезарядке. Прибор может привести к перегреву и взрыву батареи.

Хорошие аккумуляторы стоят дороже, но они выдерживают много циклов перезарядки, не теряя своей мощности.

Можно выбрать батарейку, которая будет заряжаться, исходя из маркировки на ней:

  • Не ждите больших показателей напряжения. У обычных элементов питания он составляет 1,6 В, а у перезаряжаемых показатель ниже .
  • Если производитель указал емкость аккумулятора в миллиамперах , то его можно подзаряжать.
  • Надпись на английском «rechargeable» , обозначает, что вы покупаете перезаряжающийся элемент.

Также стоит обращать внимание на материалы, из которых изготовлена батарея, скорость ее саморазряда и максимально выдаваемого напряжения.

Рейтинг зарядных устройств

Прежде чем выбрать лучшее устройство, нужно определить, какими критериями необходимо руководствоваться при покупке.

Потребитель должен обратить внимание на следующие показатели:

  • Быстрота зарядки.
  • Наличие нескольких слотов для батарей, разнообразие их видов. Ведь нет смысла покупать зарядку для аккумуляторов типа Д и С, если вы пользуетесь АА и ААА.
  • Наличие индикатора заряда . Чтобы не испортить элемент питания и устройство, индикатор подскажет владельцу, что аккумулятор заряжен полностью. Так вы не перегреваете прибор, экономите электроэнергию и создаете вокруг себя пожаробезопасные условия.
  • Возможность определения емкости элемента питания. Со временем из-за частой эксплуатации и многих циклов перезарядки батареи перестают воспринимать поступающий на них электрический ток. А данная функция позволяет понять, исправна батарея или нет.

  1. SKYRC MC3000. Зарядка имеет выход USB 5 В /2,1 А и функцию Bluetooth 4.0. Заряжает батарейки типа АА и ААА. Является дорогой, но качественной.
  2. OPUS BT-C3100. Возможность заряжать самые распространенные типы аккумуляторов (АА, ААА, АААА, С). Имеется автоматический индикатор перегрева и принудительное охлаждение.
  3. LiitoKala lii-500 и Joinrun S4. Присутствует функция измерения емкости элементов питания.
  4. E-SYB E4. Возможность подключения . Присутствует Bluetooth и вход USB.

Более бюджетные зарядки предлагают уже упомянутые фирмы:

  1. Robiton. Широко известные потребителю модели Робитона – Smart S100, Universal 1000 LCD, sd250-4.
  2. Сamelion. Обратите внимание на модели BC-1010, BC-1007, BC-0658-SM-EU. Это одни из лучших универсальных устройств для быстрой и эффективной зарядки аккумуляторов.

Стоимость устройств варьируется от 10 до 100 долларов. На цену влияет сам бренд и, конечно же, функциональность.

Можно ли сделать зарядное устройство для батареек и аккумуляторов своими руками

Зарядное для различных батареек умельцы могут сделать из подручных средств. В ход идут детские игрушки, зарядки от мобильников и стационарных телефонов, платы и много другое. Схемы и видео уроки можно посмотреть в интернете. Для изготовления устройства вам понадобится паяльник, набор отверток, исходные запчасти, вольтметр, небольшой нож (для зачистки проводов).


Самодельное зарядное устройство при грамотном подходе может заменить приборы фирм и Robiton, и Сamelion. Но если вы никогда не сталкивались с техникой и электрооборудованием, то лучше не экспериментировать, а купить готовое фабричное устройство с гарантией качества.

Напряжение батареи | PVEducation

Напряжение батареи — это основная характеристика батареи, которая определяется химическими реакциями в батарее, концентрацией компонентов батареи и поляризацией батареи. Напряжение, рассчитанное из условий равновесия, обычно называют номинальным напряжением батареи. На практике номинальное напряжение аккумулятора не может быть легко измерено, но для практических аккумуляторных систем (в которых перенапряжения и неидеальные эффекты низкие) напряжение холостого хода является хорошим приближением к номинальному напряжению аккумулятора.

Поскольку электрический потенциал (напряжение) от большинства химических реакций составляет порядка 2 В, в то время как напряжение, требуемое нагрузкой, обычно больше, в большинстве батарей многочисленные отдельные аккумуляторные элементы соединены последовательно. Например, в свинцово-кислотных аккумуляторах каждая ячейка имеет напряжение около 2 В. Шесть элементов соединены в типичную свинцово-кислотную батарею на 12 В.

Изменение напряжения при разрядке

Из-за эффектов поляризации напряжение батареи при протекании тока может существенно отличаться от равновесного напряжения или напряжения холостого хода.Ключевой характеристикой аккумуляторной технологии является изменение напряжения аккумулятора в условиях разряда как из-за эффектов равновесной концентрации, так и из-за поляризации. Кривые разряда и зарядки аккумулятора показаны ниже для нескольких различных систем аккумуляторов. Кривые разряда и заряда не обязательно симметричны из-за наличия дополнительных реакций, которые могут иметь место при более высоких напряжениях, встречающихся при зарядке.

Рисунок: Изменение напряжения в зависимости от степени заряда для нескольких различных типов батарей.

Напряжение отключения

Во многих типах аккумуляторов, включая свинцово-кислотные, аккумулятор не может быть разряжен ниже определенного уровня, или это может привести к необратимому повреждению аккумулятора. Это напряжение называется «напряжением отключения» и зависит от типа батареи, ее температуры и скорости разряда батареи.

Измерение уровня заряда на основе напряжения

Хотя снижение напряжения аккумулятора при разряде является отрицательным аспектом аккумуляторов, который снижает их эффективность, одним практическим аспектом такого снижения, если оно приблизительно линейное, является то, что при данной температуре аккумулятор может использоваться для приблизительного определения состояния заряда аккумулятора.В системах, где напряжение батареи не является линейным в некотором диапазоне состояния заряда батареи или в которых есть быстрые изменения напряжения с BSOC, будет труднее определить BSOC и, следовательно, будет труднее заряжать. Однако система аккумуляторов, которая поддерживает более постоянное напряжение со скоростью разряда, будет иметь высокий КПД по напряжению и ее будет легче использовать для управления нагрузками, чувствительными к напряжению.

Влияние температуры на напряжение

Напряжение батареи будет увеличиваться с увеличением температуры системы и может быть рассчитано по уравнению Нернста для равновесного напряжения батареи.

Информация о суперконденсаторах

— Battery University

Узнайте, как суперконденсатор может улучшить аккумулятор.

Суперконденсатор, также известный как ультраконденсатор или двухслойный конденсатор, отличается от обычного конденсатора очень высокой емкостью. Конденсатор накапливает энергию за счет статического заряда, в отличие от электрохимической реакции. Применение разности напряжений на положительной и отрицательной обкладках заряжает конденсатор.Это похоже на накопление электрического заряда при ходьбе по ковру. Прикосновение к объекту высвобождает энергию через палец.

Существует три типа конденсаторов, самый простой из которых — электростатический конденсатор с сухим сепаратором. Этот классический конденсатор имеет очень низкую емкость и в основном используется для настройки радиочастот и фильтрации. Размер варьируется от нескольких пикофарад (пФ) до низких микрофарад (мкФ).

Электролитический конденсатор обеспечивает более высокую емкость, чем электростатический конденсатор, и рассчитан на микрофарады (мкФ), что в миллион раз больше, чем пикофарад.Эти конденсаторы используют влажный сепаратор и используются для фильтрации, буферизации и передачи сигналов. Подобно батарее, электростатическая емкость имеет положительный и отрицательный стороны, которые необходимо учитывать.

Третий тип — это суперконденсатор , измеренный в фарадах, что в тысячи раз выше, чем у электролитического конденсатора. Суперконденсатор используется для накопления энергии, подвергаясь частым циклам зарядки и разрядки при высоком токе и короткой продолжительности.

Фарад — единица измерения емкости, названная в честь английского физика Майкла Фарадея (1791–1867).Один фарад сохраняет один кулон электрического заряда при приложении одного вольта. Один микрофарад в миллион раз меньше фарада, а один пикофарад снова в миллион раз меньше микрофарада.

Инженеры General Electric впервые экспериментировали с ранней версией суперконденсатора в 1957 году, но коммерческих приложений не было. В 1966 году Standard Oil вновь открыла эффект двухслойного конденсатора случайно, работая над экспериментальными конструкциями топливных элементов.Двойной слой значительно улучшил способность накапливать энергию. Компания не стала коммерциализировать изобретение и передала его по лицензии NEC, которая в 1978 году представила технологию как «суперконденсатор» для резервного копирования памяти компьютера. Только в 1990-х годах достижения в области материалов и методов производства привели к повышению производительности и снижению стоимости.

Суперконденсатор эволюционировал и перешел в аккумуляторную технологию с использованием специальных электродов и электролита. В то время как базовый электрохимический двухслойный конденсатор (EDLC) зависит от электростатического воздействия, асимметричный электрохимический двухслойный конденсатор (AEDLC) использует электроды, подобные батареям, для получения более высокой плотности энергии, но это имеет более короткий срок службы и другие проблемы, которые разделяются с аккумулятор.Графеновые электроды обещают усовершенствовать суперконденсаторы и батареи, но до таких разработок еще 15 лет.

Было опробовано несколько типов электродов, и наиболее распространенные в настоящее время системы построены на электрохимическом двухслойном конденсаторе на основе углерода, с органическим электролитом и простом в производстве.

Все конденсаторы имеют ограничения по напряжению. В то время как электростатический конденсатор можно сделать так, чтобы он выдерживал высокое напряжение, суперконденсатор ограничен 2,5–2.7В. Возможны напряжения 2,8 В и выше, но с сокращенным сроком службы. Чтобы получить более высокие напряжения, несколько суперконденсаторов соединены последовательно. Последовательное соединение снижает общую емкость и увеличивает внутреннее сопротивление. Для цепочек из более чем трех конденсаторов требуется балансировка напряжения, чтобы предотвратить перенапряжение любой ячейки. Литий-ионные аккумуляторы имеют аналогичную схему защиты.

Удельная энергия суперконденсатора колеблется от 1 Втч / кг до 30 Втч / кг, что в 10–50 раз меньше, чем у литий-ионных.Кривая нагнетания — еще один недостаток. В то время как электрохимическая батарея обеспечивает стабильное напряжение в используемом диапазоне мощности, напряжение суперконденсатора уменьшается в линейном масштабе, сокращая спектр полезной мощности. (См. BU-501: Основные сведения о разрядке.)

Возьмите источник питания 6 В, который может разрядиться до 4,5 В до отключения оборудования. К тому времени, когда суперконденсатор достигает этого порога напряжения, линейный разряд дает только 44% энергии; остальные 56% зарезервированы.Дополнительный преобразователь постоянного тока в постоянный помогает восстановить энергию, находящуюся в диапазоне низкого напряжения, но это увеличивает затраты и приводит к потерям. Для сравнения, батарея с плоской кривой разряда обеспечивает от 90 до 95 процентов своего запаса энергии до достижения порогового значения напряжения.

На рисунках 1 и 2 показаны вольт-амперные характеристики при заряде и разряде суперконденсатора. При зарядке напряжение линейно увеличивается, а ток по умолчанию падает, когда конденсатор полон, без необходимости в схеме обнаружения полного заряда.Это верно для источника постоянного тока и предельного напряжения, подходящего для номинального напряжения конденсатора; превышение напряжения может повредить конденсатор.

Рисунок 1: Профиль заряда суперконденсатора.
Напряжение линейно увеличивается при зарядке постоянным током. Когда конденсатор заполнен, ток по умолчанию падает.
Источник: PPM Power

Рисунок 2: Разрядный профиль суперконденсатора.
Напряжение линейно падает при разряде. Дополнительный преобразователь постоянного тока в постоянный поддерживает уровень мощности, потребляя более высокий ток при падении напряжения.
Источник: PPM Power


Время заряда суперконденсатора 1–10 секунд. Зарядная характеристика аналогична электрохимической батарее, а зарядный ток в значительной степени ограничен способностью зарядного устройства выдерживать ток. Первоначальная зарядка может быть произведена очень быстро, а дополнительная зарядка займет дополнительное время.Необходимо предусмотреть ограничение пускового тока при зарядке пустого суперконденсатора, так как он будет всасывать все, что может. Суперконденсатор не подлежит перезарядке и не требует обнаружения полного заряда; ток просто перестает течь, когда он наполняется.

В таблице 3 сравнивается суперконденсатор с типичным литий-ионным.

Функция

Суперконденсатор

Литий-ионный (общий)

Время зарядки

Жизненный цикл

Напряжение ячейки

Удельная энергия (Втч / кг)

Удельная мощность (Вт / кг)

Стоимость 1 кВтч

Срок службы (промышленный)

Температура заряда

Температура нагнетания

Саморазряд (30 дней)

Стоимость 1 кВтч

1–10 секунд

1 миллион или 30 000 ч

2.От 3 до 2,75 В

5 (типовая)

До 10 000

$ 10 000 (типовая)

10-15 лет

От –40 до 65 ° C (от –40 до 149 ° F)

От –40 до 65 ° C (от –40 до 149 ° F)

Высокая (5-40%)

100–500 долл. США

10–60 минут

500 и выше

3,6 В номинальное

120–240

1 000–3 000

250–1000 долларов (большая система)

От 5 до 10 лет

От 0 до 45 ° C (от 32 до 113 ° F)

От –20 до 60 ° C (от –4 до 140 ° F)

5% или менее

1000 $ и выше

Таблица 3: Сравнение характеристик классического суперконденсатора и литий-ионного.
Источник: Maxwell Technologies, Inc.

• Удельная энергия суперконденсаторов сверхвысокой плотности с электродами на основе графена имеет значение Втч / кг, аналогичное литий-ионному.


Суперконденсатор можно заряжать и разряжать практически неограниченное количество раз. В отличие от электрохимической батареи, которая имеет определенный срок службы, при циклической работе суперконденсатора происходит небольшой износ. Возраст также благоприятнее для суперконденсатора, чем для батареи. В нормальных условиях суперконденсатор теряет свою первоначальную 100-процентную емкость до 80 процентов за 10 лет.Применение более высокого напряжения, чем указано, сокращает срок службы. Суперконденсатор не боится высоких и низких температур, а батареи не могут удовлетворить его одинаково хорошо.

Саморазряд суперконденсатора существенно выше, чем у электростатического конденсатора, и несколько выше, чем у электрохимической батареи; Этому способствует органический электролит. Суперконденсатор разряжается от 100 до 50 процентов за 30-40 дней. Для сравнения, свинцовые и литиевые батареи саморазряжаются примерно на 5 процентов в месяц.

Суперконденсатор против батареи

Сравнение суперконденсатора с батареей имеет свои достоинства, но полагаться на сходство мешает более глубокое понимание этого отличительного устройства. Вот уникальные различия между батареей и суперконденсатором.

Химический состав батареи определяет рабочее напряжение; заряд и разряд — это электрохимические реакции. Для сравнения, конденсатор не является электрохимическим, и максимально допустимое напряжение определяется типом диэлектрического материала, используемого в качестве разделителя между пластинами.Присутствие электролита в некоторых конденсаторах увеличивает емкость, что может вызвать путаницу.

Поскольку суперконденсатор не является химическим, напряжение может расти до тех пор, пока диэлектрик не выйдет из строя. Часто это происходит в виде короткого замыкания. Избегайте повышения напряжения выше указанного.

Приложения

Суперконденсатор часто понимают неправильно; это не замена батареи для длительного хранения энергии. Если, например, время зарядки и разрядки превышает 60 секунд, используйте аккумулятор; если короче, то суперконденсатор становится экономичным.

Суперконденсаторы идеальны, когда требуется быстрая зарядка для удовлетворения кратковременной потребности в электроэнергии; в то время как батареи выбраны для длительного использования энергии. Объединение этих двух аккумуляторов в гибридную батарею удовлетворяет обе потребности и снижает нагрузку на аккумулятор, что отражается на более длительном сроке службы. Такие батареи сегодня доступны в семействе свинцово-кислотных аккумуляторов.

Суперконденсаторы наиболее эффективны для устранения перерывов в питании, длящиеся от нескольких секунд до нескольких минут, и их можно быстро перезаряжать.Маховик предлагает аналогичные качества, и приложение, в котором суперконденсатор конкурирует с маховиком, — это испытание на Лонг-Айлендской железной дороге (LIRR) в Нью-Йорке. LIRR — одна из самых загруженных железных дорог Северной Америки.

Чтобы предотвратить провал напряжения во время разгона поезда и снизить потребление пиковой мощности, батарея суперконденсаторов мощностью 2 МВт проходит испытания в Нью-Йорке в сравнении с маховиками, обеспечивающими мощность 2,5 МВт. Обе системы должны обеспечивать непрерывное питание в течение 30 секунд при соответствующей мощности в мегаваттах и ​​одновременно полностью заряжаться.Цель состоит в том, чтобы добиться регулирования в пределах 10 процентов от номинального напряжения; обе системы не требуют особого обслуживания и прослужат 20 лет. (Власти считают, что маховики для этого применения более надежны и энергоэффективны, чем батареи. Время покажет.)

В Японии также используются большие суперконденсаторы. Системы мощностью 4 МВт устанавливаются в коммерческих зданиях, чтобы снизить потребление энергии в сети в периоды пиковой нагрузки и облегчить загрузку. Другие приложения — запускать резервные генераторы во время перебоев в подаче электроэнергии и обеспечивать питание до стабилизации переключения.

Суперконденсаторы также широко используются в электрических силовых агрегатах. Благодаря сверхбыстрой зарядке во время рекуперативного торможения и выдаче большого тока при ускорении суперконденсатор идеально подходит в качестве усилителя пиковой нагрузки для гибридных транспортных средств, а также для приложений на топливных элементах. Широкий температурный диапазон и долгий срок службы дают преимущество перед батареей.

Суперконденсаторы имеют низкую удельную энергию и дороги с точки зрения стоимости ватта. Некоторые инженеры-конструкторы утверждают, что деньги на суперконденсатор лучше потратить на батарею большего размера.В таблице 4 приведены преимущества и ограничения суперконденсатора.

Преимущества

Практически неограниченный цикл жизни; можно повторять миллионы раз

Высокая удельная мощность; низкое сопротивление обеспечивает высокие токи нагрузки

Заряжается за секунды; не требуется прекращения заряда

Простая зарядка; рисует только то, что ему нужно; не подлежит завышению

Безопасный; прощение, если злоупотребляли

Отличные характеристики заряда и разряда при низких температурах

Ограничения

Низкая удельная энергия; вмещает долю обычной батареи

Линейное напряжение разряда не позволяет использовать полный энергетический спектр

Высокий саморазряд; выше, чем у большинства батарей

Низкое напряжение ячеек; требует последовательного подключения с балансировкой напряжения

Высокая стоимость ватта

Таблица 4: Преимущества и ограничения суперконденсаторов.

Последнее изменение: 8 дек.2020 г.

*** Пожалуйста, прочтите комментарии ***

Комментарии предназначены для «комментирования», открытого обсуждения среди посетителей сайта. Battery University отслеживает комментарии и понимает важность выражения точек зрения и мнений на общем форуме. Однако при общении необходимо использовать соответствующий язык, избегая спама и дискриминации.

Если у вас есть предложение или вы хотите сообщить об ошибке, воспользуйтесь формой «свяжитесь с нами» или напишите нам по адресу: BatteryU @ cadex.com. Нам нравится получать от вас известия, но мы не можем ответить на все запросы. Мы рекомендуем размещать свой вопрос в разделах комментариев, чтобы Battery University Group (BUG) могла поделиться им.

Предыдущий урок Следующий урок

Или перейти к другой артикуле

Батареи как источник питания

Схема защиты литий-ионной батареи 4,5 мкА

На рис. 1 показана прецизионная схема блокировки при пониженном напряжении со сверхнизким энергопотреблением.Схема контролирует напряжение литий-ионной батареи и отключает нагрузку, чтобы защитить батарею от глубокого разряда, когда напряжение батареи падает ниже порога блокировки. Хранение продукта с батарейным питанием в разряженном состоянии подвергает батарею риску полной разрядки. В разряженном состоянии ток в схеме защиты непрерывно разряжает аккумулятор. Если батарея разряжается ниже рекомендуемого напряжения в конце разряда, общая производительность батареи ухудшается, срок службы сокращается, и батарея может выйти из строя преждевременно.Напротив, если напряжение блокировки установлено слишком высоким, максимальная емкость батареи не достигается.

Рисунок 1. Схема блокировки пониженного напряжения

Режим работы с низким уровнем заряда батареи отображается, когда, например, сотовый телефон автоматически отключается после того, как индикатор разряда батареи мигает в течение некоторого времени. Если телефон окажется в таком состоянии не на своем месте и найден спустя несколько месяцев, схема защиты, показанная на рисунке 1, не приведет к чрезмерному разряду и повреждению аккумулятора, поскольку схема защиты занимает менее 4 раз.5 мкА тока. При таком низком токе время, необходимое литий-ионной батарее для достижения конечного напряжения разряда, значительно увеличивается. Для других схем защиты, которые обычно требуют более высокого тока, скорость разряда выше, что позволяет напряжению батареи упасть ниже безопасного предела за более короткое время. Обратите внимание, что если позволить батарее разрядиться ниже безопасного предела, произойдет безвозвратная потеря емкости.

LT1389 — это не просто еще один источник опорного напряжения. Его очень низкое потребление тока делает его идеальным выбором для приложений, требующих максимального времени автономной работы и высокой точности.Он требует тока всего 800 нА и обеспечивает точность начального напряжения 0,05% и максимальный температурный дрейф 20 ppm / ° C, что соответствует абсолютной точности 0,19% в промышленном температурном диапазоне и 0,3% в промышленном диапазоне температур. LT1389 работает на уровне одной пятнадцатой от тока, требуемого для стандартных эталонов, с сопоставимой точностью. Это самый низкий источник эталонного напряжения, доступный сегодня. Прецизионный шунтирующий источник опорного напряжения LT1389 доступен в четырех версиях с фиксированным напряжением: 1,25 В, 2.5 В, 4,096 В и 5,0 В. Он доступен в корпусе SO с 8 выводами, в коммерческом и промышленном температурных классах.

Низкое энергопотребление (I S <1,5 мкА) и прецизионные характеристики делают операционный усилитель ввода-вывода LT1495 Rail-to-Rail идеальным компаньоном для LT1389. Чрезвычайно низкий ток питания сочетается с превосходными характеристиками усилителя: входное напряжение смещения составляет максимум 375 мкВ с типичным дрейфом всего 0,4 мкВ / ° C, входной ток смещения составляет максимум 100 пА, а входной ток смещения составляет максимум 1 нА.Характеристики устройства мало меняются в диапазоне питания от 2,2 В до ± 15 В. Низкие токи смещения и ток смещения усилителя позволяют использовать резисторы источника мегаомного уровня без внесения значительных ошибок. LT1495 выпускается в пластиковых 8-контактных корпусах PDIP и SO-8 со стандартной распиновкой для двух операционных усилителей.

Практически не потребляя тока, LT1389 и LT1495 являются идеальным выбором для схемы UVLO и многих других аккумуляторных приложений.

Схема настроена для одноэлементной литий-ионной батареи, где напряжение блокировки — напряжение, когда схема защиты отключает нагрузку от батареи — равно 3.0V. Это напряжение, установленное соотношением R1 и R2, воспринимается в узле A. Когда напряжение батареи падает ниже 3,0 В, узел A падает ниже порогового значения в узле B, которое определяется как:

Затем выходной сигнал U1 будет иметь высокий уровень, выключая SW1 и отсоединяя нагрузку от батареи. Однако, как только нагрузка снимается, напряжение батареи восстанавливается и заставляет узел А подниматься выше опорного напряжения. Затем выход U1 переключится на низкий уровень, снова подключив нагрузку к батарее, и напряжение батареи упадет ниже 3.Опять 0В. Цикл повторяется, и возникает колебание.

Чтобы избежать этого условия, добавлен R5, чтобы обеспечить некоторый гистерезис вокруг точки срабатывания. Когда выходной сигнал U1 достигает высокого уровня для отключения SW1, узел B поднимается на 42 мВ выше узла A, предотвращая колебания вокруг точки срабатывания. Используя приведенную ниже формулу, величина гистерезиса для цепи рассчитывается как 92 мВ. Следовательно, V BATT должен снова подняться выше 3,092 В, прежде чем батарея будет подключена.

Проконсультируйтесь с производителем аккумулятора относительно максимального значения ESR при максимальном рекомендуемом токе разряда.Умножьте два значения, чтобы получить минимальный требуемый гистерезис.

Наихудший случай погрешности монитора напряжения лучше 0,4%. Интересно, что срок службы и емкость аккумулятора напрямую зависят от глубины разряда. Больше циклов можно получить, частично, а не полностью разрядив литий-ионную батарею, и, наоборот, большее время использования можно получить, полностью разрядив литий-ионную батарею. Отключение нагрузки при идеальном напряжении в конце разряда в идеале приведет к наилучшему из обоих случаев.Для выполнения этой задачи требуется точная общая система. Например, если оптимальное напряжение блокировки должно быть установлено на уровне 3,1 В, система с общей точностью 5% выдаст ± 155 мВ с отключением при 2,945 В или 3,255 В. При напряжении блокировки 3,255 В максимальная емкость не достигается. Кроме того, сокращается рабочий диапазон, при полностью заряженном аккумуляторе напряжение составляет 4,1 В. Для системы с общей точностью 0,4% напряжение блокировки будет на уровне 3,088 В или 3,112 В, что более чем в двенадцать раз превышает точность и оптимально обеспечивает максимальную пропускную способность.Кроме того, нагрузка остается отключенной с током всего 4,5 мкА на схему защиты. Таким образом, схема защиты работает, предотвращая глубокую разрядку аккумулятора.

Рисунок 2. V BATT и V A с гистерезисом

Нет необходимости выбирать между производительностью и потребляемым током. Прецизионный шунтирующий источник опорного напряжения LT1389 наномощный и прецизионный операционный усилитель ввода / вывода LT1495 1,5 мкА обеспечивают высочайшую производительность при практически нулевом потреблении тока.

% PDF-1.6 % 155 0 объект > / OCGs [174 0 R] >> / OpenAction [156 0 R / Fit] / Контуры 190 0 R / PageMode / UseOutlines / Pages 152 0 R / Тип / Каталог >> эндобдж 193 0 объект > поток конечный поток эндобдж 173 0 объект > эндобдж 190 0 объект > эндобдж 152 0 объект > эндобдж 156 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties >>> / Rotate 0 / Type / Page >> эндобдж 1 0 объект > / ExtGState> / Font> / ProcSet [/ PDF / Text] / Properties >>> / Rotate 0 / Type / Page >> эндобдж 16 0 объект > / Resources> / Font> / ProcSet [/ PDF / Text / ImageC] / Properties> / XObject >>> / Rotate 0 / Thumb 52 0 R / TrimBox [0.0 0,0 612,0 792,0] / Тип / Страница >> эндобдж 17 0 объект > поток HW ێ # ‘M`qx # 䡷 ճ ӱ4K ٬>) yJ❅HU., ~ F ~ ƨ ޾ QGeTN% ԚaR ߫ G ߾ {oǣzg ۽ LF9IŒGee * g \ Ը% / jC_) ee6% Qsc ~ 8s⫮! ErT3ymAV ըRkM SҙU {ORX4ea8 ߉ EYʁ2AkʺAEg91a4 ~ Eй`e | SxBYPB # pvNH # ymN {Ihe

Правильное обращение помогает максимально использовать Li

Аннотация: Литий-ионные аккумуляторы обеспечивают наибольшую мощность на единицу объема, но чрезмерная зарядка или разрядка может повредить или разрушить аккумулятор и его окружение. Тщательно разработанные схемы могут помочь вам избежать таких ужасных последствий.Литий-ионные (Li-ion) батареи

в настоящее время являются популярным выбором для приложений, требующих максимальной концентрации доступной энергии как на единицу объема, так и на единицу веса. Эти батареи могут хранить больше энергии, чем никель-кадмиевые, никель-металлогидридные (NiMH) и другие перезаряжаемые типы. Производители аккумуляторов разработали литий-ионную технологию, чтобы избежать проблемы летучести металлического лития (см. Приложение «Почему литий?»). Отсутствие металлического лития освобождает литий-ионные батареи от правил перевозки, применяемых к первичным элементам, поэтому они могут быть больше и иметь большую емкость.

Однако литий-ионные аккумуляторы не являются прочными. Они требуют неукоснительного соблюдения правил зарядки и разрядки. Игнорируйте правила, и вы рискуете сократить срок службы батареи или разрушить батарею и ее окружение. В качестве меры безопасности производители батарейных блоков часто включают защитный выключатель, предотвращающий чрезмерную зарядку или разрядку батареи. Специализированные цепи заряда и разряда также предотвращают эти условия.

Рассмотрим сначала схемы зарядки

К сожалению, не существует единого свода правил зарядки литий-ионных аккумуляторов.Поскольку технология литий-ионных аккумуляторов настолько нова, правила и требования к зарядке аккумуляторов, как правило, различаются в зависимости от производителя. Типичное зарядное устройство должно сначала обеспечить источник постоянного тока, а затем постоянное напряжение холостого хода (уровень, который считается номинальным для полностью заряженной батареи), когда заряд завершается. Конструкция этого комбинированного источника тока и напряжения сложна, потому что выходное сопротивление должно быть высоким для источника тока и низким для источника напряжения.

Зарядный ток зависит от размера и емкости аккумулятора, а необходимый ток варьируется от нескольких сотен миллиампер до примерно 2.5А. Точный химический состав литий-ионных аккумуляторов зависит от производителя и, как правило, является собственностью компании, но результирующее напряжение завершения обычно варьируется от 4,2 до 4,3 В на элемент. Хотя точность зарядного тока составляет около ± 10%, требование к напряжению завершения обычно составляет ± 1%.

Выберите топологию зарядного устройства

Зарядные устройства для аккумуляторов обычно используют линейный регулятор для управления током или напряжением аккумулятора. Таким образом, входное напряжение зарядного устройства выше, чем напряжение батареи, и проходной транзистор снижает разницу между двумя напряжениями.Несмотря на простоту и дешевизну, этот подход может быть неэффективным.

Эффективность не важна для автономных устройств, питающихся от сети переменного тока или автомобильного аккумулятора; однако, поскольку аккумуляторные блоки и системы стали более сложными, схема зарядного устройства часто должна находиться в портативном оборудовании или в самом аккумуляторном блоке. Такие системы обеспечивают достаточную мощность зарядного устройства по своей конструкции, но неэффективная схема может генерировать избыточное тепло, которое вызывает проблемы в других частях системы.

Следующий пример показывает, сколько тепла может генерировать зарядное устройство.Зарядное устройство с питанием от 8 В ± 20% и зарядкой одного литий-ионного элемента на ток 1 А дает типичную рассеиваемую мощность 1 А (8–3,8 В) = 4,2 Вт. В худшем случае рассеивание составляет 1 А ((1,238 В) -2,5 В) = 7,1 Вт, что означает, что зарядное устройство, вероятно, рассеивает больше мощности, чем система. Если зарядное устройство встроено в аккумуляторный блок, большая часть выделяемого тепла переходит в аккумулятор, сокращая срок его службы и создавая потенциальную угрозу безопасности.

Зарядные устройства с линейным стабилизатором часто неприемлемы из-за их рассеиваемой мощности, поэтому разработчики обычно выбирают более холодные и более эффективные импульсные зарядные устройства.Транзистор в импульсном регуляторе включается и выключается так же, как выключатель питания, делая резкие переходы между состояниями отсечки и насыщения. Это действие создает прямоугольную волну, которая проходит через фильтр индуктивности / конденсатора для достижения желаемого напряжения или тока.

Зарядные устройства Switch-Mode Run Cooler

Рассеиваемая мощность импульсного регулятора обычно намного меньше, чем у линейного регулятора; типичные переключатели имеют КПД от 80% до 90%. В приведенном выше примере типичный импульсный регулятор, работающий с КПД 80%, значительно лучше линейного регулятора.Коммутатор рассеивает 3,8 В 31 А ((1 / 0,80) -1) = 0,95 Вт (номинал) и 4,2 В 31 А ((1 / 0,80) -1) = 1,05 Вт (максимум). Однако зарядные устройства Switch-Mode

имеют недостатки. Их дорогостоящие пассивные ЖК-фильтры по сравнению с полностью активными компонентами линейных зарядных устройств, которые в форме ИС являются относительно недорогими. Кроме того, шум в импульсном зарядном устройстве намного больше, чем у линейного типа. Для сотовых телефонов и других приложений, чувствительных к шуму, переключение мощности может вызвать кондуктивные или излучаемые помехи в системе.Вы можете предотвратить эти проблемы путем правильного обхода и экранирования, а также путем выбора частоты переключения, которая позволяет избежать диапазонов звука, РЧ и ПЧ.

LC-фильтр может составлять значительную часть стоимости импульсного зарядного устройства, поэтому стоит уменьшить размер и стоимость этого фильтра за счет увеличения частоты переключения. С другой стороны, слишком высокая частота снижает эффективность зарядного устройства, что в первую очередь подрывает основное преимущество использования импульсного зарядного устройства.

Коммутационные потери возникают в основном в переключающем транзисторе.Уровни тока и напряжения относительно высоки во время коротких переходных интервалов между включенным и выключенным состояниями, и эти уровни вызывают рассеяние мощности, пропорциональное частоте переключения. Разработчики редко используют биполярные транзисторы в этих приложениях, потому что эти транзисторы не могут выйти из состояния насыщения достаточно быстро для эффективной работы на высокой частоте. С другой стороны, полевые МОП-транзисторы работают хорошо, если источник с достаточно низким импедансом управляет их затвором с высокой емкостью.

Коммутационные потери снижают производительность

Сопротивление во включенном состоянии — еще один важный источник потерь в переключающем транзисторе.Например, полевой МОП-транзистор в насыщении проявляется как сопротивление между стоком и истоком. Более высокое сопротивление в открытом состоянии означает более высокое рассеивание мощности, но технология устройств значительно снизила это сопротивление. Однако снижение сопротивления в открытом состоянии обычно увеличивает емкость затвора, что, в свою очередь, увеличивает коммутационные потери. Таким образом, вы должны тщательно выбирать MOSFET, чтобы снизить общую рассеиваемую мощность.

Еще одним недостатком высокочастотного переключения является потеря мощности при зарядке и разрядке емкости затвора переключающего полевого МОП-транзистора.Эта потеря наиболее заметна по своему влиянию на эффективность при малой нагрузке. Вы можете минимизировать потери, управляя переключающим транзистором с помощью частотно-импульсной модуляции (PFM), а не широтно-импульсной модуляции (PWM).

Схемы ШИМ работают на фиксированной частоте и регулируют V OUT , регулируя рабочий цикл переключающего транзистора. Цепи ЧИМ включают транзистор на фиксированный интервал и регулируют V OUT , регулируя частоту этих интервалов. Поэтому для слабо нагруженных регуляторов управление ЧИМ потребляет меньше энергии, потому что силовой транзистор переключается с частотой всего несколько герц.Для более тяжелых нагрузок типичные частоты переключения для регуляторов PWM и PFM составляют сотни килогерц.

Сделка со стабильностью

Стабильность — одна из самых сложных проблем при разработке зарядного устройства для литий-ионных аккумуляторов. Как упоминалось ранее, выход зарядного устройства должен служить одновременно источником напряжения и источника тока. К сожалению, заставить схему хорошо работать в обоих режимах сложно, потому что требования противоречат друг другу; источник тока должен иметь высокий импеданс источника, а источник напряжения — низкий импеданс.Медленная скорость изменения напряжения и тока батареи во время зарядки несколько снижает проблему стабильности. Однако входное напряжение от плохо регулируемого адаптера переменного тока может включать в себя значительную пульсацию 60 Гц или 120 Гц, которая может повлиять на регулирование напряжения и тока зарядного устройства.

Анализируйте некоторые реальные схемы

Следующие конструкции зарядного устройства соответствуют потребностям литий-ионных аккумуляторов, переключаясь с регулирования тока на регулирование напряжения. Каждая схема показывает вам разную конструкцию зарядного устройства с разным зарядным током, например, для удовлетворения различных требований приложения.

Понижающее зарядное устройство на рис. 1a регулирует ток в разряженной батарее, отслеживая при этом возрастающее напряжение на клеммах батареи. Когда это напряжение достигает значения плавающего напряжения, установленного R 1 и R 2 (в данном случае 4,2 В), схема переходит от регулирования тока к регулированию напряжения и поддерживает плавающий уровень по мере уменьшения тока батареи. Конфигурация, показанная на рисунке, заряжает одну ячейку, но схема может обрабатывать до трех литий-ионных элементов последовательно. Схема также подает ток нагрузки во время зарядки аккумулятора.

Резистор 0,1, R 3 , который падает на 10 мВ при максимально допустимом токе 100 мА, определяет ток батареи. Операционный усилитель IC 2 усиливает это падение 10 мВ с коэффициентом усиления 128 и представляет пороговое напряжение 1,28 В на выводе обратной связи IC 1 . Таким образом, схема поддерживает ток батареи 100 мА до тех пор, пока напряжение на ее клеммах не достигнет 4,2 В, что заставляет шунтирующий стабилизатор (IC 3 ) проводить ток и смещать Q 1 в активную область.Поскольку коллектор Q 1 передает ток в R 4 и R 5 , операционный усилитель поддерживает равновесие в контуре, понижая свое выходное напряжение. Это действие переключает управление с регулирования тока операционным усилителем на регулирование напряжения с помощью шунтирующего регулятора, который предполагает полный контроль, когда выход операционного усилителя достигает 0 В.

Точность шунтирующего регулятора составляет 0,4%, поэтому использование резисторов 0,5% обеспечивает допуск выходного напряжения 1%. Вы можете рассчитать V OUT , заметив, что напряжение обратной связи регулятора равно 2.5V: V OUT = 2,5 ((R 1 + R 2 ) / R 2 ). Регулируемый ток

I OUT = V REF 3R 6 / (R 3 3 (R 5 + R 6 )), где V REF = 1,28 В.
Для токов малой нагрузки КПД низок из-за фиксированного рассеиваемой мощности в режиме покоя (, рис. 1b, ). На этом рисунке показано, как изменяются КПД и выходная мощность от начала до конца цикла зарядки.На рисунке также показан переход схемы от регулирования тока к регулированию напряжения.


Рис. 1. Это понижающее зарядное устройство (а) выдает 100 мА до тех пор, пока напряжение аккумулятора не поднимется до 4,2 В, а затем регулируется при этом напряжении до завершения зарядки. Максимальный КПД достигается при высокой выходной мощности (b), а КПД увеличивается по мере уменьшения V IN .

Поскольку падение на D 1 более существенно для низкого напряжения V OUT , эффективность во время регулирования тока также пропорциональна низкому выходному напряжению.Максимальная мощность указывает точку, в которой зарядное устройство переходит из режима регулирования тока в режим регулирования напряжения. Таким образом, зарядное устройство сначала подает 250 мВт на разряженную батарею, достигает пика 420 мВт и спадает до нуля, когда батарея полностью заряжена.

Предоставить больше тока

Большая токовая способность внешнего переключаемого MOSFET полезна в схемах, которые обеспечивают ток зарядки более 200 мА (, рис. 2, ). Эта схема регулирует выходной ток на уровне 1 А, но МОП-транзистор позволяет зарядному устройству подавать более двух.5А комбинированного тока нагрузки и батареи. Эта схема регулирует выходное напряжение на уровне 8,4 В, но схема регулирования напряжения и тока аналогична показанной на рисунке 1a. Кроме того, как и в схеме на Рисунке 1а, эта схема может заряжать до трех литий-ионных элементов последовательно. Вы вычисляете V OUT и I OUT для Рисунка 2, как и для Рисунка 1a, за исключением того, что опорное напряжение IC на Рисунке 2 составляет 1,5 В вместо 1,28 В.


Рис. 2. Для приложений, требующих зарядного тока более 200 мА, в этой схеме используется переключающий полевой МОП-транзистор, внешний по отношению к ИС контроллера.

Повышающее зарядное устройство

Зарядное устройство на рис. 3 аналогично зарядному устройству на рис. 1 и 2, но в нем используется повышающий преобразователь (IC 1 ), который позволяет схеме работать от напряжения ниже, чем у аккумулятора. Одна проблема с этой схемой — это путь постоянного тока от входа к батарее, который позволяет неконтролируемому току через батарею всякий раз, когда V IN превышает напряжение на клеммах батареи. Напряжение литий-ионного элемента никогда не должно опускаться ниже 2.5 В, поэтому напряжение V IN никогда не должно превышать 2,5 В на элемент.


Рис. 3. Это повышающее зарядное устройство поддерживает напряжение 0,4 А в режиме тока и 8,4 В в режиме напряжения. Путь постоянного тока от входа к выходу становится проблемой, если напряжение V IN превышает напряжение батареи.

Токочувствительный резистор R 1 и резисторы синфазного усилителя R 2 — R 5 определяют ток батареи. (R 2 и R 4 должны иметь такое же значение, как и R 3 и R 5 .) Регулируемый ток I OUT равен V REF 3R 2 / R 3 3R 1 . В этом случае V REF = 1,5 В, что устанавливает I OUT = 0,4 А. Когда схема регулятора напряжения берет на себя управление, как в зарядных устройствах на рисунках 1 и 2, напряжение батареи стабилизируется на уровне 8,4 В.

Работа с фиксированной частотой

Многие приложения требуют, чтобы переключающие преобразователи и зарядные устройства работали с фиксированной частотой. В противном случае шум переключения переменной частоты может создавать помехи чувствительным схемам, таким как усилители ВЧ, ПЧ и звука.Например, на фиг.4a
понижающий преобразователь постоянного тока в постоянный (IC 1 ) имеет внутренний генератор, частота которого может быть выбрана пользователем на фиксированном значении 150 кГц или 300 кГц или синхронизирована с внешними часами.

Это зарядное устройство также заменяет улавливающий диод Шоттки в обычных понижающих преобразователях внешний полевой МОП-транзистор с синхронным выпрямителем Q 2 . (Диод Шоттки, D 1 , остается параллельно полевому МОП-транзистору, чтобы предотвратить скачки в форме волны тока.MOSFET синхронного выпрямителя действует как выпрямитель, переключение которого синхронизировано с переключением преобразователя. Такое расположение повышает эффективность просто потому, что падение напряжения на полевом МОП-транзисторе ниже, чем у задерживающего диода. Это преимущество особенно важно в приложениях с низким V OUT , в которых падение напряжения на диоде составляет значительную долю от V OUT . Второй диод Шоттки (D 2 ) предотвращает прохождение тока от батареи в случае низкого напряжения V IN или короткого замыкания на входе.Результат — более низкий КПД, но не такой низкий, как у схемы с традиционным выпрямлением.

Во время управления в токовом режиме IC 1 отслеживает ток катушки индуктивности как падение на R 1 , измеряемое операционным усилителем IC 2 и резисторами R 2 до R 5 . Схема управления аналогична схеме на рисунке 3. Эта схема регулирует ток батареи до 2,5 А ± 10%, а затем регулирует напряжение батареи до 4,2 В ± 1%. Регулятор 5 В с малым падением напряжения, встроенный в IC 1 , создает шину питания (шину VL), которая питает внутреннюю схему управления и драйверы MOSFET.Таким образом, напряжение V IN может повышаться до 30 В без превышения абсолютных максимальных номинальных значений затворов MOSFET. Чтобы минимизировать энергопотребление, внешняя нагрузка шины VL (5 мА при 5 В) может обеспечивать питание низковольтного операционного усилителя для IC 2 .

Поскольку переходные потери Q1 увеличиваются с увеличением V IN , измеренная эффективность для этой схемы немного ухудшается по мере увеличения V IN ( Рисунок 4b ). Падение D 2 значительно по сравнению с низким V OUT , поэтому эффективность во время регулирования тока (как на рисунке 1b) заметно пропорциональна V OUT .В большинстве случаев эта схема обеспечивает КПД около 85%.


Рис. 4. Микросхема контроллера в этом зарядном устройстве (а) регулирует спектр шума переключения, работая на фиксированной частоте. Кривые эффективности (b) показывают, что зарядное устройство выдает 6 Вт в начале заряда, достигает пика 10 Вт и снижается до 2 Вт по окончании зарядки.

Зарядное устройство на рис. 5а аналогично зарядному устройству на рис. 4а, за исключением того, что это зарядное устройство может работать с батареями с более чем одним последовательно соединенным элементом.Эта схема заряжает две ячейки до 300 мА. Делители напряжения R 2 / R 3 и R 4 / R 5 уменьшают напряжение считывания тока на R 1 до уровня, подходящего для контроллера. Внутренний токовый усилитель имеет синфазный диапазон от 2 до 6 В. Чтобы избежать смещения, в делителях напряжения следует использовать резисторы 1%.

Кроме того, C 1 и C 2 противодействуют полюсу, образованному резисторами делителя, и паразитной емкости, связанной с выводами CSH и CSL контроллера.Эта схема регулирует напряжение V OUT до 8,4 В; в остальном он аналогичен версии с одной ячейкой на рисунке 4a. На рисунке 5b показаны характеристики этого зарядного устройства V OUT / I OUT , а на рисунке 5c показана зависимость его эффективности от выходной мощности для различных значений V IN .


Рис. 5. Зарядное устройство для литий-ионных аккумуляторов (a) выдает 300 мА для последовательной зарядки двух элементов. Два графика иллюстрируют работу схемы: V OUT vs.I OUT (b) и зависимость КПД от выходной мощности для входных напряжений от 10 до 20 В (c).

Не тратьте все усилия на разработку только зарядного устройства; Литий-ионные аккумуляторы чувствительны как к переразряду, так и к перезарядке. Для большинства этих батарей разряд ниже 2,5 В снижает емкость батареи. Чтобы предотвратить эту проблему, большинство литий-ионных аккумуляторных батарей включает в себя цепь датчика и полевой МОП-транзистор, который отключает нагрузку, если напряжение батареи падает слишком низко (, рис. 6, ).


Рисунок 6.Эти схемы защищают литий-ионный аккумулятор, предотвращая разряд ниже 2,5 В. Микросхемы mP-супервизора блокируют ток батареи, управляя затвором n-канального MOSFET низкого уровня (a) или p-канального MOSFET высокого уровня (b).

Каждая из схем на рис. 6 включает в себя микросхему микропроцессора-супервизора, предназначенную для сброса микропроцессора, когда его напряжение питания выходит за рамки регулирования. В этом случае супервизор управляет полевым МОП-транзистором, который отключает батарею от нагрузки при заданном пороговом значении 2,63 В, тем самым предотвращая падение напряжения батареи до 2.50В. Микросхемы поставляются в крошечных корпусах SOT-23. В сочетании с MOSFET размером Micro-8 (International Rectifier, El Segundo, CA) получается небольшая схема, подходящая для использования внутри аккумуляторной батареи.

В схеме на рис. 6а нормальный режим работы обеспечивает подачу положительного напряжения на затвор n-канального полевого МОП-транзистора, позволяя току батареи течь к нагрузке. Когда V CC падает ниже порога сброса, напряжение затвора становится низким и отключает полевой МОП-транзистор. Напротив, схема на рис. 6b поддерживает нормальную работу с низкоуровневым возбуждением затвора для p-канального MOSFET и отмечает состояние низкого V CC , устанавливая высокий уровень на затворе MOSFET.

N-канальные полевые МОП-транзисторы имеют меньшее сопротивление в открытом состоянии, чем эквивалентные типы с р-каналом, поэтому в схеме на рис. 6а потери на полевых МОП-транзисторах меньше, чем в схеме на рис. 6б. Тем не менее, некоторые аккумуляторные блоки включают в себя схему измерения уровня топлива и измерения напряжения, которая привязана к заземлению аккумуляторной батареи. Когда полевой МОП-транзистор на рисунке 6a выключен, схема заземляет положительный вывод батареи через выводы нагрузки, заставляя отрицательный вывод и любые связанные с ним сигналы быть отрицательными по отношению к нагрузке.Это состояние может нарушить работу системы.

Простые схемы на рисунке 6 имеют некоторые недостатки. Точность уровня срабатывания управляющих ИС составляет примерно ± 5% от температуры, поэтому вы должны установить номинальный уровень срабатывания как минимум на 5% выше минимального напряжения на клеммах аккумулятора. Таким образом, в некоторых случаях аккумулятор и нагрузка могут отключиться до того, как V CC достигнет желаемого порога, оставив неиспользованный заряд в аккумуляторе. Еще один недостаток — отсутствие гистерезиса переключения.Напряжение батареи повышается при снятии нагрузки, тем самым устраняя падение внутреннего сопротивления батареи. Это повышение может позволить нагрузке повторно подключиться, затем отключиться, затем снова подключить и так далее. Цикл продолжается до тех пор, пока напряжение холостого хода аккумулятора не упадет ниже порога сброса.

Альтернативная структура схемы решает эти проблемы с использованием дополнительного компаратора и делителя напряжения ( Рисунок 7 ). Вы можете запрограммировать эти схемы с достаточным гистерезисом, чтобы предотвратить циклическое переключение, а использование резисторов с достаточной точностью позволяет вам установить пороговый уровень в пределах ± 2%.(Эталонная точность компаратора составляет ± 1%, поэтому 1% резисторов дает общую точность около ± 2%.) Схема смещает делитель напряжения на 1 мкА, что достаточно мало, чтобы минимизировать разряд батареи, но достаточно высоко, чтобы избежать уровня сдвиг из-за максимального входного тока смещения компаратора ± 5 нА.


Рис. 7. В качестве улучшений по сравнению с аналогами на рис. 6, эти схемы имеют более точные пороги сброса для экономии энергии аккумулятора и гистерезис для предотвращения дребезга при отключении аккумулятора.

Приложение

Почему литий?

Литиевые батареи существуют в течение многих лет, в основном в виде первичных (неперезаряжаемых) типов в виде маленьких «монетных» элементов. Первичные элементы большего размера считаются опасными материалами и не так широко доступны в США. Литий — очень реактивный элемент; это хорошо для аккумуляторов, но опасно, потому что его реактивность делает его потенциально горючим.

При обычной транспортировке Министерство транспорта США ограничивает количество лития в одной ячейке до 1 г.Литиевые элементы с твердым электролитом (например, литий-йодные и литий-марганцевые диоксиды) имеют высокий внутренний импеданс, что ограничивает их использование в кардиостимуляторах и других слаботочных устройствах с длительным сроком службы. Вы можете разряжать литиевые элементы с жидким катодом с большей скоростью, но эти типы обычно ограничиваются приложениями с сохранением памяти и резервным аккумулятором.

Перезаряжаемые (вторичные) литиевые батареи появились в 1980-х годах. В этих батареях металлический литий используется в качестве отрицательного электрода (анода) и положительного электрода с «интеркаляцией» (катода).Интеркаляция относится к электрохимической реакции, в которой ионы связываются с материалом катода. Поскольку эта реакция обратима (деинтеркаляция), аккумулятор можно сделать перезаряжаемым.

Когда перезаряжаемая литиевая батарея разряжается, металлический литий отдает ионы электролиту, который является жидким или твердым полимером. Эти ионы лития мигрируют к катоду и ионно связываются с этим материалом. Основная проблема с этим типом аккумуляторов — дендриты: маленькие пальчики из металлического лития, которые образуются во время зарядки аккумулятора.Дендриты увеличивают площадь поверхности металла, увеличивая реакционную способность электролита. Таким образом, аккумулятор становится все более чувствительным к неправильному обращению, поскольку количество дендритов увеличивается с каждым циклом заряда-разряда.

Удалите металл
Чтобы преодолеть проблемы, связанные с металлическим литием в батареях, исследователи экспериментировали с использованием интеркаляционных материалов как для анода, так и для катода, производя компонент, известный как литий-ионный (Li-ion) аккумулятор. .Литий металлический отсутствует; вместо этого положительно заряженные ионы лития перемещаются от катода к аноду во время заряда и от анода обратно к катоду во время разряда. Этот возвратно-поступательный поток ионов во время циклов заряда и разряда привел к появлению терминов «качели» и «кресло-качалка».

Использование вставных электродов не только устраняет необходимость в металлическом литии, но и упрощает производство, поскольку производители могут создавать аккумулятор с нулевым потенциалом.Затем производитель может зарядить аккумулятор после сборки, тем самым уменьшив вероятность повреждения из-за короткого замыкания.

Первая литий-ионная батарея с угольным анодом и катодом из LiCoO 2 была произведена Sony Energytec. С тех пор другие производители разработали катоды на основе LiNiO 2 и LiMn 2 O 4 , но все (пока) используют уголь в качестве анода. Этот угольный анод накапливает электроны и ионы лития во время заряда и высвобождает их во время разряда.

Аналогичная версия этой статьи появилась в номере EDN от 5 декабря 1996 г.

Напряжение батареи — обзор

Электрические характеристики

Напряжение батареи — Никель-кадмиевый элемент имеет напряжение холостого хода около 1,3 В и номинальное напряжение 1,25 В. Производители рекомендуют зарядные напряжения в диапазоне 1,45–1,65 В. Никель-кадмиевые элементы могут выдерживать очень высокие уровни заряда без повреждений. Батарею можно оставлять заряженной на долгие годы без потери срока службы.

Ячейка работает в относительно широком диапазоне напряжений и может выдерживать полную разрядку практически без постоянного ухудшения емкости или срока службы. В зависимости от количества используемых ячеек конечное напряжение разряда может варьироваться от 1,0 до 1,1 В на элемент. Рекомендуется использовать как можно большее количество ячеек, которое удовлетворяет рекомендациям производителя по зарядке, так как это приведет к наиболее экономичной батарее для приложения.

Емкость аккумулятора — Емкость аккумулятора — это мера энергии, которая может храниться в элементе.Емкость измеряется в ампер-часах (Ач). [Амперы, умноженные на часы разряда].

Количество Ач или Втч, которое может быть извлечено из ячейки, будет зависеть от скорости разряда, напряжения отсечки и температуры.

Для практических целей промышленность по рекомендации МЭК (Международной электротехнической комиссии) согласилась указать номинальную емкость батарей как количество Ач, которое может быть разряжено за 5-часовой период до конечного напряжения 1,00 вольт на единицу. ячейка при 25 градусах С.(МЭК 623).

Номинальная мощность часто обозначается как C или C5. Доступные емкости при различных скоростях разряда часто выражаются в процентах от C. Аналогичным образом, токи разряда выражаются в долях C. Например, ток разряда C / 5 или 0,2C будет означать 20 А для батареи 100 Ач. Это удобный способ выражения относительных токов разряда или заряда для целого ряда аккумуляторов.

Возможность разряда — Все производители выпускают элементы с разной способностью разряда.Это достигается за счет изготовления пластин разной толщины (рис. 3).

Рисунок 3.

Ячейки с большой скоростью обеспечивают самую низкую стоимость в расчете на Ач.

Высокоскоростные ячейки обеспечивают самую низкую стоимость усилителя.

На этом рисунке показаны пластины трех разных толщин: L, M и H. Ячейка L имеет несколько толстых пластин с большим количеством активного материала. В ячейке H используется множество тонких пластин, чтобы получить большую поверхность пластины. Это обеспечит хороший контакт электролита с активным материалом.Таким образом, энергия может быть извлечена быстрее. Элемент будет способен передавать большой ток относительно его емкости, объема или веса. Эти клетки называются высокоскоростными клетками (H-клетки).

Ячейки L обеспечивают ток с более низкой скоростью, поскольку они имеют меньшую поверхность пластины и, следовательно, более высокое внутреннее сопротивление. Они называются ячейками высокой емкости или ячейками большой емкости (L-ячейки).

С экономической точки зрения, L-элементы имеют самую низкую стоимость на Ач, в то время как H-элементы представляют самую низкую стоимость на ампер за короткий период разряда.Чтобы обеспечить экономичные батареи для любой скорости разряда, большинство производителей также производят элементы со средней скоростью (M-элементы)

Как показывает опыт, H-элементы обеспечивают лучшую экономию для периодов ожидания менее 20 минут, M-элементы — от 20 до 90 минут. , anf L-элементы для разряда более 90 минут. Однако для определения наиболее экономичного решения часто приходится определять размеры и цены для более чем одного диапазона ячеек.

Характеристики и размер батареи. Для проверки характеристик и размера батареи производители предоставляют таблицы производительности, в которых указаны ток или ватт, доступные при различных скоростях разряда.Отдельные таблицы представлены для 1,00 В, 1,05 В, 1,10 В и 1,14 В на ячейку. Таблицы действительны для полностью заряженных элементов при 25 ° C в соответствии с IE 623. При более низких температурах должны применяться коэффициенты снижения номинальных характеристик. Проконсультируйтесь с производителем для приблизительных расчетов.

Перед тем, как выбрать аккумулятор для фотоэлектрической системы, проверьте максимальное и минимальное напряжение постоянного тока, которое может выдержать система. Важно выбрать правильное количество ячеек, чтобы можно было добиться хорошей подзарядки, а также максимального использования емкости аккумулятора.Если окно напряжения слишком узкое, может потребоваться более крупная батарея. Проконсультируйтесь с производителем батареи и попросите показать его расчеты заряда батареи, основанные на вашей нагрузке и уровнях напряжения.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности. Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно.Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались. Чтобы принять файлы cookie с этого сайта, нажмите кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом.Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie. Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу.Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в cookie-файлах может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта.Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *