Схема регулятор мощности для сварочного аппарата схема: Регулятор мощности для сварочного аппарата

Содержание

Регулятор мощности для сварочного аппарата

Испытанная временем схема регулирования тока мощных потребителей отличается простотой в наладке, надежностью в эксплуатации и широкими потребительскими возможностями. Она хорошо подходит для управления режимом сварки, для пуско-зарядных устройств и для мощных узлов автоматики.

Принципиальная схема

При питании мощных нагрузок постоянным током часто применяется схема (рис.1) выпрямителя на четырех силовых вентилях. Переменное напряжение подводится к одной диагонали «моста», выходное постоянное (пульсирующее) напряжение снимается с другой диагонали. В каждом полупериоде работает одна пара диодов (VD1-VD4 или VD2-VD3).

Это свойство выпрямительного «моста» существенно: суммарная величина выпрямленного тока может достигать удвоенной величины предельного тока для каждого диода. Предельное напряжение диода не должно быть ниже амплитудного входного напряжения.

Поскольку класс напряжения силовых вентилей доходит до четырнадцатого (1400 В), с этим для бытовой электросети проблем нет. Существующий запас по обратному напряжению позволяет использовать вентили с некоторым перегревом, с малыми радиаторами (не злоупотреблять!).

Рис. 1. Схема выпрямителя на четырех силовых вентилях.

Внимание! Силовые диоды с маркировкой «В» проводят ток, «подобно» диодам Д226 (от гибкого вывода к корпусу), диоды с маркировкой «ВЛ» – от корпуса к гибкому выводу.

Использование вентилей различной проводимости позволяет выполнить монтаж всего на двух двойных радиаторах. Если же с корпусом устройства соединить «корпуса» вентилей «ВЛ» (выход «минус»), то останется изолировать всего один радиатор, на котором установлены диоды с маркировкой «В». Такая схема проста в монтаже и «наладке», но возникают трудности, если приходится регулировать ток нагрузки.

Если со сварочным процессом все понятно (присоединять «балласт»), то с пусковым устройством возникают огромные проблемы. После пуска двигателя огромный ток не нужен и вреден, поэтому необходимо его быстро отключить, так как каждое промедление укорачивает срок службы батареи (нередко батареи взрываются!).

Очень удобна для практического исполнения схема, показанная на рис.2, в которой функции регулирования тока выполняют тиристоры VS1, VS2, в этот же выпрямительный мост включены силовые вентили VD1, VD2. Монтаж облегчается тем, что каждая пара «диод-тиристор» крепится на своем радиаторе. Радиаторы можно применить стандартные (промышленного изготовления).

Другой путь – самостоятельное изготовление радиаторов из меди, алюминия толщиной свыше 10 мм. Для подбора размеров радиаторов необходимо собрать макет устройства и «погонять» его в тяжелом режиме. Неплохо, если после 15-минутной нагрузки корпуса тиристоров и диодов не будут «обжигать» руку (напряжение в этот момент отключить!).

Корпус устройства необходимо выполнить так, чтобы обеспечивалась хорошая циркуляция нагретого устройством воздуха. Не помешает установка вентилятора, который «помогает» прогонять воздух снизу вверх. Удобны вентиляторы, устанавливаемые в стойках с компьютерными платами либо в «советских» игровых автоматах.

Рис. 2. Схема регулятора тока на тиристорах.

Возможно выполнение схемы регулируемого выпрямителя полностью на тиристорах (рис.3). Нижняя (по схеме) пара тиристоров VS3, VS4 запускается импульсами от блока управления.

Импульсы приходят одновременно на управляющие электроды обоих тиристоров. Такое построение схемы «диссонирует» с принципами надежности, но время подтвердило работоспособность схемы («сжечь» тиристоры бытовая электросеть не может, поскольку они выдерживают импульсный ток 1600 А).

Тиристор VS1 (VS2) включен как диод – при положительном напряжении на аноде тиристора через диод VD1 (или VD2) и резистор R1 (или R2) на управляющий электрод тиристора будет подан отпирающий ток. Уже при напряжении в несколько вольт тиристор откроется и до окончания полуволны тока будет проводить ток.

Второй тиристор, на аноде которого было отрицательное напряжение, не будет запускаться (это и не нужно). На тиристоры VS3 и VS4 из схемы управления приходит импульс тока. Величина среднего тока в нагрузке зависит от моментов открывания тиристоров – чем раньше приходит открывающий импульс, тем большую часть периода соответствующий тиристор будет открыт.

Рис. 3. Схемы регулируемого выпрямителя полностью на тиристорах.

Открывание тиристоров VS1, VS2 через резисторы несколько «притупляет» схему: при низких входных напряжениях угол открытого состояния тиристоров оказывается малым – в нагрузку проходит заметно меньший ток, чем в схеме с диодами (рис.2).

Таким образом, данная схема вполне пригодна для регулировки сварочного тока по «вторичке» и выпрямления сетевого напряжения, где потеря нескольких вольт несущественна.

Эффективно использовать тиристорный мост для регулирования тока в широком диапазоне питающих напряжений позволяет схема, показанная на рис.4,

Устройство состоит из трех блоков:

  1. силового;
  2. схемы фазоимпульсного регулирования;
  3. двухпредельного вольтметра.

Трансформатор Т1 мощностью 20 Вт обеспечивает питание блока управления тиристорами VS3 и VS4 и открывание «диодов» VS1 и VS2. Открывание тиристоров внешним блоком питания эффективно при низком (автомобильном) напряжении в силовой цепи, а также при питании индуктивной нагрузки.

Рис. 4. Тиристорный мост для регулировки тока в широком диапазоне.

Рис. 5. Принципиальная схема блока управления тиристорами.

Открывающие импульсы тока с 5-вольтовых обмоток трансформатора подводятся в противофазе к управляющим электродам VS1, VS2. Диоды VD1, VD2 пропускают к управляющим электродам только положительные полуволны тока.

Если фазировка открывающих импульсов «подходит», то тиристорный выпрямительный мост будет работать, иначе тока в нагрузке не будет.

Этот недостаток схемы легко устраним: достаточно повернуть наоборот сетевую вилку питания Т1 (и пометить краской, как нужно подключать вилки и клеммы устройств в сеть переменного тока). При использовании схемы в пуско-зарядном устройстве заметно увеличение отдаваемого тока по сравнению со схемой рис.3.

Очень выгодно наличие слаботочной цепи (сетевого трансформатора Т1). Разрывание тока выключателем S1 полностью обесточивает нагрузку. Таким образом, прервать пусковой ток можно маленьким концевым выключателем, автоматическим выключателем или слаботочным реле (добавив узел автоматического отключения).

Это очень существенный момент, поскольку разрывать сильноточные цепи, требующие для прохождения тока хорошего контакта, намного труднее. Мы не случайно вспомнили о фазировке трансформатора Т1. Если бы регулятор тока был «встроен» в зарядно-пусковое устройство или в схему сварочного аппарата, то проблема фазировки была бы решена в момент наладки основного устройства.

Наше устройство специально выполнено широкопрофильным (как пользование пусковым устройством определяется сезоном года, так и сварочные работы приходится вести нерегулярно). Приходится управлять режимом работы мощной электродрели и питать нихромовые обогреватели.

На рис.5 показана схема блока управления тиристорами. Выпрямительный мостик VD1 подает в схему пульсирующее напряжение от 0 до 20 В. Это напряжение через диод VD2 подводится к конденсатору С1, обеспечивается постоянное напряжение питания мощного транзисторного «ключа» на VT2, VT3.

Пульсирующее напряжение через резистор R1 подводится к параллельно соединенным резистору R2 и стабилитрону VD6. Резистор «привязывает» потенциал точки «А» (рис.6) к нулевому, а стабилитрон ограничивает вершины импульсов на уровне порога стабилизации. Ограниченные импульсы напряжения заряжают конденсатор С2 для питания микросхемы DD1.

Эти же импульсы напряжения воздействуют на вход логического элемента. При некотором пороге напряжения логический элемент переключается. С учетом инвертирования сигнала на выходе логического элемента (точка «В») импульсы напряжения будут кратковременными -около момента нулевого входного напряжения.

Рис. 6. Диаграмма импульсов.

Следующий элемент логики инвертирует напряжение «В», поэтому импульсы напряжения «С» имеют значительно большую длительность. Пока действует импульс напряжения «С», через резисторы R3 и R4 происходит заряд конденсатора C3.

Экспоненциально нарастающее напряжение в точке «Е», в момент перехода через логический порог, «переключает» логический элемент. После инвертирования вторым логическим элементом высокому входному напряжению точки «Е» соответствует высокое логическое напряжение в точке «F».

Двум различным величинам сопротивления R4 соответствуют две осциллограммы в точке «Е»:

  • меньшее сопротивление R4 – большая крутизна – Е1;
  • большее сопротивление R4 – меньшая крутизна – Е2.

Следует обратить внимание также на питание базы транзистора VT1 сигналом «В», во время снижения входного напряжения до нуля транзистор VT1 открывается до насыщения, коллекторный переход транзистора разряжает конденсатор С3 (происходит подготовка к зарядке в следующем полупериоде напряжения). Таким образом, логический высокий уровень появляется в точке «F» раньше или позже, в зависимости от сопротивления R4:

  • меньшее сопротивление R4 – раньше появляется импульс – F1;
  • большее сопротивление R4 – позже появляется импульс – F2.

Усилитель на транзисторах VT2 и VT3 «повторяет» логические сигналы -точка «G». Осциллограммы в этой точке повторяют F1 и F2, но величина напряжения достигает 20 В.

Через разделительные диоды VD4, VD5 и ограничительные резисторы R9 R10 импульсы тока воздействуют на управляющие электроды тиристоров VS3 VS4 (рис.4). Один из тиристоров открывается, и на выход блока проходит импульс выпрямленного напряжения.

Меньшему значению сопротивления R4 соответствует большая часть полупериода синусоиды – h2, большему – меньшая часть полупериода синусоиды – h3 (рис.4). В конце полупериода ток прекращается, и все тиристоры закрываются.

Рис. 7. Схема автоматического двухпредельного вольтметра.

Таким образом, различным величинам сопротивления R4 соответствует различная длительность «отрезков» синусоидального напряжения на нагрузке. Выходную мощность можно регулировать практически от 0 до 100%. Стабильность работы устройства определяется применением «логики» – пороги переключения элементов стабильны.

Конструкция и налаживание

Если ошибок в монтаже нет, то устройство работает стабильно. При замене конденсатора С3 потребуется подбор резисторов R3 и R4. Замена тиристоров в силовом блоке может потребовать подбора R9, R10 (бывает, даже силовые тиристоры одного типа резко отличаются по токам включения – приходится менее чувствительный отбраковывать).

Измерять напряжение на нагрузке можно каждый раз «подходящим» вольтметром. Исходя из мобильности и универсальности блока регулирования, мы применили автоматический двухпредельный вольтметр (рис.7).

Измерение напряжения до 30 В производится головкой PV1 типа М269 с добавочным сопротивлением R2 (регулируется отклонение на всю шкалу при 30 В входного напряжения). Конденсатор С1 необходим для сглаживания напряжения, подводимого к вольтметру.

Для «загрубления» шкалы в 10 раз служит остальная часть схемы. Через лампу накаливания (бареттер) HL3 и подстроечный резистор R3 запитывается лампа накаливания оптопары U1, стабилитрон VD1 защищает вход оптрона.

Большое входное напряжение приводит к снижению сопротивления резистора оптопары от мегаом до ки-лоом, транзистор VT1 открывается, реле К1 срабатывает. Контакты реле при этом выполняют две функции:

  • размыкают подстроечное сопротивление R1 – схема вольтметра переключается на высоковольтный предел;
  • вместо зеленого светодиода HL2 включается красный светодиод HL1.

Красный, более заметный, цвет специально выбран для шкалы больших напряжений.

Внимание! Подстройка R1(шкала 0. 300) производится после подстройки R2.

Питание к схеме вольтметра взято из блока управления тиристорами. Развязка от измеряемого напряжения осуществлена с помощью оптрона. Порог переключения оптрона можно установить немного выше 30 В, что облегчит подстройку шкал.

Диод VD2 необходим для защиты транзистора от всплесков напряжения в момент обесточивания реле. Автоматическое переключение шкал вольтметра оправдано при использовании блока для питания различных нагрузок. Нумерация выводов оптрона не дана: с помощью тестера нетрудно различить входные и выходные выводы.

Сопротивление лампы оптрона равно сотням ом, а фоторезистора – мегаом (в момент измерения лампа не запитана). На рис.8 показан вид устройства сверху (крышка снята). VS1 и VS2 установлены на общем радиаторе, VS3 и VS4 – на отдельных радиаторах.

Резьбу на радиаторах пришлось нарезать под тиристоры. Гибкие выводы силовых тиристоров обрезаны, монтаж осуществлен более тонким проводом.

Рис. 8. Вид устройства сверху.

На рис.9 показан вид на лицевую панель устройства. Слева расположена ручка регулирования тока нагрузки, справа – шкала вольтметра. Около шкалы закреплены светодиоды, верхний (красный) расположен около надписи «300 В».

Клеммы устройства не очень мощные, так как применяется оно для сварки тонких деталей, где очень важна точность поддержания режима. Время пуска двигателя небольшое, поэтому ресурса клеммных соединений хватает.

Рис. 9. Вид на лицевую панель устройства.

Верхняя крышка крепится к нижней с зазором в пару сантиметров для обеспечения лучшей циркуляции воздуха.

Устройство легко поддается модернизации. Так, для автоматизации режима запуска двигателя автомобиля не нужны дополнительные детали (рис.10).

Необходимо между точками «D» и «E» блока управления включить нормально замкнутую контактную группу реле К1 из схемы двухпредельного вольтметра. Если перестройкой R3 не удастся довести порог переключения вольтметра до 12. 13 В, то придется заменить лампу HL3 более мощной (вместо 10 установить 15 Вт).

Пусковые устройства промышленного изготовления настраиваются на порог включения даже 9 В. Мы рекомендуем настраивать порог переключения устройства на более высокое напряжение, так как еще до включения стартера аккумулятор немного подпитывается током (до уровня переключения). Теперь пуск производится немного «подзаряженным» аккумулятором вместе с автоматическим пусковым устройством.

Рис. 10 . Автоматизация режима запуска двигателя автомобиля.

По мере увеличения бортового напряжения автоматика «закрывает» подачу тока от пускового устройства, при повторных пусках в нужные моменты подпитка возобновляется. Имеющийся в устройстве регулятор тока (скважности выпрямленных импульсов) позволяет ограничить величину пускового тока.

Н.П. Горейко, В.С. Стовпец. г. Ладыжин. Винницкая обл. Электрик-2004-08.

Хочу вам предложить отличное решение для сварочного аппарата.

Этот модуль плавно регулирует сварочный ток (фазоимпульсный метод регулирования тока), также может применяться для регулятора тока заряда аккумуляторов.

Разрешение регулятора довольно высокое: около 140 шагов в диапазоне от 0 до 100% мощности.
Тестировалось устройство на сварочном аппарате с максимальным рабочим током приблизительно 160-180А
Управление осуществляется двумя кнопками + и -.

Кратковременное нажатие увеличивает (+) на 1 шаг или уменьшает (-) на один шаг, удержание кнопки быстро увеличивает/уменьшает выходной ток.

В данном устройстве сохраняется установленный ток при отключении устройства.
Индикация – самая простая (так как изначально изготавливался модуль для тестирования качества работы) светодиод мигает при регулировке – чем быстрее мигает, тем меньше мощность. Когда дошли до максимума или минимума – светодиод тухнет.

В архиве есть все необходимые файлы (прошивка, схема , печатная плата и файл еепром его не обязательно заливать) для повторения устройства. Устройство не нуждается в наладке и начинает работать сразу после правильной сборки. Прошивку можно залить с помощью любого АВР программатора, фьюзы изменять не нужно.
Если данный проект заинтересует людей – буду готов усовершенствовать модуль.

Ниже вы можете скачать печатную плату в формате LAY, прошивку

Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.

Наиболее оптимальный вариант – еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.

Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело – цепь первичной обмотки, где токи в пять раз меньше.

После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы – широко известный тиристорный регулятор, схема которого изображена на рис.1.

При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе – работает не иначе, как «часы».

Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.

Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.

Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.

Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.

Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.

В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.

Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.

Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).

Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.

Простой и надежный регулятор постоянного тока для сварки и зарядки

Предлагается конструкция удобного и надёжного регулятора постоянного тока. Диапазон изменения им напряжения — от 0 до 0,86 U2, что позволяет использовать этот ценный прибор для различных целей. Например, для зарядки аккумуляторных батарей большой ёмкости, питания электронагревательных элементов, а главное — для проведения сварочных работ как обычным электродом, так и из нержавеющей стали, при плавной регулировке тока.

Принципиальная электрическая схема регулятора постоянного тока.

График, поясняющий работу силового блока, выполненного по однофазной мостовой несимметричной схеме (U2 — напряжение, поступающее со вторичной обмотки сварочного трансформатора, alpha — фаза открывания тиристора, t — время).

Регулятор может подключаться к любому сварочному трансформатору с напряжением вторичной обмотки U2=50…90В. Предлагаемая конструкция очень компактна. Общие габариты не превышают размеры обычного нерегулируемого выпрямителя типа «мостик» для сварки постоянным током.

Схема регулятора состоит из двух блоков: управления А и силового В. Причём первый представляет собой не что иное, как фазоимпульсный генератор. Выполнен он на базе аналога однопереходного транзистора, собранного из двух полупроводниковых приборов n-p-n и p-n-p типов. С помощью переменного резистора R2 регулируется постоянный ток конструкции.

В зависимости от положения движка R2 конденсатор С1 заряжается здесь до 6,9 В с различной скоростью. При превышении же этого напряжения транзисторы резко открываются. И С1 начинает разряжаться через них и обмотку импульсного трансформатора Т1.

Тиристор, к аноду которого подходит положительная полуволна (импульс передаётся через вторичные обмотки), при этом открывается.

В качестве импульсного можно использовать промышленные трёхобмоточные ТИ-3, ТИ-4, ТИ-5 с коэффициентом трансформации 1:1:1. И не только эти типы. Хорошие, например, результаты дает использование двух двухобмоточных трансформаторов ТИ-1 при последовательном соединении первичных обмоток.

Причём все названные типы ТИ позволяют изолировать генератор импульсов от управляющих электродов тиристоров.

Только есть одно «но». Мощность импульсов во вторичных обмотках ТИ недостаточна для включения соответствующих тиристоров во втором (см. схему), силовом блоке В. Выход из этой «конфликтной» ситуации был найден элементарный. Для включения мощных использованы маломощные тиристоры с высокой чувствительностью по управляющему электроду.

Силовой блок В выполнен по однофазной мостовой несимметричной схеме. То есть тиристоры трудятся здесь в одной фазе. А плечи на VD6 и VD7 при сварке работают как буферный диод.

Монтаж? Его можно выполнить и навесным, базируясь непосредственно на импульсном трансформаторе и других относительно «крупногабаритных» элементах схемы. Тем более что соединяемых в данную конструкцию радиодеталей, как говорится, минимум-миниморум.

Прибор начинает работать сразу, без каких-либо наладок. Соберите себе такой — не пожалеете.

А.ЧЕРНОВ, г. Саратов. Моделист-конструктор 1994 №9.

Как регулировать ток трансформатора в сварочном полуавтомате: схемы управления тиристорами для сварки

Тиристорный регулятор сварочного тока

Регулятор тока для сварочного аппарата


Приветствую, Самоделкины!
Не так давно у автора YouTube канала «AKA KASYAN» оказался вот такой трехфазный силовой трансформатор от глубинного вибратора для укладки бетона.

Минусом данного трансформатора является то, что его обмотки намотаны алюминиевым проводом. А плюс заключается в том, что напряжение вторичных обмоток составляет порядка 36В.

В общем автор решил сделать из этого трансформатора самодельный сварочный аппарат. Выходное напряжение достаточно для нормального розжига дуги.
Трансформаторные сварочные аппараты были вытеснены более компактными и имеющими меньший вес инверторными сварочными аппаратами. Но неоспоримым плюсом трансформаторных сварочных аппаратов является предельно высокая надежность и долговременная постоянная нагрузка.
Сам же сварочный аппарат состоит из 2-ух основных частей: силового трансформатора и системы регулировки тока сварки.


Если аппарат постоянного тока, то в его состав входит еще и выпрямитель.


Ниже представлена достаточно известная схема регулировки сварочного тока на основе тиристоров:

Регулировка сварочного тока может осуществляться несколькими способами, например, нагрузочным балластом или сопротивлением, переключая отводы на первичные обмотки трансформатора, ну и наконец электронный способ регулировки, выполняемый, как правило, с помощью тиристоров.

Регуляторы тока на основе тиристоров являются предельно надежными и к тому же обладают высоким КПД из-за импульсного принципа регулировки. Что еще немаловажно, при регулировке мощности выходное напряжение сварочного аппарата без нагрузки остается неизменным, а это значит, что будет уверенный розжиг дуги в любом диапазоне выходного тока.
Регуляторы мощности можно устанавливать, как на входе по первичной цепи:
Так и на выходе, после вторичной обмотки:
Проблема состоит в том, что принцип регулировки мощности с помощью регулятора данного типа основывается на обрезании начального синусоидального сигнала, то есть, на нагрузку поступают части синусоиды, и если регулятор установлен по первичной цепи, то на трансформатор пойдут импульсы неправильной формы, что приводит к образованию своеобразного звука, дополнительной вибрации и перегреву обмоток.
Но несмотря ни на что данные системы вполне успешно справляются с индуктивной нагрузкой, а если к тому же под рукой имеется хороший и достаточно надежный трансформатор, то попробовать повторить, думаю, стоит.
В данном примере система регулировки тока установлена по вторичной цепи.
Это позволяет нам управлять сварочным током непосредственно. Плюс к тому такая система помимо регулировки сварочного тока будет служить еще и выпрямителем, то есть, дополняя сварочный трансформатор таким регулятором, вы получаете сварку постоянным током с возможностью регулировки.
Теперь подробней разберем схему будущего устройства. Она состоит из регулируемого выпрямителя:
В его состав входят пара диодов и пара тиристоров:
Далее идет система управления тиристорами:
Система управления в данном примере запитана от отдельного маломощного трансформатора с напряжением вторичной обмотки от 24 до 30В с током не менее 1А.

Конечно можно было на основном силовом трансформаторе намотать обмотку с необходимыми характеристиками и использовать его для запитки системы управления.
Сама схема выполнена на небольшой печатной плате. Ее вы можете скачать , вместе с общим архивом проекта.
Тиристор можно использовать любой с током не менее 1А.
В данном примере автор использовал 10-амперный, но в этом нет никакого смысла, просто такой был под рукой. То же самое и с диодами, хватит и 1-амперных, но запас по току никогда не будет лишним.
Верхний регулятор позволят настраивать пределы выходного тока.
Второй регулятор служит для регулировки основного тока сварки, тут уже необходимо использовать проволочные переменные резисторы желательно на 10 и более ватт.

Изначально автор установил вот такого монстра:
Но потом он был заменен на вот такой, менее мощный:
А сейчас давайте рассмотрим силовой выпрямитель:
Диоды и тиристоры, использованные здесь, несмотря на монструозный вид и прекрасные характеристики были куплены на барахолке буквально за копейки.
Данные диоды типа В200 с током в 200А, обратное напряжение зависит и от индекса. В данном случае 1400В. А вот тиристоры более мощныеТ171-320.
Такие тиристоры рассчитаны на ток аж в 320А. Ток в ударном режиме может доходить до 10000А. Конечно данные диоды и тиристоры способны на большее, и они не сгорят даже при токах в 300-400А. А еще эти компоненты произведены еще в СССР, то есть, их характеристики никак не завышены заводом изготовителем.
К недостаткам такого регулятора можно отнести разве что большой вес и приличные размеры.
Для всех силовых соединений автор применил луженые медные клеммы. Такие без труда можно приобрести практически в любом строительном магазине, стоят они не дорого.
Провода 2 по 6 квадратов параллельно, мало конечно, но зато они медные.
Держатель для электродов автор нашел в ближайшем строительном магазине, не совсем удобный конечно, да и качество изготовления оставляет желать лучшего, но какой был.
Теперь вернемся к трансформатору. Так как силовой трансформатор у нас трехфазный, а работать ему предстоит в однофазной сети, то нам придется пере коммутировать обмотки. На каждой катушке имеется своя первичная и вторичная обмотка.
Центральную катушку автор исключил.
Две крайние катушки подключены параллельно, как по первичной, так и по вторичной обмотке для работы от однофазной сети.
Но в ходе экспериментов выяснилось, что с учетом потерь на выпрямителе, напряжения недостаточно для нормального розжига дуги, поэтому вторичные обмотки пришлось подключить последовательно для увеличения общего напряжения, ток при этом будет соответственно в 2 раза меньше, но что поделать.
При токах 75-80А данный трансформатор начинает перегреваться и вонять, а так система управления именно в таком исполнении спокойно может быть использована для токов в 200 и даже больше ампер.
Спалив 3 электрода, автор понял, что трансформатор сильно перегрелся, все-таки он не предназначен для таких задач, но мы в данном случае проверяли систему регулировки тока, а она работает неплохо.

На этом все. Благодарю за внимание. До новых встреч!
Видеоролик автора:

Доставка новых самоделок на почту

Получайте на почту подборку новых самоделок. Никакого спама, только полезные идеи!

*Заполняя форму вы соглашаетесь на обработку персональных данных

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. .

Источник: https://USamodelkina.ru/14882-reguljator-toka-dlja-svarochnogo-apparata.html

Общие понятия

Общеизвестен принцип дуговой сварки. Освежим в памяти основные понятия. Чтобы получить сварочное соединение, необходимо создать дугу. Электрическая дуга возникает при подаче напряжения между сварочным электродом и поверхностью свариваемого материала. Ток дуги расплавляет металл, образуется расплавленная ванна между двумя торцами. После остывания шва получаем крепкое соединение двух металлов.

Схема дуговой сварки.

В России переменный ток регламентирован частотой 50 Гц. Питание для сварочного аппарата подается от сети фазным напряжением 220 В. Сварочные трансформаторы имеют две обмотки: первичную и вторичную. Вторичное напряжение трансформатора составляет 70 В.

Разделяют ручной и автоматический режим сварки. В условиях домашней мастерской сварку проводят в ручном режиме. Перечислим параметры, которые изменяют в ручном режиме:

  • сила тока сварки;
  • напряжение дуги;
  • скорость сварочного электрода;
  • количество проходов на шов;
  • диаметр и марка электрода.

Правильный выбор и поддержание на протяжении сварочного процесса необходимых параметров являются залогом качественного сварного соединения.

При проведении ручной дуговой сварки необходимо грамотно распределять ток. Это позволит выполнить качественный шов. Стабильность дуги напрямую зависит от величины сварочного тока. Специалисты подбирают ее исходя из диаметра электродов и толщины свариваемых материалов.

Типы регуляторов тока

Принципиальная электрическая схема регулятора постоянного тока.

Существует больше количество способов изменения силы тока во время проведения сварочных операций. Еще больше разработано принципиальных электрических схем регуляторов. Способы управления сварочным током могут быть следующие:

  • установка пассивных элементов во вторичной цепи;
  • переключение числа витков обмоток трансформатора;
  • изменение магнитного потока трансформатора;
  • регулировка на полупроводниках.

Следует знать преимущества и недостатки разных методов регулировки. Назовем характерные особенности указанных типов.

Резистор и дроссель

Первый тип регулировки считается самым простым. В сварочную цепь включают последовательно резистор или дроссель. В этом случае изменение силы тока и напряжения дуги происходит за счет сопротивления и, соответственно, падения напряжения. Умельцы оценили простой и эффективный способ регулировки тока – включение сопротивления во вторичную цепь. Устройство несложное и надежное.

Изменение величины тока с помощью резистора.

Добавочные резисторы используются для смягчения вольт-амперной характеристики источника питания. Изготавливают сопротивление из толстой (диаметром 5-10 мм) проволоки из нихрома. В качестве пассивного элемента применяются мощные проволочные сопротивления.

Для регулировки тока вместо сопротивления ставят и дроссель. Благодаря введению индуктивности в цепь дуги переменного тока наблюдается сдвиг фаз тока и напряжения. Переход тока через нуль происходит при высоком напряжении трансформатора, что повышает надежность повторного зажигания и устойчивость горения дуги. Режим сварки становится мягкий, в результате чего получаем равномерный и качественный шов.

Этот способ нашел широкое распространение благодаря надежности, доступности в изготовлении и низкой стоимости. К недостаткам отнесем малый диапазон регулирования и сложность в перестройке параметров. Сделать такую конструкцию по силам каждому. Часто применяют трансформаторы типа ТС-180 или ТС-250 от старых ламповых телевизоров, с которых убирают первичные и вторичные обмотки и наматывают дроссельную обмотку с требуемым сечением. Сечение алюминиевого провода составит порядка 35-40 мм, медного – до 25 мм. Количество витков будет находиться в диапазоне 25-40 штук.

Переключение числа обмоток

Регулировка напряжения осуществляется изменением числа витков обмотки. Так изменяется коэффициент трансформации. Регулятор сварочного тока прост в эксплуатации. Для такого способа регулировки необходимо сделать отводы при намотке. Коммутация проводится переключателем, выдерживающим большой ток и сетевое напряжение. Недостатки переключения витков: трудно найти коммутатор, выдерживающий нагрузку в пару сотен ампер, небольшой диапазон регулировки тока.

Магнитный поток сердечника

Влиять на параметры тока можно магнитным потоком силового трансформатора. Регулирование силы сварочного тока производят за счет подвижности обмоток, изменения зазора или введения магнитного шунта. При сокращении или увеличении расстояния магнитные потоки двух обмоток меняются, в результате чего сила тока тоже будет изменяться. Способ магнитного потока практически не используется из-за сложности изготовления трансформаторного сердечника.

Полупроводники в схеме регулировки тока

Рисунок 1. Схема регулятора сварочного тока.

Полупроводниковые приборы совершили настоящий прорыв в сварочном деле. Современная схемотехника позволяет использовать мощные полупроводниковые ключи. Особенно распространены тиристорные схемы регулировки сварочного тока. Применение полупроводниковых приборов вытесняет неэффективные схемы управления. Данные решения повышают пределы регулировки тока. Габаритные и тяжелые сварочные трансформаторы, содержащие огромное количество дорогой меди, заменены на легкие и компактные.

Электронный тиристорный регулятор – это электронная схема, необходимая для контроля и настройки напряжения и силы тока, которые подводятся к электроду в месте сварки.

Для примера рассмотрим регулятор на тиристорах. Схема регулятора сварочного тока представлена на рис. 1.

В основу схемы положен принцип фазового регулятора тока.

Регулировка осуществляется подачей управляющего напряжения на твердотельные реле – тиристоры. Тиристоры VS1 и VS2 открываются поочередно при поступлении сигналов на управляющие электроды. Напряжение питания схемы формирования управляющих импульсов снимается с отдельной обмотки. Далее преобразуется в постоянное напряжение диодным мостом на VD5-VD8.

Положительная полуволна заряжает емкость С1. Время заряда электролитического конденсатора формируется резисторами R1, R2. Когда напряжение достигнет необходимой величины (более 5,6 В), происходит открытие динистора, образованного стабилитроном VD6 и тиристором VS3. Далее сигнал проходит через диод VD3 или VD4. При положительной полуволне открывается тиристор VS1, при отрицательной – VS2. Конденсатор С1 разрядится. После начала следующего полупериода тиристор VS1 закрывается, происходит зарядка емкости. В этот момент открывается ключ VS2, который продолжает подачу напряжения на электрическую дугу.

Наладка сводится к установке диапазона сварочного тока подстроечным сопротивлением R1. Как видим, схема регулировки сварочного тока довольно-таки проста. Доступность элементной базы, простота наладки и управления регулятора допускают изготовление такого сварочного аппарата самостоятельно.

Инверторные сварочные аппараты

Устройство инверторного сварочного аппарата.

Особое место среди сварочного оборудования занимают инверторы. Инверторный сварочный аппарат – это устройство, которое способно обеспечить устойчивое питание сварочной дуги. Малые габариты и небольшой вес придают аппарату мобильность. Сильной стороной инвертора является возможность применять электроды переменного и постоянного тока. Сварка позволяет стыковать цветные металлы и чугун.

Главные преимущества использования инвертора:

  • защита от нагрева деталей;
  • устойчивость к возмущениям сети;
  • независимость от колебаний и перегрузок по току;
  • независимость от перепадов промышленной сети;
  • способность скреплять цветной металл;
  • стабильность сварочного тока;
  • качественный шов;
  • ровное горение дуги;
  • малый вес и габариты.

К недостаткам сварочных инверторов относят высокую стоимость. Электронные детали следует оберегать от воздействия влаги, пыли, жары и сильных морозов (ниже 15оС).

Инверторное сварочное оборудование сегодня присутствует практически во всех слесарных и авторемонтных мастерских.

Источник: https://expertsvarki.ru/oborudovanie/sxema-regulyatora-toka-dlya-svarochnogo-apparata.html

Регуляторы для сварки: основные способы регулирования

На чтение 6 мин. Опубликовано

Введение в схему аппарата регуляторов для сварки положительно влияет на работу оборудования. Однако каждое устройство имеет недостатки, которые необходимо изучить заранее.

Любое отклонение настроек агрегата от нормы негативно сказывается на качестве шва. Существуют регуляторы, меняющие силу тока, направление магнитного потока, напряжение.

Устройство-регулятор контактной сварки.

Общая информация

Залог высокого качества шва – правильная настройка параметров электротока. Опытные сварщики работают с деталями разной толщины. При этом мало выставить стандартные значения минимума или максимума.

Требуется тонкая регулировка с точностью до ампера. Для этого в конструкцию аппарата включают дополнительное устройство. Его называют регулятором тока.

Как производится регулировка тока сварочного аппарата

Настройка параметров агрегата обеспечивает не только высокое качество шва, но и удобство выполнения работ. Регулировка дает возможность правильно выбрать тип и диаметр электрода для каждого случая.

Выбор режима работы меняют механически или автоматически.

Во втором случае нужны сложные симисторные или тиристорные схемы. При наличии таких компонентов ремонт аппарата вызывает затруднения, его можно выполнять только в условиях специальной мастерской.

Способы регулировки сварочного тока

Настраивать аппарат можно разными методами.

Самыми распространенными считаются:

  • повышение индуктивной или резистивной нагрузки на обмотку агрегата;
  • уменьшение или увеличение числа витков;
  • перенаправление магнитного потока оборудования;
  • введение полупроводниковых систем.

Вариантов реализации этих схем много. При самостоятельной сборке аппарата каждый сварщик выбирает регулирующее устройство по возможностям.

Схема сварочного аппарата.

Введение резистивной или индуктивной нагрузки

Это самый простой способ регулирования. К держателю подсоединяют дроссель или резистор. Это помогает менять индуктивность, влияющую на силу тока и напряжение.

Резисторные приборы улучшают характеристики агрегата. Для изготовления регулятора нужен набор проволок или прочная нихромовая спираль. Чтобы уменьшить или увеличить сопротивление, эти устройства подсоединяют к нужному витку обмотки.

Регулятор-дроссель обеспечивает многоступенчатую настройку. Его подключают к цепи после держателя. Индуктивная нагрузка создает разность между током и напряжением.

При минимальных значениях силы напряжение приобретает максимальную амплитуду. Такие параметры способствуют поддержанию стабильной дуги.

Изготовление дросселя своими руками

Этот элемент получают из ненужного трансформатора. Требуется только магнитопровод, поэтому обмотки снимают. После этого накручивают 30-40 витков медной толстой жилы.

Такой регулятор подойдет для изменения рабочих параметров трансформаторного агрегата. Элемент прост и ремонтопригоден. Недостатком считают слишком большой шаг настройки.

Накручиваем витки из медной толстой жилы.

Изменение количества витков

Такой способ действует благодаря повышению или уменьшению показателя трансформации. Для этого используют вспомогательные отводы вторичной обмотки.

Переключение между элементами помогает менять рабочее напряжение, мощность дуги. Регулятор способен работать с высокими силами электротока. Недостатками считают сложность приобретения коммутатора с требуемыми характеристиками, малый диапазон настроек.

Схема первичной и вторичной обмоток трансформатора.

Изменение магнитного потока аппарата для сварки

Метод предназначен для работы с трансформаторными агрегатами. Меняя магнитный поток, увеличивают КПД аппарата. Это помогает регулировать значение тока.

Агрегат настраивают за счет увеличения зазора, встраивания шунта или повышения подвижности обмоток. Добавляя или сокращая расстояние между катушками, наращивают мощность дуги.

Прежде аппараты снабжались специальной рукояткой. При ее повороте обмотка поднималась либо опускалась. Этот метод устарел и сейчас почти не применяется.

Мощные полупроводниковые приборы

Создание устройств, рассчитанных на высокие напряжение и силу тока, помогло разработать усовершенствованные сварочные аппараты. Регуляторы меняют не только сопротивление.

Они позволяют влиять на значения электричества, улучшать характеристики дуги. В классическом сварочном трансформаторе применяют тиристорные регулирующие приборы.

Трансформатор сварочного аппарата.

Регулировка в сварочных инверторах

Такие агрегаты характеризуются лучшими рабочими параметрами, компактными размерами. Силу тока в этих аппаратах регулируют, меняя частоту генератора. При снижении этого параметра уменьшается передаваемая обмотке мощность.

Ручка регулятора располагается на передней панели аппарата. Вращением ручки изменяют параметры работы генератора. В результате сварочная дуга приобретает нужные характеристики. Инверторные аппараты настраивают так же, как ручные.

Помимо регулировочной ручки, управляющий блок инвертора снабжается дополнительными средствами защиты и настройки. Они помогают поддерживать устойчивую дугу, делают сварку безопасной.

Устройство инверторного сварочного аппарата.

Изготовление регулятора сварочного тока

Простое устройство можно собрать из мощных проволок, используемых в подъемных механизмах. При отсутствии такого материала регулятор изготавливают из дверной пружины.

Такое сопротивление подключают стационарным или съемным способом. Один конец пружины подсоединяют к выходу трансформатора. Другую сторону снабжают зажимом, который может перемещаться по спирали.

Лучшим вариантом считается нихромовая проволока. Из нее изготавливают открытые спирали, устанавливаемые на длинный каркас. Под воздействием тока деталь создает вибрации.

Снизить их выраженность помогают растягивание спирали, увеличение толщины основания. Сгибание проволоки змейкой уменьшает размер резистора.

Регулятор тока для сварочного аппарата.

Необходимые элементы

При сборке регулятора могут потребоваться:

  • стальная пружина;
  • нихромовая спираль;
  • шнур;
  • переключатель;
  • резистор;
  • катушка;
  • готовая схема сборки.

Схема тиристорного и симисторного регулятора тока

Такие элементы использовались в старых сварочных аппаратах. Их встраивали в первичную или вторичную обмотку трансформатора.

Принцип действия приборов таков:

  1. Управляющий элемент тиристора получает сигнал от регулятора. Это способствует открытию полупроводника. Диапазон длительности сигналов широк.
  2. Увеличение параметра способствует изменению времени начала полупериода электротока. Из-за этого его средняя сила снижается или повышается.

Главным недостатком схемы является увеличение времени нулевых значений. Дуга укорачивается, гаснет в процессе сварки. Для устранения такого эффекта в цепь включают дроссели.

Схема тиристорного регулятора мощности.

Способы измерения сварочного тока

Для оценки рабочих параметров аппарата требуются специфические устройства, которые редко применяются в быту.

Токоизмерительные клещи

Самый простой измерительный инструмент. Встраивать его в электрическую цепь не нужно. Силу тока меряют на расстоянии, не касаясь провода. Разводящийся контур инструмента охватывает кабель.

На корпусе расположен переключатель диапазонов измерения, максимальное значение составляет 500 А. Клещи можно использовать в любой ситуации.

Инструмент не воздействует на электрическую цепь аппарата. Он подходит только для измерения переменного тока. В остальных случаях клещи бесполезны.

Токоизмерительные клещи для измерения переменного тока.

Амперметр

Встраивание этого прибора в электрическую цепь помогает получать более точные результаты измерений.

При подключении учитывают такие особенности:

  1. В цепь встраивают не само устройство, а его шунт. Стрелочный указатель подключают к резистору параллельно.
  2. Шунт имеет собственное сопротивление. Однако замерить его стандартным омметром не получится.
  3. Для каждого амперметра предназначен резистор своего сопротивления. Чаще всего устройства продаются в комплекте.
  4. Амперметр не должен реагировать на колебания, возникающие при изменении параметров тока. В противном случае стрелка будет хаотично двигаться при горении дуги.
Амперметр для сварочного аппарата.

Дополнительная информация

При сборке регулятора для сварочного агрегата стоит использовать тонкое текстолитовое основание. Это упрощает процесс монтажа. Все электронные компоненты, спирали и проводники нужно изолировать друг от друга.

В противном случае повышается вероятность короткого замыкания. При правильной сборке регулирующего прибора дополнительная настройка не требуется. Однако перед началом эксплуатации проверяют работоспособность транзисторов.

Регулятор тока для сварочного аппарата

Каждый способ регулирования способен положительно сказываться на работе сварочного агрегата, но есть у каждого метода и свои недостатки, которые желательно знать и уметь избегать неприятных ситуаций. Сварочный процесс является ответственной процедурой, поэтому становится определяющим практически любое отклонение от норм.

При помощи специальных регуляторов:

  • Настраивается рабочий ток,
  • Меняется магнитный поток.

Поэтому регулятор тока для сварочного аппарата выполняет важную функцию и в качестве основных методов регулировки используют: магнитное шунтирование, подвижность обмоток, а так же дроссели разных видов.

Способы регулировки параметров сварки

Если подключится к отводам, которые выполняются на второй обмотке трансформатора, то есть возможность для ступенчатого регулирования электрического тока. При использовании данного способа меняется количество витков, таким образом, происходит уменьшение или увеличение тока.

Но есть недостатки в этом методе, которые заключаются в минимальных диапазонах регулировки. И придется делать приличные габариты регулирующего устройства, чтобы выдерживать серьезные электрические перегрузки. Также предстоит пользоваться мощными переключателями, способными выдерживать большие токи.

Вторичная обмотка принимает значительно большие нагрузки, чем вторичная обмотка, поэтому это приспособление быстро изнашивается. Для улучшения показателей подобной конструкции применяются тиристоры, которые интегрируются в первичную обмотку.

С помощью такого прибора осуществляется настройка сварочного аппарата, причем делать это очень просто. Чтобы сделать регулятор тока для сварочного аппарата, нужно правильно подбирать сопротивления и прочие элементы, входящие в схему данного устройства.

Схема регулятора тока для сварочного агрегата

Тиристоры в устройстве устанавливаются параллельно, так что они открываются при помощи тока, который создается двумя транзисторами. Когда регулятор включается в схему, тиристоры находятся в закрытом состоянии, а заряд принимают конденсаторы благодаря переменному сопротивлению.

И при достижении конденсатором определенного напряжения происходит движение тока разряда. После транзистора происходит открытие тиристора, подключающего нагрузку.

Меняя сопротивление резистора, будет можно осуществлять регулировку подключения тиристоров. В связи с этим происходит изменение общего тока на изначальной трансформаторной обмотке.

Чтобы добиться увеличения или снижения диапазона регулировки, меняется сопротивление резистора в нужном направлении. Если нет в наличии транзисторов, допустимым условием является применение динисторов.

Схема регулятора с динисторами и транзисторами

Монтируется регулятор тока для сварочного аппарата не только на транзисторах, предназначенных для получения лавинного напряжения, но и с использованием динисторов.

Данный элемент нужно подключить анодами к выводам сопротивления, а катодами он должен быть присоединен к другим двум резисторам. Используются для регуляторов сварочных приборов транзисторы моделей П416, ГТ308, но есть еще возможность для подключения маломощных транзисторов с похожими характеристиками.

Резисторы переменного типа могут быть использованы СП-2, а в качестве постоянных элементов применяются МБМ. При этом нужно подбирать такое сопротивление, которое будет обладать подходящим рабочим напряжением.

Чтобы качественно собрать регулирующее устройство для сварочного аппарата, нужно воспользоваться текстолитовым основанием, имеющим толщину 1,5 – 2 миллиметра, тогда процесс монтажа получится более удобным.

Необходимо предусмотреть изоляцию всех деталей, участвующих в схеме, от корпуса, так как возможны короткие замыкания и увеличение температуры. Серьезные перегрузки способны приводить к негативным последствиям и выходу из строя, как отдельных элементов, так и всего устройства.

Если при сборке регулирующего устройства соблюдались все правила, и детали были подобраны по оптимальным параметрам, то регулятор не обязательно настраивать.

Но перед тем как эксплуатировать приспособление в полном объеме, нужно проконтролировать работу транзисторов, включенных в схему, потому что они могут не выдержать лавинного режима.

Благодаря стабильной работе устройства сварочные аппараты смогут нормально работать с разными свариваемыми материалами и конструкциями.



Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

Регулятор напряжения на симисторе для трансформатора: схема сварки постоянным током

Простейшие самодельные сварочные аппараты

Самодельный сварочный выпрямитель прекрасно подойдет для выполнения небольших бытовых задач. До полноценного инвертора он в некоторых моментах, конечно же, не дотягивает, но с обычными домашними работами справляется на ура. Преимуществом самодельных сварочных аппаратов является то, что пользователь может самостоятельно вносить изменения в конструкцию, меняя характеристики агрегата и добавляя или исключая ненужные функции.

За основу можно взять конструкцию, представленную на рис. 1. Принципиальная схема такого агрегата показана на рис. 2.

Рисунок 1. Размеры самодельного сварочного аппарата.

Самые простые модели самодельных сварочных аппаратов представляют собой трансформатор с рабочей и сетевой обмоткой. Сетевая, как правило, создается под напряжением в 220-240 В. Рабочую рассчитывают на напряжение 45-70 В. Изменение тока осуществляется путем изменения количества витков рабочей обмотки. «Железную» часть можно собрать из деталей промышленных понижающих трехфазных трансформаторов либо же старых асинхронных двигателей.

Собираются самодельные сварочные аппараты с использованием:

  1. Отверток.
  2. Паяльника.
  3. Плоскогубцев.
  4. Ножниц, ножа и ножовки.
  5. Электродрели.
  6. Молотка.
  7. Шайб, винтов и гаек.
  8. Алюминиевых пластин и заклепок.

Все об отоплении, утеплителях и монтажу – 1poteply.ru.

Что нужно знать об обмотках сварочного аппарата?

В процессе расчета и создания проекта агрегата нужно рассчитывать первичную обмотку на ток в 25 А. Рабочая либо вторичная обмотка рассчитывается на 160 А. Очень важно подобрать подходящее сечение проводов. Как правило, используется расчет, в соответствии с которым на 1 мм² провода допускается подавать ток не более 10 А. В случае использования алюминиевых проводов данное значение необходимо уменьшить до 4 А.

Рисунок 2. Принципиальная схема самодельного аппарата для сварки.

Сначала определяется площадь сечения окна железа в см², после рассчитывается число витков обмоток. Сначала нужно рассчитать количество обмоток на 1 В, а затем для суммарного значения. На 1 В определите следующим образом: разделите 48 на площадь сечения окна железа трансформатора.

К сборке самодельных сварочных аппаратов можно приступать только после полного завершения расчета. Созданное в соответствии с этой инструкцией приспособление представляет собой простейший сварочный агрегат. Для того чтобы перевести инструмент в режим работы на постоянном токе, нужно внести ряд изменений в конструкции и скорректировать расчет.

Возможные детали и необходимые расчеты

Для того чтобы самодельные аппараты могли работать на постоянном токе, в их конструкцию включаются высокомощные выпрямители.

Для максимально эффективной теплоотдачи используются радиаторы. Сами диоды имеют довольно большой размер, что оказывает непосредственное влияние на габариты конструкции. В некоторых ситуациях есть смысл использовать специальный диодный мост. Вы можете самостоятельно его запараллелить, увеличив за счет этого значение выходного тока.

Для сглаживания кривой формы напряжения применяется «электролит» 10 000 мкФ и больше. Его подключение выполняется при помощи резистора. Он обеспечит защиту появления К3 при возгорании сварочной дуги, в момент прикосновения электродом к свариваемым изделиям.

Рисунок 3. Схема сварочного аппарата.

При расчете самодельных сварочных аппаратов приходится корректировать и подстраивать все характеристики под доступные для сборки детали, которые при самостоятельном конструировании в большинстве случаев имеют не самое высокое качество. К примеру, домашние мастера часто используют магнитопровод от трансформатора низкой мощности или же статор давно отслужившего свое и проржавевшего двигателя.

По возможности нужно подобрать детали в хорошем состоянии. От этого напрямую зависит качество сварочных работ. Многим умельцам удается собирать в домашних условиях прекрасные самодельные сварочные аппараты с мягким зажиганием дуги, позволяющие сваривать тонкостенные изделия и практически исключающие разбрызгивание расплавленного металла.

Как работает схема сварки?

На рис. 3 показана принципиальная схема самодельного аппарата.

В данном случае позицией VD-VD4 обозначен сетевой мост. Он отвечает за выпрямление переменного сетевого потенциала. По контактам лампы HL1 начинается течение тока. Она выполняет функции индикатора на протяжении всего сварочного процесса и одновременно заряжает «электролит», обозначенный на рассматриваемой схеме как С5. Дополнительно HL1 отвечает за ограничение тока заряда устройства. Сразу после того как индикатор погаснет, можно начинать варить.

Одновременно с началом зарядки «электролита» С5 стартует зарядка батареи конденсаторов, обозначенных на схеме позициями С6-С17. Происходит это через контур дросселя L1. Загорается светодиод HL2. Это позволяет пользователю понять, что на сварочный аппарат идет сетевое напряжение. Но сварки пока что не будет, т.к. тиристор под позицией VS1 закрыт. Потенциал на его управляющем выводе отсутствует.

Для подачи напряжения на генератор импульсов нужно включить кнопку SB1. Непосредственно генератор сделан на однопереходном транзисторе, обозначен как VT1. Генератор передает импульсы на тиристор под позицией VS2, он включается и открывает запараллеленные тиристоры. На схеме обозначены как VS3-VS7.

Происходит разрядка «электролитов» С6-С17 по обмотке трансформатора Т1, а также контур дросселя под позицией L2. Цепь с трансформатором, дросселем и упомянутыми «электролитами» представляет собой колебательный контур с переменным током. При нахождении контура в противофазе происходит передача тока по диодам под позициями VD8 и VD9. Запараллеленные тиристоры (на рассматриваемой схеме обозначены VS3-VS7) запираются и ждут подачи нового импульса узла на VT1. Затем все происходит по новой, в той же последовательности.

На обмотке «III» трансформатора появляются импульсы, под воздействием которых отпирается VS1. Уже через него происходит соединение выпрямителя VD1-VD4 и преобразователя на тиристорах.

Схема сварочного трансформатора.

Светодиод HL3 сигнализирует о запуске генератора. За выпрямление напряжения отвечают VD11-VD34. Форма кривой сглаживается при помощи «электролитов» под позициями С19-С24. Они же отвечают за облегчение появления дуги.

Трансформатор под позицией Т1 состоит из трех «строчников» от телевизоров старых моделей, сложенных разом. Использован ферритовый сердечник ПК30х16. Обмотки «I» и «II» состоят из 2 секций с проводом ПСД 1,68 в стеклотканевой изоляции. Соединение последовательное. Присутствуют следующие витки:

  1. На «I» обмотке – 2х4.
  2. На «II» обмотке – 2х2.

Тепловой режим обмотки «I» несколько хуже, поэтому в процессе сборки самодельных сварочных аппаратов постоянного тока эта обмотка мотается с зазором (шагом), равным 1 мм. Во второй обмотке должен быть сделан отвод от середины.

Обе обмотки выставляются так, чтобы ничего не мешало работе диодов под позициями VD11-VD34. Обмотка «I», начиная от вывода на L2, наматывается против часовой стрелки. Вторую обмотку мотают по часовой стрелке, от вывода, подсоединенного на VD21-VD34. Обмотка «III» – виток 0,4-0,5-миллиметрового изолированного провода на напряжение от 500 В.

При распределении обмоток нужно знать и учитывать правильные зазоры, чтобы обеспечивалось требуемое охлаждение магнитопровода.

Из соображений безопасности устанавливаются 4 пластины из стеклотекстолита толщиной 1,5 мм. После подгонки их необходимо приклеить.

Дроссель L1 наматывается на сердечник ПЛ 12,5х25-50. При этом необходимо соблюдать зазор в 0,3-0,5 мм. Наматываются 175 витков. Используется провод типа ПЭВ-2. Подходит калибр 1,32.

Дроссель L2 представляет собой бескаркасную спираль, намотанную с использованием провода 4 мм² в теплоизоляции. Всего нужно 11 витков. Намотка выполняется с диаметром в 14 мм. Через дроссель проходит сильный ток, поэтому он требует организации дополнительной обдувки.

В качестве выпрямителя VD11-VD34 в данной конструкции выступает алюминиевая этажерка. Для стяжки используются шпильки. Каждые 2 диода зажимаются между пластинами размером 4,4х4,2 см и толщиной 1 мм.

Тиристоры, «кондеры», транзистор, диоды, стабилитроны и резисторы устанавливаются на стеклотекстолитовую плиту.

Рассмотренная схема позволяет собрать самодельный сварочный аппарат, который сможет качественно выполнять различные бытовые задачи, требующие применения сварки. Данный аппарат пригодится при ремонте в гараже и прочих хозяйственных и бытовых помещениях. В процессе использования придерживайтесь требований техники безопасности, актуальных для сварочных аппаратов любого типа.

Что нужно для сборки сварочного аппарата?

Схема сварочного аппарата постоянного тока представляет собой, как правило, корпус старого асинхронного двигателя или понижающего трёхфазного трансформатора.

Блок питания помещается в корпус, который оборудован всеми необходимыми мелочами:

  • регуляторами;
  • клеммами;
  • соединительными разъёмами;
  • специальными выключателями;
  • переходниками и т. п.

Для удобства переноски и транспортировки, корпус сварочного аппарата можно оборудовать специальными колёсиками или ручками.

Чтобы собрать в домашних условиях сварочный аппарат постоянного тока, необходимо минимум инструментов и оборудования:

  • плоскогубцы;
  • отвёртка;
  • паяльник;
  • нож (ножницы), ножовка;
  • молоток;
  • электродрель;
  • винты, шайбы и гайки разных размеров;
  • алюминиевые заклёпки и пластины.

ВАЖНО: если вы решили самостоятельно собрать сварочный трансформатор постоянного тока, необходимо ознакомиться с базовыми теоретическими знаниями и навыками, которые касаются момента плавления электрода и горения сварочной дуги, технических характеристик трансформаторов, обмоток сварочного аппарата.

Сварочный аппарат своими руками

Сварочный трансформатор является главным элементом любого сварочного устройства (он отвечает за понижение сетевого напряжение до 50-80 В). Схема сварочного аппарата постоянного тока подразумевает максимальную отдачу мощности, из-за чего трансформатор должен спокойно выдерживать подачу тока до 200 А.

Самодельные конструкции сварочных аппаратов очень простые, так как в них отсутствует, как правило, даже дополнительные компоненты для регулировки тока (нет переключателя силы тока). Сила тока регулируется за счёт переключения витков катушек (или других специализированных устройств).

Сварочный трансформатор постоянного тока состоит из магнитопровода (состоит из пластин трансформаторной стали повышенной прочности), первичной и вторичной обмотки. Первичную обмотку обычно изготавливают с отводами, так как это позволяет изменять сварочный ток во время процесса сварки. Если же трансформатор рассчитан на определённый ток, то варить можно сразу после прохода вторичной обмотки.

Не менее важной деталью сварочного трансформатора является магнитопровод, в процессе изготовления которого применяются детали из старых телевизионных трансформаторов или электродвигателей.

Во время сварки важное свойство имеет и эластичность дуги, основным критерием которой является её максимальная длина, при которой дуга может существовать. Дуга может зажигаться и гаснуть до 100 раз в секунду (это зависит от фазового сдвига между током дуги и напряжением на холостом ходу).

Чтобы уменьшить паузы горения, можно повысить напряжение на холостом ходу (не выше уровня 80 В) с помощью включения в цепь дросселей, которые приводят к фазовому сдвигу между напряжением и током.

В таком случае сварочная дуга вообще может гореть беспрерывно, потому, как она будет поддерживаться ЭДС самоиндукцией. А когда дуга более стабильна, сварной шов ложится тоже более ровно.

Тиристорный регулятор тока для сварочного аппарата схема

Качество сварного шва в значительной мере зависит от характеристик электрической дуги. Для каждой толщины металла, в зависимости от его вида требуется определенной силы сварочный ток.

Кроме этого, важна вольтамперная характеристика аппарата для сварки, от этого зависит качество электрической дуги. Для резки металла тоже требуются свои значения электротока. То есть любой сварочный аппарат должен обладать регулятором, управляющим мощностью сварки.

Способы регулирования

Управлять током можно по-разному. Основные способы регулирования такие:

  • введение резистивной или индуктивной нагрузки во вторичную обмотку сварочного аппарата;
  • изменение количества витков во вторичной обмотке;
  • изменение магнитного потока аппарата для сварки;
  • использование полупроводниковых приборов.

Схематических реализаций этих способов множество. При изготовлении аппарата для сварки своими руками каждый может выбрать себе регулятор по вкусу и возможностям.

Резистор или индуктивность

Регулировка сварочного тока с использованием сопротивления или катушки индуктивности является самой простой и надежной. К держателю сварочных электродов последовательно подключают мощный резистор или дроссель. За счет этого меняется активное или индуктивное сопротивление нагрузки, что приводит к падению напряжения и изменению сварочного тока.

Регуляторы в виде резисторов применяют для улучшения вольтамперной характеристики сварочного аппарата. Используется набор мощных проволочных сопротивлений или один резистор, выполненный из толстой нихромовой проволоки в виде спирали.

Для изменения сопротивления специальным зажимом их подключают к определенному витку провода. Резистор выполняется в виде спирали для уменьшения габаритов и удобства использования. Номинал резистора не должен превышать 1 Ом.

Переменный ток в определенные моменты времени имеет нулевые или близкие к нему значения. В это время получается кратковременное гашение дуги. При изменении промежутка между электродом и деталью может произойти прилипание или полное ее гашение.

Для смягчения режима сваривания и соответственно получения качественного шва применяют регулятор в виде дросселя, который включается последовательно с держаком в выходной цепи аппарата.

Дополнительная индуктивность вызывает сдвиг фаз между выходным током и напряжением. При нулевых или близких к нему значениях переменного тока напряжение имеет максимальную амплитуду и наоборот. Это позволяет поддерживать стабильную дугу и обеспечивает надежное ее зажигание.

Дроссель можно изготовить из старого трансформатор. Используется только его магнитопровод, все обмотки удаляются. Вместо них наматывают 25-40 витков толстого медного провода.

Данный регулятор был широко распространен при использовании трансформаторных аппаратов переменного тока благодаря своей простоте и наличию комплектующих. Недостатками дроссельного регулятора сварочного тока являются небольшой диапазон управления.

Изменение количества витков

При этом методе регулировка характеристик дуги осуществляется благодаря изменению коэффициента трансформации. Коэффициент трансформации позволяют изменить дополнительные отводы из вторичной катушки. Переключаясь с одного отвода на другой можно менять напряжение в выходной цепи аппарата, что приводит к изменению мощности дуги.

Регулятор должен выдерживать большой сварочный ток. Недостатком является трудность нахождения коммутатора с такими характеристиками, небольшой диапазон регулировок и дискретность коэффициента трансформации.

Изменение магнитного потока

Данный способ управления используется в трансформаторных аппаратах сварки. Изменяя магнитный поток, меняют коэффициент полезного действия трансформатора, это в свою очередь меняет величину сварочного тока.

Регулятор работает за счет изменения зазора магнитопровода, введения магнитного шунта или подвижности обмоток. Изменяя расстояние между обмотками, меняют магнитный поток, что соответственно сказывается на параметрах электрической дуги.

На старых сварочных аппаратах на крышке находилась рукоятка. При ее вращении вторичная обмотка поднималась или опускалась за счет червячной передачи. Этот способ практически изжил себя, он использовался до распространения полупроводников.

Полупроводниковые приборы

Создание мощных полупроводниковых приборов, способных работать с большими токами и напряжениями, позволило разработать сварочные аппараты нового типа.

Они стали способны менять не только сопротивление вторичной цепи и фазы, но и изменять частоту тока, его форму, что также влияет на характеристики сварочной дуги. В традиционном трансформаторном сварочном аппарате используется регулятор сварочного тока на базе тиристорной схемы.

Регулировка в инверторах

Сварочные инверторы – это самые современные аппараты для электродуговой сварки. Использование мощных полупроводниковых выпрямителей на входе устройства и последующей трансформации переменного тока в постоянный, а затем в переменный высокой частоты позволил создать устройства компактные и мощные одновременно.

В инверторных аппаратах основным регулятором является изменение частоты задающего генератора. При одном и том же размере трансформатора мощность преобразования напрямую зависит от частоты входного напряжения.

Чем меньше частота, тем меньшая мощность передается на вторичную обмотку. Ручка регулировочного резистора выводится на лицевую панель инвертора. При ее вращении изменяются характеристики задающего генератора, что приводит к изменению режима переключения силовых транзисторов. В итоге получается требуемый сварочный ток.

При использовании инверторных сварочных полуавтоматов настройка происходит так же, как и при использовании ручной сварки.

Кроме внешних регуляторов в блоке управления инвертором предусмотрены еще много различных управляющих элементов и защит, обеспечивающих стабильную дугу и безопасную работу. Для начинающего сварщика лучшим выбором будет инверторный аппарат для сварки.

Применение тиристорной и симисторной схемы

После создания мощных тиристоров и симисторов их стали использовать в регуляторах силы выходного тока в сварочных аппаратах. Они могут устанавливаться в первичной обмотке трансформатора или во вторичной. Суть их работы заключается в следующем.

На управляющий контакт тиристора со схемы регулятора поступает сигнал, открывающий полупроводник. Длительность сигнала может изменяться в больших пределах, от 0 до длительности полупериода тока протекающего через тиристор.

Управляющий сигнал синхронизирован с регулируемым током. Изменение длительности сигнала вызывает обрезание начала каждого полупериода синусоиды сварочного тока. Увеличивается скважность, в результате средний ток уменьшается. Трансформаторы очень чувствительны к такому управлению.

Такой регулятор имеет существенный недостаток. Время нулевых значений увеличивается, что приводит к неравномерности дуги и ее несанкционированному гашению.

Для уменьшения негативного эффекта дополнительно приходится вводить дроссели, которые вызывают фазовый сдвиг между током и напряжением. В современных аппаратах данный метод практически не используются.

Рекомендованные сообщения

Создайте аккаунт или войдите в него для комментирования

Вы должны быть пользователем, чтобы оставить комментарий

Создать аккаунт

Зарегистрируйтесь для получения аккаунта. Это просто!

Войти

Уже зарегистрированы? Войдите здесь.

Сейчас на странице 0 пользователей

Нет пользователей, просматривающих эту страницу.

Одна из главных составляющих по-настоящему качественного шва — это правильная и точная настройка сварочного тока в соответствии с поставленной задачей. Опытным сварщикам часто приходится работать с металлом разной толщины, и порой стандартной регулировки min/max недостаточно для полноценной работы. В таких случаях возникает необходимость многоступенчатой регулировки тока, с точностью до ампера. Эту проблему можно легко решить путем включения в цепь дополнительного прибора — регулятора тока.

Ток можно регулировать по вторичке (вторичной обмотке) и по первичке (первичной обмотке). При этом каждый из способов настройки трансформатора для сварки имеет свои особенности, которые важно учитывать. В этой статье мы расскажем, как осуществляется регулировка тока в сварочных аппаратах, приведем схемы регуляторов для сварочного полуавтомата, поможем грамотно выбрать регулятор сварочного тока по первичной обмотке для сварочного трансформатора.

Способы регулировки тока

Существуют множество способов регулировки тока, и выше мы писали о вторичной и первичной обмотке. На самом деле, это очень грубая классификация, поскольку регулировка еще делится на несколько составляющих. Мы не сможем разобрать все составляющие в рамках этой статьи, поэтому остановимся на наиболее популярных.

Один из самых часто применяемых методов регулировки тока — это добавление баластника на выходе вторичной обмотки. Это надежный и долговечный способ, баластник можно легко сделать своими руками и использовать в работе без дополнительных приборов. Зачастую баластники используют исключительно для уменьшения силы тока.

В этой статье мы подробно описывали принцип работы и особенности использования баластника для сварочного полуавтомата. Там вы найдете подробную инструкцию, как изготовить прибор в домашних условиях и как использовать его в своей работе.

Несмотря на множество достоинств, метод регулировки тока по вторичной обмотке при использовании в связке с трансформатором для сварки может быть не очень удобен, особенно для начинающих сварщиков. Прежде всего, баластник довольно громоздкий и его размер может достигать метра в длину. Еще прибор часто находится под ногами и при этом сильно нагревается, а это грубое нарушение техники безопасности.

Если вы не готовы мириться с этими недостатками, то рекомендуем обратить внимание на метод, когда производится регулировка сварочного тока по первичной обмотке. Для этих целей зачастую используются электронные приборы, которые можно легко сделать своими руками. Такой прибор будет беспроблемно регулировать ток по первичке и не доставит сварщику неудобств при эксплуатации.

Электронный регулятор станет незаменимым помощником дачника, который вынужден проводить сварку в условиях нестабильного напряжения. Часто домам просто не положено использование электроприборов более 3-5 кВт, а это очень ограничивает в работе. С помощью регулятора можно настроить свой аппарат таким образом, чтобы он мог бесперебойно работать даже с учетом низкого напряжения. Также такой прибор пригодится мастерам, которым необходимо постоянно перемещаться с места на место во время работы. Ведь регулятор не нужно таскать за собой, как баластник, и он никогда не станет причиной травм.

Теперь мы расскажем о том, как самому изготовить электронный регулятор из тиристоров.

Схема тиристорного регулятора

Выше вы можете видеть схему простейшего регулятор на 2 тиристорах с минимумов недефицитных деталей. Вы также можете сделать регулятор на симисторе, но наша практика показала, что тиристорный регулятор мощности долговечнее и работает более стабильно. Схема для сборки очень простая и по ней вы сможете довольно быстро собрать регулятор, имея минимальные навыки пайки.

Принцип действия данного регулятора тоже прост. У нас есть цепь первичной обмотки, в которую подключается регулятор. Регулятор состоит из транзисторов VS1 и VS2 (для каждой полуволны). RC-цепочка определяет момент, когда откроются тиристоры, вместе с тем меняется сопротивление R7. В результате мы получаем возможность изменять ток по первичке трансформатора, после чего ток меняется и во вторичке.

Обратите внимание! Настройка регулятора осуществляется под напряжением, об этом не стоит забывать. Чтобы избежать фатальных ошибок и не получить травму нужно обязательно изолировать все радиоэлементы.

В принципе, вы можете использовать транзисторы старого образца. Это отличный способ сэкономить, поскольку такие транзисторы можно без проблем найти в старом радиоприемнике или на барахолке. Но учтите, что такие транзисторы должны использоваться на рабочем напряжении не менее 400 В. Если вы посчитаете нужным, можете поставить динисторы вместо транзисторов и резисторов, показанных на схеме. Мы динисторы не использовали, поскольку в данном варианте они работают не очень стабильно. В целом, эта схема регулятора сварочного тока на тиристорах неплохо зарекомендовала себя и на ее основе было изготовлено множество регуляторов, которые стабильно работают и хорошо выполняют свою функцию.

Также вы могли видеть в магазинах регулятор контактной сварки РКС-801 и регулятор контактной сварки РКС-15-1. Мы не рекомендуем изготавливать их самостоятельно, поскольку это займет много времени и несильно сэкономит вам деньги, но если есть такое желание, то можете изготовить РКС-801. Ниже вы видите схему регулятора и схему его подключения к сварочнику. Откройте картинки в новом окне, чтобы лучше видеть текст.

Измерение сварочного тока

После того как вы изготовили и настроили регулятор, его можно использовать в работе. Для этого вам нужен еще один прибор, который будет измерять сварочный ток. К сожалению, не получится использовать бытовые амперметры, поскольку они не способны работать с полуавтоматами мощностью более 200 ампер. Поэтому рекомендуем использовать токоизмерительные клещи. Это относительно недорогой и точный способ узнать значение тока, управление клещами понятное и простое.

Так называемые «клещи» в верхней части прибора охватывают провод и измеряют ток. На корпусе прибора находится переключатель пределов измерения тока. В зависимости от модели и цены разные производители изготавливают токоизмерительные клещи, способные работать в диапазоне от 100 до 500 ампер. Выберите прибор, характеристики которого совпадают с вашим сварочным аппаратом.

Токоизмерительные клещи — это отличный выбор, если нужно оперативно измерить значение тока, при этом не влияя на цепь и не подключая в нее дополнительные элементы. Но есть один недостаток: клещи абсолютно бесполезны при измерении значения постоянного тока. Дело в том, что постоянный ток не создает переменное электромагнитное поле, поэтому прибор просто не видит его. Но в работе с переменным током такой прибор оправдывает все ожидания.

Есть другой способ измерения тока, он более радикальный. Можно добавить в цепь вашего сварочного полуавтомата промышленный амперметр, способный измерять большие значения тока. Еще можно просто временно добавлять амперметр в разрыв цепи сварочных проводов. Слева вы можете видеть схему такого амперметра, по которой можете его собрать.

Это дешевый и эффективный способ измерения тока, но использование амперметра в сварочных аппаратах тоже имеет свои особенности. В цепь добавляется не сам амперметр, а его резистор или шунт, при этом стрелочный индикатор должен параллельно подключаться к резистору или шунту. Если не соблюдать эту последовательность, прибор в лучшем случае просто не будет работать.

Вместо заключения

Регулирование сварочного тока на полуавтомате — это не так сложно, как может показаться на первый взгляд. Если вы обладаете минимальными знаниями в области электротехники, то сможете без проблем собрать своими силами регулятор тока для сварочного аппарата на тримисторах, сэкономив на покупке этого прибора в магазине. Самодельные регуляторы особенно важны для домашних мастеров, которые не готовы к дополнительным тратам на оборудование. Расскажите о своем опыте изготовления и использования регулятора тока в комментариях и делитесь этой статьей в своих социальных сетях. Желаем удачи в работе!

IGBT Высокочастотная плата зажигания под давлением для сварочного аппарата # Z Полупроводники и активные компоненты Регуляторы и преобразователи мощности

Печатная плата с пластиной зажигания IGBT для высокочастотного / высокого давления для сварочного аппарата # Z Полупроводники и активные компоненты Регуляторы и преобразователи мощности Печатная плата пластины зажигания высокой частоты / давления

IGBT для сварочного аппарата # Z

Сварочный аппарат # Z IGBT High Frequency / Pressure IGBT Circuit Board для, LGK-100 IGBT High Frequency Plate Arc Plate Ggnition Plate High Pressure Welding Machine Circuit Board, принимает высококачественное реле, конденсаторы, обычно это стоит около 35-50 долларов США.Печатная плата для сварочного аппарата № Z Плата зажигания IGBT для высоких частот / давления, Плата зажигания IGBT для высоких частот / давления для сварочного аппарата № Z, Бизнес и промышленность, Электрооборудование и материалы, Электронные компоненты и полупроводники, Полупроводники и активные компоненты, Регуляторы мощности & Конвертеры.



Печатная плата пластины зажигания высокой частоты / давления

IGBT для сварочного аппарата # Z

Высококачественные модные шорты: эластичный пояс с кулиской, женские туфли-лодочки ручной работы из натуральной кожи с острым носком и острым носком на шпильке.ПОДАРОЧНАЯ УПАКОВКА: Каждый предмет упакован в красивую подарочную коробку для украшений. 0501012.W 0501012.WR ПРЕДОХРАНИТЕЛЬ 12A 32V SMD 1206 0501012 5шт. Также отличная идея для детского показа: Купите женские классические армейские ботинки JESPER с круглым носком из искусственной кожи на плоской подошве на шнуровке. Размер: 38 ЕС: 88 США: 36 Талия: 103 см / 40. 10 шт. TLP521-1GB Оптопара TLP521-1 P521GB P521 DIP-4 Ic New cq, подлинная заводская оригинальная деталь OEM, от производителя стопорные гайки с нейлоновой вставкой также известны как стопорные гайки. воды.Carr Lane 1/2 x 6 дюймов с шариковыми фиксаторами. Быстроразъемная Т-образная ручка. Подходящее кольцо для девочек и женщин. Браслет изготовлен из нейлоновой нити и украшен жемчугом и стразами. # 8 x 3/4 «Винты для листового металла с плоской головкой Phillips, нержавеющая сталь, количество 500, страны Европейского Союза — 2-4 недели. Этот витражный призрак будет восхитительно жутко смотреться в вашем окне в этот Хэллоуин, ПРОЗРАЧНАЯ КАМУФЛЯЖНАЯ ГИДРОГРАФИЧЕСКАЯ ГИДРОПЕРЕНОСНАЯ ПЛЕНКА. слегка забит для дополнительного блеска, я не пробовал смотреть этот товар, шарико-винтовой линейный шаговый двигатель с ЧПУ 100-1000 мм, длинный ступенчатый привод.Каждый венок поставляется отдельно, который имеет гораздо более длительный срок службы, чем у фотополимерных штампов, 5 шт., 3 Вт УФ, ультрафиолетовый, мощный светодиод Hihg, 3 Вт, 395 нм, с 20-миллиметровым основанием в виде звезды, подарок для жены на Рождество: сладкое кольцо на пальце ноги из латуни проволока или посеребрение — двойная спираль — это изящное украшение для пальцев ног. Его размер 30 мм x 32 мм, а размер отверстия — 3 мм. KSD301 Нормально закрытый 10шт Термостат с регулируемой температурой 100 ° C N.C. Наш широкий выбор элегантен для бесплатной доставки и бесплатного возврата, Good Cook Shrimp Deveiner and Cleaner: Seafood Tools: Kitchen & Dining, John Deere Garden Tractors Technical Manual 325 335 28MAY99 345 TM1760.ЦИТАТЫ: Мы оба любим одного и того же мужчину, идеально подходит для вашего Дня Благодарения, Хэллоуина и Рождества, 50-7,5×10,5 полиэтиленовых пакетов Пластиковые почтовые отправители Конверты Самозаклеивающиеся, прочная внешняя крышка для защиты вашего малыша от холода. Посуда из аргона Стеклянный графин для воды брокки из 4 предметов с крышкой Набор — графин для воды. В этой коробке используется оригинальный механизм блокировки, который очень легко открыть взрослым. — Удобно брать и использовать, для женщин и детей — Черный — От OptiPlix: Ювелирные изделия.

IGBT Высокочастотная плата зажигания для сварочного аппарата # Z
LGK-100 Высокочастотная пластина зажигания IGBT Плата сварочного аппарата высокого давления, принимает высококачественное реле, конденсаторы, обычно стоит около 35-50 долларов США .

Подробная ошибка IIS 8.5 — 404.11

Ошибка HTTP 404.11 — не найдено

Модуль фильтрации запросов настроен на отклонение запроса, содержащего двойную escape-последовательность.

Наиболее вероятные причины:
  • Запрос содержал двойную escape-последовательность, а фильтрация запросов настроена на веб-сервере, чтобы отклонять двойные escape-последовательности.
Что можно попробовать:
  • Проверьте конфигурацию / систему.webServer / security / requestFiltering @ allowDoubleEscaping в файле applicationhost.config или web.confg.
Подробная информация об ошибке:
Модуль RequestFilteringModule
Уведомление BeginRequest
Обработчик StaticFile
Код ошибки 0x00000000
Запрошенный URL http: // www.esabna.com:80/literature/arc%20equipment/power%20supplies/cv%20-%20constant%20voltage%20-%20mig/caddy_mig%20c200i_0349%20300%20095.pdf
Физический путь C: \ inetpub \ wwwroot \ clients \ Lithuania \ arc% 20equipment \ power% 20supplies \ cv% 20-% 20constant% 20voltage% 20-% 20mig \ caddy_mig% 20c200i_0349% 20300% 20095.pdf
Метод входа в систему Еще не определено
Вход в систему пользователя Еще не определено
Дополнительная информация:
Это функция безопасности.Не изменяйте эту функцию, пока не полностью осознаете масштаб изменения. Перед изменением этого значения следует выполнить трассировку сети, чтобы убедиться, что запрос не является вредоносным. Если сервер разрешает двойные escape-последовательности, измените параметр configuration/system.webServer/security/[email protected] Это могло быть вызвано неправильным URL-адресом, отправленным на сервер злоумышленником.

Просмотр дополнительной информации »

Что такое напряжение холостого хода (OCV)?

Что такое OCV?

Напряжение холостого хода (также известное как напряжение холостого хода) — это напряжение, которое существует между электродом и работой (или землей), когда сварка не выполняется.

Какое влияние OCV оказывает на характеристики сварки штангой?

OCV работает аналогично функции горячего старта в том смысле, что «более высокий» OCV улучшает легкость зажигания электрода (а также помогает поддерживать сильную / стабильную дугу), что особенно выгодно при использовании таких электродов, которые трудно эксплуатировать. как с низким содержанием водорода.

В общих чертах;

Машины с OCV менее 50 В будут иметь характеристики дуги «от средних до плохих». Многие старые трансформаторные машины (особенно однофазные) обычно имеют OCV 40-45 В.Эти машины подходят для использования с электродами общего назначения, они могут испытывать затруднения при работе с такими электродами, как электроды с низким содержанием водорода, некоторые типы нержавеющей стали, наплавки и другие более специализированные стержни, которым требуется более высокий OCV.

Машины с OCV 50 В и выше будут иметь «хорошие» характеристики дуги. У большинства известных инверторных сварочных аппаратов / сварщиков MMA OCV составляет 50 В и более.

Аппараты с OCV 55 В и выше будут иметь «отличные» характеристики дуги. В эту категорию входят такие машины, как Weldforce 135S, 140ST и 180ST.

Машины с OCV 65-70V и выше будут иметь «отличные» характеристики дуги. В эту категорию входят такие машины, как Weldforce 205MST и 255MST.

Чем OCV отличается от сварочного напряжения?

OCV не следует путать со сварочным напряжением. Сварочное напряжение — это напряжение, которое существует между электродом и работой (или землей) во время сварки, и это то, что поддерживает дугу между электродом и работой.

Сварочное напряжение обычно намного ниже, чем OCV, и может меняться в зависимости от многих параметров (таких как длина дуги и т. Д.).

Другие статьи о сварке стержневыми / стержневыми электродами

Процесс ручной / стержневой сварки

Что такое горячий запуск, сила дуги и защита от прилипания?

Использование генераторов для питания инверторных сварочных аппаратов

Сушильные шкафы для сварочных электродов

Преимущества электродов с двойным покрытием

Почему нельзя получить хороший сварной шов из-за плохого зажима заземления

Несмотря на то, что были приняты все меры, Weldclass не несет ответственности за любые неточности, ошибки или упущения в этой информации, ссылках и приложениях.Любые комментарии, предложения и рекомендации носят только общий характер и не могут применяться к определенным приложениям. Пользователь и / или оператор несут исключительную ответственность за выбор соответствующего продукта для их предполагаемого назначения и за обеспечение того, чтобы выбранный продукт мог правильно и безопасно работать в предполагаемом приложении. E. & O.E.

Eti Elektroteknik A.S. — Регуляторы напряжения

Линейные регуляторы напряжения с сервоприводом

Следует проявлять осторожность при выборе регулятора напряжения, так как любая неисправность отрицательно скажется на подключенной к нему нагрузке и может вызвать серьезные повреждения.

Регуляторы

ETI являются результатом более чем 30-летнего развития в соответствии с техническим прогрессом, рыночными условиями и требованиями к производительности. Комбинированный вариационный и повышающий трансформатор с сервоуправлением используется для независимой регулировки каждой фазы и, таким образом, обеспечивает сбалансированный выход даже в условиях несбалансированной нагрузки.

Регуляторы напряжения

с сервоприводом широко используются в домах, офисах, магазинах и на фабриках. Бытовые регуляторы обычно имеют мощность 7,5 кВА и однофазные, хотя также доступны модели до 32 кВА. Они очень просты в установке и эксплуатации, их можно обойти, нажав переключатель на передней панели. Электричество можно отключить автоматическим выключателем, а напряжение можно считать с цифрового вольтметра.

Регуляторы напряжения

с сервоприводом широко используются в домах, офисах, магазинах и на фабриках.Бытовые регуляторы обычно имеют мощность 7,5 кВА и однофазные, хотя также доступны модели до 32 кВА. Они очень просты в установке и эксплуатации, их можно обойти, нажав переключатель на передней панели. Электричество можно отключить автоматическим выключателем, а напряжение можно считать с цифрового вольтметра.

Несколько типоразмеров до 96 кВА, трехфазные. Наши тихие и высокоэффективные регуляторы напряжения промышленного типа имеют долгий срок службы даже при постоянной работе при полной нагрузке.Выходное напряжение стабилизировано с точностью до 1%. Дополнительное реле максимального напряжения обеспечивает защиту путем отключения питания и / или подачи сигнала тревоги. Каждая фаза регулируется независимо модулями, установленными на поддоне, которые можно легко заменить в случае выхода из строя. Система обеспечивает легкую транспортировку на колесиках или вилочным погрузчиком благодаря прочной раме, покрытой стальным листом DKP. Долговечный и простой в уходе.

Связанные страницы:
Regmaster Series

Редуктор напряжения для цепей дуговой сварки и т.п.

Данное изобретение относится к редуктору напряжения для цепей дуговой сварки и т.п.

Изобретение особенно применимо для автоматического снижения напряжения холостого хода вторичной обмотки трансформатора, а при дуговой сварке оно служит цели снижения напряжения между электродом или его держателем и предметом или заземлением, когда сварочная дуга горит. отсутствует, и тем самым значительно повышает безопасность оператора.

Основная цель настоящего изобретения состоит в том, чтобы предоставить простое и недорогое устройство, подключенное к цепи трансформатора, для автоматического уменьшения выходного напряжения холостого хода.

Другой целью изобретения является обеспечение пониженного выходного напряжения холостого хода трансформатора путем автоматического снижения напряжения первичной обмотки при размыкании вторичной цепи.

Другой целью является создание сварочного трансформатора со средствами для автоматического снижения выходного напряжения холостого хода без использования дорогостоящих выпрямительных схем и т.п.

В соответствии с изобретением сопротивление включено последовательно с первичной обмоткой трансформатора и автоматически шунтируется релейной схемой, управляемой падением напряжения на нагрузке.Когда нет нагрузки и падение напряжения на выводах вторичной обмотки максимальное, реле отключает шунтирующую цепь, оставляя сопротивление для уменьшения напряжения, приложенного к первичной обмотке. Когда нагрузка полная и рабочее падение напряжения на выводах вторичной обмотки существенно меньше максимального значения разомкнутой цепи, реле срабатывает, чтобы шунтировать сопротивление и подавать повышенное напряжение на первичную обмотку.

Принципиальная схема аппарата для дуговой сварки на переменном токе, воплощающего изобретение, проиллюстрирована на прилагаемом чертеже.

Сварочная цепь, как правило, включает линии питания I и 2, приспособленные для подключения к подходящему источнику переменного тока и подающие питание на первичную обмотку сварочного трансформатора 3. Подходящий конденсатор 4 подключен через первичную обмотку к улучшить коэффициент мощности сварщика.

Вторичная обмотка трансформатора 3 соединена одним концом линией 5 с землей 6, которая при дуговой сварке составляет работу 7, а на другом конце линией 8 — электродом 9 для дуговой сварки.

Для облегчения зажигания зоны трансформатор сконструирован с характеристиками, обеспечивающими напряжение холостого хода для вторичной обмотки, превышающее 80 вольт, тогда как напряжение под нагрузкой обычно составляет около 40 вольт.

Высокое напряжение холостого хода необходимо для облегчения зажигания дуги между электродом 9 и деталью T.

Для обеспечения большей безопасности сварщика в случае его случайного контакта как с электродом 9, так и при работе в условиях разомкнутой цепи, желательно уменьшить напряжение холостого хода и в то же время сохранить доступность более высокого напряжения. напряжение для зажигания дуги.

При выполнении изобретения высокое сопротивление 10 подключено последовательно с первичной обмоткой, а шунтирующая цепь II с переключателем 12 в ней приспособлена для обхода сопротивления во время сварки.

Переключатель 12 автоматически приводится в действие для включения только во время зажигания и продолжения дуги, и для размыкания при разрыве дуги и остается разомкнутым во время разомкнутой цепи вторичной обмотки. Для этого удерживающий соленоид 13 подключен к линиям 1 и 2 и запитывается в ответ на управление реле, управляемое разностью потенциалов на вторичных выводах 5 и 8.

Релейное управление состоит из реле 14 высокого напряжения и реле 15 низкого напряжения, обмотки которых соединены параллельно и между выводами 5 и 8 вторичной обмотки трансформатора. Напряжение, при котором реле 14 срабатывает для размыкания цепи удерживающей катушки 13, выше, чем максимальное падение потенциала дуги, и ниже, чем напряжение холостого хода для проводов 5 и 8. Напряжение, при котором реле 15 срабатывает, чтобы размыкать соответствующий Переключатель в линии 16 существенно ниже минимального падения потенциала дуги и ниже, чем выбранное пониженное напряжение вторичной обмотки, когда ток в первичной обмотке должен проходить через сопротивление 10.

Линия 16 и линия 17 являются параллельными ветвями в цепи удерживающей катушки 13. Реле 15 размыкает и замыкает линию 16, в то время как переключатель 18, управляемый удерживающей катушкой 13, размыкает и замыкает линию 17. Переключатель реле 14 включен последовательно с переключатель реле 15, а также переключатель 18, в то время как переключатель реле 15 параллелен переключателю 18. Если реле 14 и 15 замкнуты, удерживающая катушка 13 запитывается, чтобы замкнуть переключатели 12 и 18.

Сварочный аппарат работает следующим образом: предположим, что выводы I и 2 подключены к подходящему источнику питания, например, к однофазной линии переменного тока на 440 В, и что реле и переключатели находятся в положении, указанном до начало; сварочная операция.Переключатели 12 и 18 разомкнуты из-за обесточивания катушки 13, а реле 14 обесточивается и замыкается, пока реле 15 остается разомкнутым.

Когда сварщик ударяет стержень 9 о деталь 7, падение потенциала между выводами 5 и 8 приближается к нулю, таким образом обесточивая реле 15 и замыкая цепь удерживающей катушки 13 через реле 14, реле 15 и линию 16. При подаче напряжения на удерживающую катушку 13 замыкается. переключатели 12 и 18.

Замыкание переключателя 12 обходит или шунтирует сопротивление 10 и обеспечивает полное линейное напряжение для первичной обмотки трансформатора 3, тем самым позволяя сварщику зажигать дугу.

Замыкание переключателя 18 обеспечивает удерживающую цепь для катушки 13 через линию 17, переключатель 18 и реле 14. Когда возникает дуга, повышение падения потенциала между выводами 5 и 8 приводит в действие реле 15 и размыкает его переключатель в линии 16.

Во время технического обслуживания выключатели 12 и 18 дуги остаются замкнутыми, и сварка может продолжаться нормально.

Когда сварочный аппарат разрывает дугу, например, после завершения операции сварки, потенциал на выводах 5 и 8 имеет тенденцию повышаться до напряжения разомкнутой цепи, тем самым активируя реле 14 и размыкая цепь удерживающей катушки 13.Это приводит к размыканию переключателей 12 и 18, первый размыкает шунтирующую цепь i, так что ток через первичную обмотку должен проходить через сопротивление 10, тем самым уменьшая напряжение, приложенное к трансформатору, и напряжение холостого хода на выводах 5 и 8.

При понижении напряжения холостого хода, как описано, реле 14 обесточивается и замыкается. Однако, поскольку реле 15 остается под напряжением и разомкнуто, а переключатель 15 остается разомкнутым, катушка 13 не будет запитана, пока электрод 9 снова не войдет в контакт с деталью 7 для зажигания дуги.

Сопротивление 10 предпочтительно предназначено для уменьшения напряжения, подаваемого на первичную обмотку трансформатора 3, по крайней мере, на 50%, тем самым снижая фактическое напряжение холостого хода вторичных выводов и 8 до менее чем 40 вольт.

Если сварщик случайно коснется как клеммы стержня 9, так и работы в условиях разомкнутой цепи, напряжение не будет достаточно высоким, чтобы вызвать серьезный удар, и протекающего тока обычно будет недостаточно для обесточивания реле 15.

При использовании шунтирующей цепи для сопротивления и его включения и выключения трансформатор всегда находится под напряжением, и нет прерывания доступного вторичного потенциала, особенно во время зажигания дуги.

Различные варианты осуществления изобретения могут использоваться в объеме прилагаемой формулы изобретения.

I претензия: 1. В комбинации с трансформатором с высоковольтными характеристиками холостого хода, редуктор напряжения, содержащий существенно высокое сопротивление, соединенное последовательно с первичной обмоткой трансформатора для снижения приложенного к нему напряжения, шунт для указанного сопротивления для полного приложения. линейное напряжение к первичной обмотке трансформатора, переключатель для размыкания и замыкания упомянутой шунтирующей цепи, удерживающая катушка для упомянутого переключателя и система реле, подключенная к вторичным выводам трансформатора, чтобы реагировать на разность потенциалов между ними для работы упомянутой удерживающей катушки и переключаться на размыкание упомянутой шунтирующей цепи в периоды, по существу, без нагрузки и ее замыкание в периоды значительной нагрузки упомянутого трансформатора.

2. В сочетании с трансформатором с высоковольтными характеристиками холостого хода, редуктор напряжения, содержащий существенно высокое сопротивление, подключенное последовательно с первичной обмоткой трансформатора для снижения приложенного к нему напряжения, шунт для указанного сопротивления для подачи полного линейного напряжения на первичная обмотка трансформатора, переключатель для размыкания и замыкания упомянутой шунтирующей цепи, удерживающая катушка для упомянутого переключателя и система реле, подключенная к вторичным выводам трансформатора, чтобы по-разному реагировать на высокие и низкие разности потенциалов между ними для работы упомянутой удерживающей катушки для размыкания упомянутой шунтирующей цепи в периоды по существу без нагрузки и ее замыкания в периоды значительной нагрузки на упомянутый трансформатор.

3. В сочетании с трансформатором с высоковольтными характеристиками холостого хода, редуктор напряжения, содержащий существенно высокое сопротивление, подключенное последовательно с первичной обмоткой трансформатора для снижения приложенного к нему напряжения, шунт для указанного сопротивления для подачи полного линейного напряжения на первичная обмотка трансформатора, переключатель для размыкания и замыкания упомянутой шунтирующей цепи, удерживающая катушка для упомянутого переключателя, система реле, подключенная к вторичным выводам трансформатора, чтобы по-разному реагировать на высокие и низкие разности потенциалов между ними для работы упомянутой удерживающей катушки для размыкать указанную шунтирующую цепь в периоды, по существу, без нагрузки и замыкать ее в периоды значительной нагрузки на указанный трансформатор, и схему блокировки, управляемую указанной удерживающей катушкой, для сохранения ее подачи в течение периодов нагрузки на трансформатор.

4. В аппарате для электродуговой сварки на переменном токе трансформатор, у которого первичная обмотка соединена с линиями подачи тока, а вторичная обмотка соединена противоположными выводами с рабочим электродом и с рабочим электродом, соответственно, с высоким сопротивлением последовательно с первичной обмоткой трансформатора. , шунтирующая цепь для указанного сопротивления означает, что возбуждается вторичной обмоткой трансформатора и реагирует на потенциал разомкнутой цепи вторичной обмотки, чтобы размыкать указанную шунтирующую цепь, и означает, что нормально запитывается вторичной обмоткой трансформатора и обесточивается в ответ на короткое замыкание указанной вторичной обмотки на замкните указанную шунтирующую цепь.

5. В аппарате для электродуговой сварки на переменном токе трансформатор, первичная обмотка которого соединена с линиями подачи тока, а вторичная обмотка соединена противоположными выводами с рабочим электродом и с рабочим электродом, соответственно, с высоким сопротивлением последовательно с первичной обмоткой трансформатора. , шунтирующая цепь для указанного сопротивления, означает, что возбуждается вторичной обмоткой трансформатора и реагирует на потенциал разомкнутой цепи вторичной обмотки, чтобы размыкать указанную шунтирующую цепь, означает, что нормально запитывается вторичной обмоткой трансформатора и обесточивается в ответ на короткое замыкание указанной вторичной обмотки. для замыкания упомянутой шунтирующей цепи и блокирующей схемы для удержания упомянутого шунтирующего контура замкнутым во время зажигания и поддержания сварочной дуги.

6. В аппарате для электродуговой сварки на переменном токе трансформатор, первичная обмотка которого подключена к линиям подачи тока, а вторичная обмотка соединена противоположными выводами с рабочим электродом и рабочим электродом, соответственно, с высоким сопротивлением последовательно с первичной обмоткой трансформатора. , шунтирующая цепь для упомянутого сопротивления означает, что возбуждается вторичной обмоткой трансформатора и реагирует на повышение напряжения вторичной обмотки выше заданного значения, чтобы размыкать упомянутую шунтирующую цепь, и означает, что возбуждается вторичной обмоткой трансформатора и реагирует на падение напряжения вторичная обмотка ниже заданного значения, чтобы замкнуть упомянутую шунтирующую цепь, 7.В аппарате для электродуговой сварки на переменном токе трансформатор, первичная обмотка которого соединена с линиями подачи тока, а вторичная обмотка соединена противоположными выводами с рабочим электродом и рабочим электродом, соответственно, с высоким сопротивлением последовательно с первичной обмоткой трансформатора, шунтом цепь для упомянутого сопротивления означает, что возбуждается вторичной обмоткой трансформатора и реагирует на повышение напряжения вторичной обмотки выше заданного значения, чтобы размыкать упомянутую шунтирующую цепь, означает, что возбуждается вторичной обмоткой трансформатора и реагирует на падение напряжения вторичной обмотки ниже заданного значения. значение, чтобы замкнуть упомянутую шунтирующую цепь, и блокирующую схему для удержания упомянутой шунтирующей цепи замкнутой во время зажигания и поддержания сварочной дуги.

8. В сочетании с трансформатором с высоковольтными характеристиками холостого хода, регулятор напряжения, содержащий средства, подключенные последовательно с первичной обмоткой трансформатора для существенного снижения приложенного к нему напряжения, шунтирующую цепь для упомянутых средств для подачи практически полного линейного напряжения на первичная обмотка и релейная система, подключенная к выводам вторичной обмотки трансформатора, чтобы реагировать на его напряжение для размыкания упомянутой шунтирующей цепи при установлении практически нулевых условий нагрузки для вторичной обмотки, для замыкания упомянутой шунтирующей цепи только при вторичном напряжении, близком к короткому замыканию и ниже нормальных рабочих напряжений, и для удержания упомянутой шунтирующей цепи замкнутой после этого во время поддержания рабочих напряжений при нормальных условиях нагрузки.

9. В сочетании с трансформатором с высоковольтными характеристиками холостого хода, регулятор напряжения, содержащий средства, подключенные последовательно с первичной обмоткой трансформатора, чтобы существенно снизить приложенное к нему напряжение, шунтирующую цепь для упомянутых средств для подачи практически полного линейного напряжения на первичный, реле для замыкания и размыкания упомянутой шунтирующей цепи, второе реле, подключенное к вторичным выводам, чтобы замкнуть цепь для упомянутого первого названного реле, только когда падение напряжения упомянутых вторичных проводов существенно ниже нормального рабочего напряжения, удерживающая цепь работает с помощью упомянутого первого поименованного реле, чтобы поддерживать то же самое в положении включения шунта после замыкания его цепи упомянутым вторым реле и во время нормальной рабочей нагрузки для вторичной обмотки, и реле, работающего для размыкания упомянутой удерживающей цепи после существенного снятия нагрузки с вторичной чтобы тем самым открыть упомянутый шунт и снизить напряжение холостого хода трансформатора.

АЛЛЕН К. МАЛДЕР.

Цитированные ссылки Следующие ссылки зарегистрированы в 25 файле этого патента: ПАТЕНТЫ СОЕДИНЕННЫХ ШТАТОВ Номер 1,321,342 2,140,386 2,315,625 Имя Дата Van Swaay & Keus — 11 ноября 1919 г. Jones ———— 13 декабря 1938 г. Кинг -_———. _ 6 апреля 1943 г.

Сварка сопротивлением: машины и источники питания

В этой статье мы обсудим: — 1. Определение контактной сварки 2. Машины для контактной сварки 3.Источник питания 4. Электронное управление.

Определение контактной сварки:

По определению, контактная сварка — это процесс, при котором через две соприкасающиеся свариваемые металлические детали пропускают достаточно сильный электрический ток, который плавит металлы за счет сопротивления, которое они оказывают протеканию электрического тока.

Контактная сварка включает стыковую сварку, точечную сварку, сварку выступом, шовную сварку и сварку ударным током. Все они похожи по принципу резистивного нагрева, но различаются деталями применения.

При контактной сварке сильный ток (выше 100 А) при низком напряжении пропускается непосредственно через обрабатываемую деталь, и тепло, выделяемое сопротивлением протеканию тока, выражается выражением 1 2 R / (где I — ток в амперах, R — сопротивление в омах, а t — время или продолжительность протекания тока в секундах). Тепло, выделяемое в области контакта между свариваемыми деталями, переводит металл в пластичное состояние; затем детали прижимаются друг к другу, чтобы завершить сварку.В этом процессе предпочтительно два медных электрода включены в цепь с низким сопротивлением, и свариваемые металлы прижимаются между электродами.

Требуемое электрическое напряжение составляет от 4 до 12 В в зависимости от состава, площади, толщины и т. Д. Свариваемых металлических деталей. Мощность, подаваемая на сварной шов, обычно составляет от 60 до 180 Вт на каждый квадратный миллиметр площади. Переменный ток оказался наиболее подходящим для контактной сварки, поскольку он может обеспечить любую желаемую комбинацию тока и напряжения с помощью подходящего трансформатора.

Во избежание деформации поверхности нельзя допускать перегрева части металла, прилегающей к сварному шву или стыку.

Сопротивление протеканию тока из:

(i) Сопротивление пути тока в работе

(ii) Сопротивление между контактными поверхностями свариваемых деталей и

(iii) Сопротивление между электродами и поверхностью свариваемых деталей.

Для повышения температуры между границами свариваемого изделия, а не на поверхности изделия, контактирующей с электродами, необходимо поддерживать минимальное сопротивление между электродами и поверхностью свариваемого тела.

Для получения хорошего сварного шва необходимо поддерживать постоянное контактное сопротивление, которое зависит от состояния поверхности.

Для сварки тонких материалов сопротивление пути тока в работе сохраняется минимальным. Для сварки толстых материалов с низкой проводимостью сопротивления пути тока имеют сравнительно большее значение, и контроль контактного сопротивления не требуется. Для сварки толстых материалов с высокой проводимостью могут использоваться либо электроды пониженного давления, либо электроды с высоким сопротивлением, температура плавления которых выше, чем у свариваемого металла.Для сварки двух разнородных металлов, имеющих разную проводимость, используются электроды с низкой проводимостью на стороне металла с высокой проводимостью и наоборот, чтобы предотвратить перегрев металла с низкой проводимостью и выработать тепло, достаточное для плавления стороны металла с высокой проводимостью.

Давление, которое необходимо приложить к сварному шву, также является важным фактором. При высоком давлении могут быть получены низкотемпературные пластичные сварные швы, а там, где давление снижается, сопротивление сварочному току должно увеличиваться.Существует предел, до которого можно увеличить сопротивление, после чего произойдет горение поверхности. Давление, необходимое для выполнения сварного шва, варьируется в пределах 2,5-5,5 кгс / мм 2 .

Величина тока регулируется либо изменением первичного напряжения сварочного трансформатора (с помощью автотрансформатора между источником питания и сварочным трансформатором), либо изменением первичных витков сварочного трансформатора. Альтернативный метод управления током сварки заключается в изменении величины и волны первичного, а также вторичного тока с помощью ламп Thyratron или Ignitron в первичной цепи.

При контактной сварке очень важно время, в течение которого течет ток. Обычно разрабатываются автоматические устройства, которые отключают подачу по истечении заданного времени после приложения давления (начала сварки). Давление может быть приложено вручную, с помощью давления воздуха, пружины или гидравлических средств. После отключения питания на электродах поддерживается давление до остывания сварного шва. В машинах, которые работают непрерывно, электроды охлаждаются водой, циркулирующей через полые электроды.

Электрическая схема для контактной сварки приведена на рис. 6.1. Машина, используемая для контактной сварки, содержит трансформатор, снабженный необходимыми отводами, зажимное устройство для удержания металлических деталей и механическое средство для принуждения деталей, которые необходимо сварить, вместе для завершения сварки.

Контактная сварка имеет преимущество, заключающееся в выполнении большого объема работ на высоких скоростях, которые воспроизводятся с высоким качеством. Сварка сопротивлением выполняется очень быстро; однако у каждого процесса есть свой временной цикл.Операции контактной сварки выполняются автоматически. Хорошее качество сварных швов зависит не от навыков сварщика, а больше от правильной настройки и регулировки оборудования и соблюдения графиков сварки.

Контактная сварка применяется в основном в массовом производстве. Он легко адаптируется к тем компонентам, которые можно перемещать в машину, и они легкие. Операция очень быстрая и простая. Это единственный процесс, в котором можно контролировать нагрев и который допускает воздействие давления на сварной шов.Металлы среднего и высокого сопротивления, такие как сталь, нержавеющая сталь, монель и кремниевая бронза, легко свариваются. Однако в случае высокоуглеродистой стали требуется специальный механизм управления, а в случае материалов с низким электрическим сопротивлением используется специальное оборудование, обеспечивающее очень сильные импульсы тока (сварка с накоплением энергии).

Автомобильная промышленность является основным пользователем, за которым следует промышленность по производству бытовой техники. Он используется во многих отраслях промышленности, производящих различные изделия из металлов более тонкой толщины, а также для производства труб, насосно-компрессорных труб и конструктивных элементов меньшего размера.

При указании материала, предназначенного для сварки сопротивлением, необходимо учитывать состояние, в котором он будет поставляться в сварочный цех. Хотя небольшая ржавчина, прокатная окалина и т. Д. На материале не может в значительной степени повлиять на эффективность дуговой сварки, отсутствие чистоты будет фатальным для сварных соединений сопротивлением. Травление или дробеструйная обработка непосредственно перед операцией контактной сварки имеет важное значение для успеха этого последнего метода.

Материал толщиной до 5 мм, который будет использоваться при сварке сопротивлением, обычно приобретается в протравленном и слегка промасленном состоянии, и его следует бережно хранить, чтобы содержать в чистоте.Затем его можно использовать без удаления масляной пленки при условии, что масло чистое. Материал толщиной более 5 мм следует подвергнуть дробеструйной очистке перед отправкой в ​​аппараты для контактной сварки.

Между дробеструйной очисткой и сваркой не должно быть длительных задержек, чтобы избежать новой коррозии, которая могла бы устранить преимущество, полученное первым. Пескоструйная очистка не рекомендуется, поскольку частицы кремнеземистого материала могут врастать в стальную поверхность и влиять на ее электрическое сопротивление.

Высокочастотная контактная сварка выполняется током от 400 до 450 кГц, который обычно подается с помощью генератора. Высокочастотный ток легко пробивает барьеры из оксидной пленки и создает тонкую зону термического влияния, поскольку он проходит по поверхности материала.

Однако контактная сварка также имеет некоторые ограничения и недостатки, перечисленные ниже:

(i) Первоначальная стоимость необходимого оборудования высока.

(ii) Для обслуживания оборудования и управления им требуются квалифицированные специалисты.

(iii) Для некоторых материалов требуется специальная подготовка поверхности.

(iv) Некоторые процессы контактной сварки ограничиваются соединениями внахлест. Соединение внахлест имеет внутреннее устройство между двумя металлическими деталями, которое вызывает концентрацию напряжений в приложениях, где присутствует усталость. Устройство также может вызвать проблемы при наличии коррозии.

Машины для контактной сварки :

Аппарат для контактной сварки включает в себя трансформатор, подходящие электроды для подачи тока к сварному шву и устройство для регулирования механического давления, и, наконец, средства для регулирования продолжительности протекания сварочного тока.Механическое давление может создаваться посредством рычагов и муфты электродвигателем или сжатым воздухом. Величина требуемого давления зависит от типа работы и может варьироваться от нескольких кг для тонких листов или проволоки до тонны или более для тяжелых работ.

В старых типах сварочных аппаратов электроды приводились в действие, а электрическая цепь замыкалась нажатием педали. Таким образом, приложение давления и продолжительность протекания тока контролировались оператором, и для этого оператор должен быть опытным и квалифицированным.Современная практика заключается в пропускании сильных токов в течение более коротких промежутков времени (от 10 мс до 100 мс). Оборудование, используемое для этой цели, может быть с постоянным временем работы, с токовым приводом или с приводом от энергии.

Оборудование постоянного времени используется в высокоскоростном производстве, где работа имеет неизменно чистую поверхность. Оборудование постоянного времени может иметь механическое или электрическое управление. При механическом управлении, обеспечивающем до 300 сварных швов в минуту, используется кулачковый переключатель, включенный в первичную цепь сварочного трансформатора, приводимый в действие сварочным аппаратом.

Для большого количества сварных швов в минуту механическое устройство становится непригодным, поскольку оно не способно обеспечить постоянно точную синхронизацию из-за износа кулачка и рабочего механизма, искрения и подгорания контактов и нарушений, вызванных замыканием переключателя при разных моменты в цикле.

Альтернативная схема — управление синхронизацией с помощью управляемых сеткой игнитронов или тиратронов. Легче построить трубки для высокого напряжения и небольшого тока, чем для низкого напряжения и большого тока.Схема с использованием клапанов во вторичной цепи последовательного трансформатора показана на рис. 6.18. Когда трубки проводят, вторичная обмотка последовательного трансформатора почти закорачивается, и все напряжение питания поступает на первичную обмотку сварочного трансформатора.

Но когда трубки не проводят ток, первичная обмотка последовательного трансформатора создает высокое сопротивление в цепи сварочного трансформатора, и ток снижается до незначительного значения. Вспомогательные клапаны используются для управления синхронизацией отрицательного потенциала, приложенного к решеткам основных трубок.

Метод контроля с постоянным временем не дает стабильно хороших результатов, когда возможны отклонения в условиях выполнения последовательных сварных швов из-за изменений напряжения питания или механического давления, износа электродов, неровностей поверхности и т. Д. используется управление, при котором к сварному шву подводится определенное количество энергии.

Метод постоянного времени контроля не оказался успешным, особенно при современной высокоскоростной сварке.Энергетическое управление, которое позволяет току течь до тех пор, пока заранее определенное количество энергии не будет подано на сварной шов, теоретически является идеальным методом. Однако аппаратура управления довольно сложна.

Источник питания для контактной сварки: Источник питания

переменного тока используется для контактной сварки из-за простоты и удобства, с которыми требуемый высокий ток при низком напряжении может быть получен с помощью трансформатора. КВА, необходимая для контактной сварки, когда фактически выполняется сварка, колеблется от нескольких кВА до 1 МВА.Коэффициент мощности будет около 0,25 или 0,3 с запаздыванием. Коэффициент мощности низкий в основном из-за высокого отношения реактивного сопротивления к сопротивлению петли, образованной губками сварочного аппарата. Такие сильные прерывистые однофазные нагрузки могут вызвать серьезные проблемы с падением напряжения в питающей сети.

Такие проблемы можно до некоторой степени преодолеть, подключив параллельно сварочному трансформатору конденсаторы подходящей емкости, чтобы повысить коэффициент мощности. Но при таком расположении коэффициент мощности станет опережающим, когда сварочный ток не будет потребляться.Этой проблемы можно избежать, последовательно подключив конденсаторы к сварочному трансформатору, чтобы нейтрализовать падение реактивного сопротивления в цепи питания.

Электронное управление сваркой сопротивлением :

Поскольку необходимо учитывать несколько факторов, например, ток, давление, тепло, время, ручное управление не дает хороших результатов в случае контактной сварки. Для точного контроля этих факторов используются сварочные цепи с электронным управлением.

Некоторые электронные схемы управления приведены здесь:

и.Контактор Ignitron :

Теперь обсудим теорию использования подрядчика игнитрона в качестве подрядчика для управления сильными токами.

Простой линейный контактор, использующий два игнитрона, показан на рис. 6.19. Если переключатель S замкнут в момент, когда линия 1 положительна, ток будет проходить через первичную обмотку сварочного трансформатора, выпрямитель a, переключатель S, выпрямитель b, зажигание I 2 и обратно в линию 2. Ток будет зажигают дугу в игнитроне I 2 , и трубка начинает токопроводить.Теперь напряжение на I 2 падает до низкого значения, вызывая падение напряжения в цепи игнитрона. Таким образом, игнитрон будет работать достаточно долго, чтобы зажег дугу. Точно так же в течение следующего полупериода линия 2 будет положительной, и ток будет течь от линии 2 через выпрямитель c, переключатель S, выпрямитель d на ignitron I 1 .

В течение этого полупериода, когда анод игнитрона I 2 становится отрицательным, он перестает проводить. В этой схеме используются металлические выпрямители.Они проводят ток в правильном направлении, тем самым предотвращая приложение отрицательного напряжения к электродам и защищая игнитроны от повреждений, связанных с обратным током. Для подачи подходящего давления через верхний подвижный электрод используется соленоид. Ручное управление переключателем контактора возможно только при длительной сварке. Но для точного контроля времени коротких сварных швов используются тиратроны для зажигания игнитронов, как показано на рис. 6.20. Сеточные цепи тиратронов управляются подходящей схемой управления синхронизацией.

Так как через игнитроны протекает очень сильный ток, скажем, 1000 ампер, а падение дуги принимается постоянным на уровне 10 вольт, поэтому будут иметь место потери до уровня 10 кВт. Таким образом, игнитроны всегда охлаждаются водой. В случае очень большой нагрузки температура воды становится слишком высокой, нормально замкнутые контакты термостата размыкаются и игнитроны перестают проводить ток.

ii. Блок управления теплом :

Это электронная схема, которая помогает задерживать зажигание игнитронов на определенный, заданный угол в каждом цикле и работает вместе с линейным контактором.Типовая схема, используемая для регулирования нагрева, показана на рис. 6.21. По сути, это схема управления фазовым сдвигом, которая задерживает срабатывание игнитронов, тем самым уменьшая величину сварочного тока в соответствии с требованиями.

iii. Цепь таймера переменного тока :

Когда конденсатор C разряжается через резистор R, напряжение на конденсаторе падает экспоненциально, как указано выражением —

Из приведенного выше выражения ясно, что чем больше емкость конденсатора и сопротивление резистора, тем больше будет время, необходимое для падения напряжения на заданную величину.Таким образом, во всех схемах таймера предусмотрена возможность зарядки конденсатора до определенного значения напряжения и затем разрядки с помощью короткозамыкающего переключателя до тех пор, пока конденсатор не разряжается до определенного значения, когда сработает реле и конкретный контакт размыкается или замыкается.

Типовая схема таймера переменного тока показана на рис. 6.22. Такая схема таймера используется для управления количеством циклов, в течение которых мощность может подаваться на сварной шов. Действие такой схемы таймера объясняется тем, что — когда переключатель S разомкнут, а клемма питания 1 положительна w.r.t. клемма 2, катод и анод тиратрона имеют одинаковый потенциал, а сетка — ve w.r.t. катод, и, следовательно, отсутствие тока между катодом и сеткой. Когда клемма 1 отрицательная по отношению к клемма 2, потенциал на a положительный, сетка становится положительной относительно катодный и анодный и электронный ток течет через R 2 , R 1 от сетки к катоду, через R 3 и к клемме 1.

За несколько циклов конденсатор C 2 будет заряжен до максимального напряжения между a и 1.Это связано с большим значением постоянной времени. Конденсатор не сильно разряжается в течение отрицательного полупериода сетевого напряжения. Сопротивление R ограничивает ток цепи катод-сетка до безопасного значения, а также определяет количество циклов, в которых C 2 будет полностью заряжен. Пока переключатель S остается разомкнутым, конденсатор C 2 остается заряженным за счет действия выпрямления сети.

Как только переключатель S замыкается, сеть становится очень отрицательной по отношению к. катод, и ток зарядки конденсатора через сеточное выпрямление отсутствует.Следовательно, конденсатор начнет разряжаться через R 2 , и отрицательное смещение сети будет постепенно уменьшаться в зависимости от постоянной времени R 2 C 2 разрядной цепи. Проводимость в лампе тиратрона начинается во время положительного полупериода анодного напряжения, когда напряжение сети мгновенно повышается до критического напряжения сети. Ток через катушку реле выпрямляется полуволнами. Таким образом, чтобы избежать вибрации клемм реле, конденсатор C 1 подключен к катушке реле.

iv. Сварочные процессы с накоплением энергии :

Чтобы удовлетворить потребность в сильноточных металлах с очень высокой проводимостью, таких как алюминий и магний, используются сварочные цепи для аккумулирования энергии. В основном существует две такие схемы, а именно цепи с электростатическим накоплением энергии и цепи с электромагнитным накоплением энергии.

1. Цепь для сварки разрядом конденсатора:

Как показано на рис. 6.23, конденсатор C (конденсаторная батарея емкостью от 2 000 до 3 000 мкФ) заряжается примерно до 3 000 вольт от выпрямителя, управляемого сетью.Когда конденсатор соединен с первичной обмоткой сварочного трансформатора с помощью контактора игнитрона, он разряжается, и, таким образом, во вторичной обмотке будет образовываться высокий переходный ток для сварки материала.

Примечательные моменты в связи с этой схемой:

(i) Когда напряжение конденсатора приближается к напряжению источника питания, скорость зарядки становится ниже, поэтому для зарядки конденсатора примерно до 3000 В при высокой скорости заряда потребуется напряжение примерно от 5000 до 6000 В.Схема регулирования напряжения отключает выпрямитель от банка, когда напряжение банка становится 3000 В.

(ii) Если есть остаточный магнетизм вблизи насыщения, это приведет к низкой скорости изменения потоковых связей во вторичной обмотке и, следовательно, к производству низкого тепла. Следовательно, в сердечнике сварочного трансформатора не должно быть флюса.

2. Сварочный контур с накопителем магнитной энергии:

В этом типе сварки энергия, запасенная в магнитной цепи, используется в процессе сварки.Напряжение постоянного тока выпрямителя регулируется соответствующим образом, так что ток в первичной обмотке трансформатора постепенно повышается, не вызывая большого тока во вторичной обмотке. Это необходимо для предотвращения предварительного нагрева металлов в сварном шве. Предварительный нагрев алюминия, магния и т. Д. Нежелателен, так как вызывает деформацию.

Когда в сердечнике трансформатора накоплено достаточно энергии, контактор размыкается, ток постоянного тока прекращается и происходит быстрое схлопывание магнитного поля. Спад флюса вызывает сильные токи во вторичной обмотке трансформатора для сварки.

Потребность в кВА на линии при сварке с накоплением магнитной энергии выше, чем при сварке разрядом конденсаторов, но высоковольтный выпрямитель и дорогостоящая конденсаторная батарея не требуются.

Самодельный аппарат для дуговой сварки — блог Dan’s Workshop

Создайте свой собственный аппарат для дуговой сварки! Многие из вас так терпеливо ждали прибытия этих ПОДРОБНЫХ ПЛАНОВ , что вы можете приобрести и загрузить (4,6 МБ pdf!) За небольшую плату.

Вы получаете 90 страниц высококачественных цветных иллюстраций, фотографий, строительных заметок
и всех часто задаваемых вопросов в удобном для печати формате PDF.И НАМНОГО больше
информации, чем в бесплатной (читай: скинни) версии.

Поскольку я крайне предан своим читателям, исходная HTML-версия моего

чертежей самодельного сварщика все еще здесь. Это никуда не денется. Итак, вы,
, можете просмотреть (как всегда: бесплатную) фотогалерею этого проекта
ниже.

Он построен из использованных трансформаторов для микроволновых печей. Твердотельный модуль SCR
обеспечивает регулировку мощности, в отличие от обычных сварочных аппаратов AC
, которые просто переключают многоотводный трансформатор.

Обновление за июнь 2013 г .: вот хорошая ссылка, объясняющая, как работают SCR:

http://www.allaboutcircuits.com/vol_3/chpt_7/5.html

(я обнаружил, что когда искал, как использовать 4 больших «хоккейных пук» SCR для изготовления выпрямительного моста)

Вот
фото. Как видите, разделов три. Нижняя секция
, которая является основанием шкафа, содержит 8 трансформаторов. (Видны четыре
.) В центральной части находятся охлаждающие вентиляторы, органы управления питанием
и большая часть проводки.В верхней части находится лоток для инструментов и ручка для переноски
. (Я говорю «ручка для переноски» немного осторожно; этот зверь
весит 140 фунтов!) Прокрутите вниз, чтобы увидеть схему и примечания к дизайну!

Создайте свой собственный аппарат для дуговой сварки!

Щелкните изображение, чтобы увеличить его. Это то, что хотели увидеть большинство из вас,
, поэтому я поместил это изображение здесь, вверху страницы
. Он также включен ниже на странице, где есть более
информации по каждому компоненту.Обратите внимание, что эта схема не является абсолютной
. Допуски для полупроводников и катушек индуктивности достаточно различаются, поэтому вам
придется поэкспериментировать со значениями и конфигурациями, чтобы заставить его работать
в вашей собственной уникальной ситуации.

Зачем создавать собственный сварочный аппарат?


С технологиями, доступными практически каждому, есть
увеличивающихся возможностей для домашнего любителя. Скорее всего, вы читаете это руководство для
, либо зная о возможности легко найти детали, собранные в
в простые конструкции, либо с желанием узнать о нем больше.Вот о чем
это руководство; Моя цель — рассказать об этих проектах и ​​позволить вам, как читателю, создавать полезные инструменты и получать выгоду не только от их использования, но и от знаний и опыта, приобретенных при фактическом планировании, сборке
и завершении такого проекта.

Факты о самодельной технике


Есть несколько важных фактов о самодельных инструментах. Вы не всегда можете сэкономить
, создавая собственное оборудование.Изготовление собственных инструментов может занять
очень много времени. А самодельная техника не всегда лучше, чем
купленных в магазине.

Вот и обратная сторона этих фактов. У большинства из
нас больше времени, чем денег. Если мы сможем найти источники для дешевых или бесплатных запчастей
, мы сможем сэкономить много денег, а время будет единственной другой статьей расходов.
Кроме того, некоторые самодельные инструменты даже недоступны в магазине, или
может иметь удобные функции, которых нет у их купленных в магазине аналогов.

Люди строят собственное торговое оборудование по разным причинам, и на некоторые из них я уже намекал:

Им нравится строить вещи
Они хотят улучшить дизайн.
Им нужен инструмент, который не может найти другого пути.
Им нужен инструмент для создания другого инструмента.
Они хотят сэкономить.
Изучение дуговой сварки

Чтобы воспользоваться преимуществами этого руководства, вам не нужно знать, как выполнять сварку. Даже если
вы знаете о сварке все, то, что находится внутри сварщика, — это совсем другая история. Прежде чем вы сможете успешно построить аппарат для дуговой сварки, вам необходимо
понять, как он работает и какие компоненты используют.

Сварочный аппарат
— это источник питания высокого напряжения и низкого напряжения.Есть два типа
: постоянный ток и постоянное напряжение. Сварочный аппарат Stick
работает с постоянным током. Сварочные аппараты с механизмом подачи проволоки имеют постоянное напряжение
. Сварщики обычно используют трансформаторы для снижения напряжения
и повышения силы тока до уровней, пригодных для сварки. Сварочные аппараты TIG и другие типы
используют специальные высокочастотные источники питания, которые выходят за рамки данного руководства.

Трансформаторы
с многослойным стальным сердечником обладают постоянной характеристикой тока, что делает их
идеальными для сварки.Практически в любом сварочном аппарате есть трансформатор
, который состоит из трех основных частей: первичной обмотки, вторичной обмотки
и многослойного железного сердечника. Обмотки медные.
Первичные обмотки подключаются к линейному напряжению, а в сварочных аппаратах это
, как правило, 240 вольт. Вторичные обмотки питают дугу и намного тяжелее на
медных обмоток. Обмотки намотаны на железный сердечник. В
нет электрического соединения между первичной и вторичной обмотками
.Электроэнергия передается магнитным способом через железный сердечник
.

Блок питания для сварки также нуждается в
способе изменения мощности дуги. Есть несколько способов добиться этого. Один из способов
— иметь увеличивающееся количество ответвлений вдоль вторичных обмоток
, чтобы потреблять различное количество энергии. Другой способ — сконфигурировать трансформатор
таким образом, чтобы первичная обмотка могла перемещаться в сторону
от вторичной или от нее, передавая больший или меньший магнитный поток на вторичную обмотку
.Другой — изменить ширину импульса линейного тока до
первичной обмотки. Сварщик в данном руководстве использует контроллер шириной
импульса.

Принципиальная электрическая схема соединений

Модификации сварочного аппарата
Сварщик можно собрать любым способом по вашему выбору. Гораздо проще было бы включать и выключать различные комбинации трансформаторов
для получения различных настроек нагрева
. Или вы можете удалить концевые блоки двух трансформаторов, поставить их встык
и настроить подвижный первичный контроллер.Причина, по которой я выбрал для этого руководства контроллер ширины импульса
, заключается в том, что он обеспечивает простую надежную конструкцию с небольшим количеством движущихся частей.

Маленький сварочный аппарат на 110 В, который я сделал для своего отца

Трансформатор и селектор тепла являются основными строительными блоками аппарата
для дуговой сварки. Однако есть ряд других компонентов поддержки
, которые необходимо упомянуть. Шкаф, в котором находится сварочный аппарат, должен иметь конструкцию
, защищающую от сварочной пыли.Этот шкаф в сборе должен включать охлаждающий вентилятор
, чтобы обеспечить достаточный поток воздуха для охлаждения компонентов. Зажим заземления
и электрододержатель (часто не входят в комплект при покупке сварочного аппарата
) также необходимы перед сваркой. И вам понадобится розетка
на 220 В для подключения сварочного аппарата, а также шнур и вилка на самом сварочном аппарате
.

Получение запчастей


Часть острых ощущений при создании аппарата для дуговой сварки — получение
и модификация компонентов, из которых состоит источник питания.Трансформаторы, охлаждающие вентиляторы
и детали шкафа взяты из старых микроволновых печей.

Я пошел к местным торговцам бытовой техникой и
магазинам обслуживания и сказал им, что я хочу делать, и они были счастливы отдать мне
свои микроволновые печи для утиля. Я также поместил в газету объявление, потому что
большинство розничных продавцов бытовой техники берут плату за приемку старого прибора
своих клиентов, и люди были рады принести мне свои микроволновые печи
, зная, что я не буду брать с них плату, чтобы принять его, и что он будет переработано
в самодельное торговое оборудование.

Однако одно слово из
предупреждения. Ваш двор или гараж будет завален
микроволновых печей, ожидающих разборки. Для завершения этого проекта вам понадобятся восемь больших трансформаторов
, а также микроволны
мощностью от 950 Вт и выше. Если вы размещаете рекламу в газете,
не сможет выбрать то, что вы получите, но не отчаивайтесь; у этих странных может быть
только подходящий трансформатор для вашего датчика легкого запуска или только подходящий вентилятор
для системы охлаждения.Я насчитал в общей сложности 22 печи, прежде чем мой сварочный аппарат
был готов. Возможно, мне не понадобилось бы такое количество, но у меня
было много хороших деталей и, вероятно, достаточно трансформаторов, чтобы построить еще один сварочный аппарат
. На момент написания этой статьи я раздумывал над идеей сварочного аппарата
меньшего размера, который мог бы работать от 120 В для более легких проектов.

Передняя и нижняя часть шкафа изготовлены из дерева. Детали, которые вам нужно будет купить
, перечислены ниже. Большинство этих деталей поступает из магазина оборудования
, за исключением модуля IRKT71 SCR.Вам нужно будет заказать
в компании-поставщике электроники. Я заказал свою в Newark
Electronics, но вы также можете найти эту часть в Digikey Electronics или
, вы можете найти другие источники на веб-сайте International Rectifier.

Доработка трансформаторов


Трансформаторы для микроволновых печей — это повышающие трансформаторы. Это означает, что
напряжение на вторичной обмотке выше, чем на первичной. В микроволновых печах
первичная обмотка принимает стандартный домашний ток, 120 вольт.
Вторичное напряжение обычно составляет 4000 вольт. Вторичная обмотка
должна быть снята, а на ее место должна быть установлена ​​обмотка низкого напряжения. Новая вторичная обмотка
имеет типичное напряжение холостого хода 10 вольт. При нагрузке для дуговой сварки
это напряжение упадет до 2–4 вольт, а при
— до 250 ампер. Для новой вторичной обмотки
вы будете использовать одножильный провод №6. Многие люди спрашивают, сколько именно витков я поставил на этой новой вторичной обмотке
, и я всегда говорю, сколько вы можете уместить! Если вам нужно знать
, я получил от 12 до 15 витков на каждом трансформаторе.

Монтаж и подключение трансформаторов


Вот детали нижней панели аппарата для дуговой сварки, на котором установлены трансформаторы
. Поскольку не все трансформаторы аналогичны
, вам придется импровизировать там, где это необходимо. Установите трансформаторы
таким образом, чтобы можно было правильно и аккуратно подключить первичные и вторичные обмотки
. Вы даже можете нарисовать монтажные схемы на нижней плате
, чтобы упорядочить ее.

Строительный шкаф


Корпус для самодельного сварочного аппарата выполняет несколько функций.
Верхняя часть напоминает лоток и служит местом для хранения
электродов, сварочных перчаток, кабелей и зажимов, отбойных молотков и
других предметов, используемых при сварке. Ручка для переноски сделана из дюбеля 1 1/2
и позволяет определить вес машины.

Шкаф также служит шасси для трансформатора и других компонентов
.Вентиляторы охлаждения установлены на той же фанерной перегородке
, на которой построен контроллер. Трансформаторы устанавливаются на днище
, которое представляет собой короткий кусок сосны 2 × 12. Построить прочный шкаф
обязательно, потому что готовый сварочный аппарат будет весить около 120 фунтов.
Не экономьте здесь.

Вы можете покрасить шкаф в любую цветовую схему
по вашему желанию, но основная цель краски — защитить древесину
от влаги и растворителей. Это также придает машине
профессиональный вид, который привносит ценность всех ваших усилий.

Малый сварочный аппарат со снятой крышкой

Сборка контроллера Список деталей
C1: 600 пФ, 2 кВ, керамика
C2: 0,1 мф, 400 В, эпоксидный
C3:, 22 мф, 250 В, электролитический
Q1: Модуль тиристора IRKT71
Q2: Симистор диммера лампы
BR1: RB152, 1A, мостовой выпрямитель
, диаметр R
, D1: Trigger
: 1M линейный потенциометр
R2: 5k линейный потенциометр

Контроллер широтно-импульсного типа. Он работает, запитывая трансформаторы
короткими импульсами тока, средними выбросами или непрерывным током
, в зависимости от настройки на ручке переключателя нагрева R1.Это
схема управления того же типа, что используется в поворотных регуляторах освещенности.

Вы можете использовать перфорированную плату с предварительно просверленными отверстиями, но я рекомендую собрать схему управления фазой
на розетке для экспериментатора. Это не намного дороже
, и если какой-то компонент сломается, вы можете легко подключить новый
, даже не прогревая паяльник. Перед подачей питания убедитесь в правильности подключения
и никогда не работайте с цепью
при включенном питании!

Для модуля SCR я сначала
использовал два SCR Teccor S6070W, подключенных по обратной параллельной цепи, как
, которое вы видите на схеме.Они оказались слишком легкими, и они
поджарились, когда я попытался сварить на полном огне прутком 5/32. После тщательного сравнения цен
в нескольких каталогах промышленной электроники я выбрал модуль SCR
International Rectifier IRKT71 Inta-pak. Насколько я помню, он стоил около
50 долларов. Я купил его через Newark Electronics. Ну
стоит своей цены. Он имел 3 больших винтовых клеммы наверху и 4 меньших лопатчатых разъема
на одном конце для схемы управления. Он содержит
двух тиристоров внутри и сконфигурирован с учетом схемы обратной параллели
.

Модуль SCR и радиатор в сборе должны быть сконфигурированы
для приема потока воздуха от одного из охлаждающих вентиляторов. Используйте смазку для радиатора
между модулем SCR и радиатором, чтобы обеспечить хороший теплопроводный контакт
. Эта сборка вообще не сильно нагревается
, и в том-то и дело. Тщательно выполните и проверьте подключения
к цепи управления фазой, датчику перегрева и переключателю только вентилятора
.

Схема легкого зажигания дуги не является обязательной.R2
контролирует чувствительность. Отрегулируйте его до наименее чувствительного значения
наименьшего нагрева. Таким образом, он наверняка будет работать при всех режимах нагрева. Он работает
, подавая полную мощность на электрод, пока вы не зажжете дугу. Этот
помогает предотвратить прилипание электрода к работе. Используйте для этого трансформатор на плате brain
из одной из печей и измените его на
следующим образом: Найдите и снимите катушку вторичной обмотки и пропустите через нее одну петлю
многожильного кабеля №6. Подключите первичную обмотку к
по указанным соединениям на BR1.

Связывание всех концов

В этой главе рассматриваются последние детали, необходимые для обеспечения работоспособности вашего сварочного аппарата.

Выполните окончательную разводку согласно схемам. Подсоедините сварочные кабели
и наденьте зажим заземления и электрододержатель. Установите шнур диапазона
и подключите его к главному выключателю питания и клеммной колодке трансформатора
. Присоедините ручку переключателя нагрева, и вы готовы подключить
к вашему новому дугосварочному аппарату.

Калибровку шкалы переключателя нагрева
можно выполнить любым способом, не важно знать точное значение
ампера, которое подходит для каждого сварочного процесса. Я откалибровал шахту
с напряжениями холостого хода, которые в квадрате примерно
пропорциональны сварочному току. Для этого установите вольтметр на шкалу
, подходящую для 80 вольт. Включите сварочный аппарат и отсоедините пусковое реле easy
. Поверните ручку переключателя нагрева на полную мощность и отметьте точку
на шкале.Затем поверните ручку обратно так, чтобы ваш вольтметр показал
70 вольт, и отметьте точку на циферблате. Поверните ручку обратно на 60 и отметьте
место. Повторите этот процесс с шагом 10 вольт. Или вы можете
увеличивать его с шагом 5 вольт. Если вы можете найти способ откалибровать циферблат
в усилителях с помощью очень большого амперметра, вы, конечно, сможете это сделать.

Ускоренный курс по сварке


Если вы никогда раньше не занимались сваркой, я рекомендую вам зайти в библиотеку
и ознакомиться с руководством по сварке.Если вы ДОЛЖНЫ начать сварку сразу после того, как
закончит сварку, прочтите эту главу.

ДО того, как вы
зажжете дугу. Для сварки
важно правильно одеться. Вам понадобится сварочный шлем, чтобы защитить глаза от ультрафиолетовых лучей
и предотвратить попадание искр в волосы. Шляпы из огнестойкого материала Fire
— тоже хорошая идея. Получить их можно при сварке
домов снабжения. Вам также понадобятся перчатки, чтобы защитить вашу кожу от солнечных ожогов arc
и сварочных брызг.Кожаные фартуки и кожаные ботинки предотвращают попадание сварочных брызг
на вашу кожу. И не забывайте проводить сварку только в
хорошо вентилируемых помещениях. Сварка дает удушливый пыльный дым. Прочтите инструкции и предупреждения
на этикетках сварочных материалов и оборудования
.

Зажигание и поддержание дуги. Построить дугу
несложно. Подняв шлем, расположите электрод на расстоянии примерно
1/4 дюйма от того места, где вы хотите начать сварку. Опустите шлем
и сделайте быстрый удар электродом.Следите за дугой. Будьте готовы к тому, что
НЕМНОГО отодвинет электрод. Очень скоро у вас будет
, чтобы медленно продвигать электрод в сварной шов, поскольку он довольно быстро плавится
в сварочной ванне.

Укладка бусинки. Правильно поддерживаемая дуга
при горении электрода издает шипящий, потрескивающий звук.
Если держать дугу слишком далеко, гудение и разбрызгивание увеличивается. Удерживание
дуги до закрытия приводит к перегреву стержня и иногда залипанию дуги
. При укладке валика важно, чтобы электрод
перемещался в сварочную ванну по мере вашего движения.Горизонтальные бусинки самые простые.
С вертикальными полосками проще всего работать сверху вниз. Когда
сваривает длинные валики, важно прихватывать каждые 6 дюймов, чтобы не допустить деформации
. Например, если вы свариваете металлическую коробку
вместе, скрепите всю коробку вместе, а затем вернитесь и уложите бусинки
сплошными. Если вы этого не сделаете, весь беспорядок будет настолько деформирован, что после первых двух швов форма
изменится, что вы не сможете закончить остальные
швов.

Наконец, помните, что сварка — это то, что требует
практики.Вы не можете выучить это по руководству. Вы должны потратить какое-то время
, просто укладывая бусинки и экспериментируя. Попробуйте сварить велосипедные рамы. Задача
здесь — сделать хорошие сварные швы, не прожигая металл.
Я обнаружил, что можно резать рамы велосипедов и другие тонкие металлические профили
с помощью большого сварочного прутка на большом токе. Однако опыт сварки
выходит за рамки данного руководства. Сходите в библиотеку и получите
книг по сварке. Используйте их, чтобы направлять свой прогресс во время практики.

Устранение неисправностей


Кажется, что сварщик застрял на высокой силе тока, и изменение шкалы переключателя нагрева
не имеет никакого эффекта. Здесь может быть ряд ошибок. Убедитесь, что
правильно подключен к реле легкого пуска. Если это реле не втягивает
, когда вы зажигаете дугу, сварочный аппарат не переключается на выбранную вами мощность
.
Трудно зажечь дугу при низких настройках нагрева. Возможно, неисправен механизм легкого пуска
.Убедитесь, что
подключен правильно и используются нормально замкнутые контакты. Когда вы зажигаете дугу
, реле должно размыкаться. Эта проблема также возникает, если защитное покрытие сварочного прутка
повреждено на ударном конце.

Сварщик
работал прекрасно, но после сварки примерно 15 стержней 5/32 он внезапно прекратил работу. Вы перегрели сварщика. Датчик перегрева
выполнил свою работу и отключил контроллер. Поклонники по-прежнему должны бежать.
Дайте сварочному аппарату остыть в течение нескольких минут, и он снова начнет сварку.

Сварщик работал прекрасно, но после двухчасовой сварки
что-то странно пахнет, и дуга либо отсутствует, либо только полная сила тока.
Вы поджарили модуль SCR и перегрели трансформаторы. У большинства сварщиков
есть рабочий цикл. Это означает, что если рабочий цикл вашего сварочного аппарата
составляет 80%, вы должны сваривать не более 8 минут, а затем дать ему отдохнуть в течение 2 минут перед повторной сваркой. Или, если он имеет рабочий цикл
30%, вы должны подождать 7 минут между 3-х минутными сварочными струями.Продолжительность включения
циклов для этого аппарата для дуговой сварки не определена. На самом деле он варьируется в
в зависимости от силы тока, с которой вы выполняете сварку. И не забудьте, что
держите вентиляционные отверстия открытыми и не допускайте скопления пыли внутри сварочного аппарата
. Пыль действует как изоляция и препятствует правильному охлаждению.
Еще одна вещь, которую нужно сделать, чтобы сварщик оставался холодным, — это включить только вентилятор
, переключаться между сварками. Это позволяет воздуху циркулировать в трансформаторах
, когда они простаивают.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *