Регулятор напряжения 220в для трансформатора своими руками
Всем привет! В прошлой статье я расказывал, как сделать регулятор напряжения для постоянного тока. Сегодня мы сделаем регулятор напряжения для переменного тока 220в. Конструкция довольно-таки проста для повторения даже начинающими. Но при этом регулятор может брать на себя нагрузку даже в 1 киловатт! Для изготовления данного регулятора нам понадобится несколько компонентов: |
1. Резистор 4.7кОм млт-0.5 (пойдет даже 0.25 ватт).
2. Перменный резистор 500кОм-1мОм, с 500ком будет регулировать довольно плавно, но только в диапазоне 220в-120в. С 1 мОм – будет регулировать более жестко, тоесть будет регулировать промежутком в 5-10вольт, но зато диапазон возрастет, возможно регулировать от 220 до 60 вольт! Резистор желательно ставить со встроеным выключателем (хотя можно обойтись и без него, просто поставив перемычку).
3. Динистор DB3. Взять такой можно из ЛСД экономичных ламп. (Можно заменить на отечественный Kh202).
4. Диод FR104 или 1N4007, такие диоды встречаются практически в любой импортной радиотехнике.
5. Экономичные по току светодиоды.
6. Симистор BT136-600B или BT138-600.
7. Винтовые клемники. (обйтись можно и без них, просто припаяв провода к плате).
8. Небольшой радиатор (до 0,5кВт он не нужен).
9. Пленочный конденсатор на 400вольт, от 0.1 микрофарадп, до 0.47 микрофарад.
Схема регулятора переменного напряжения:
Приступим к сборке устройства. Для начало вытравим и пролудим плату. Печатная плата – её рисунок в LAY, находится в архиве. Более компактный вариант, представленный товарищем sergei – тут.
Далее припаяем симистор, и переменный резистор.
Затем паяем конденастор. На фото конднесатор со стороны лужения, т.к у моего экземпляра конденсатора были слишком коротки ножки.
Паяем динистор. У динистора полярности нет, так-что вставляем его как вам угодно. Припаиваем диод, резистор, светодиод, перемычку и винтовой клемник. Выглядит оно примерно так:
И в конце концов последний этап – это ставим на симистор радиатор.
А вот фото готового устройства уже в корпусе.
Регулятор какой-нибуть дополнительно настройки не требует. Видео работы данного устройства:
Хочу заметить, что ставить его можно не только в сеть 220В на обычные приборы и электроинструменты, но и на любой другой источник переменного тока с напряжением от 20 до 500В (ограничивается предельными параметрами радиоэлементов схемы). С вами был [PC]Boil-:D
Обсудить статью РЕГУЛЯТОР ПЕРЕМЕННОГО НАПРЯЖЕНИЯ
Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.
Простейший регулятор энергии
Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.
Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:
- металлическими;
- жидкостными;
- угольными;
- керамическими.
Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.
Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.
Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.
Виды современных устройств
Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.
На сегодняшний момент производство выпускает следующие типы приборов:
- Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
- Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
- Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
- Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.
При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:
- плавность регулировки;
- рабочую и пиковую подводимую мощность;
- диапазон входного рабочего сигнала;
- КПД.
Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.
Тиристорный прибор управления
Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.
Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.
Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.
Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.
Симисторный преобразователь мощности
Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.
Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.
Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.
Фазовый способ трансформации
Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.
Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.
При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.
Практические примеры для повторения
Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.
Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.
Доминирующая схема
Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.
Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.
При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.
В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.
Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.
Контроллер нагрева паяльника
Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.
Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.
Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.
Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.
Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.
В электрических схемах для изменения уровня выходного сигнала используется регулятор напряжения. Основное его назначение — изменять подаваемую на нагрузку мощность. C помощью устройства управляют оборотами электродвигателей, уровнем освещённости, громкостью звука, нагревом приборов. В радиомагазинах можно приобрести готовое изделие, но несложно изготовить регулятор напряжения своими руками.
Описание устройства
Регулятором напряжения называется электронный прибор, служащий для повышения или понижения уровня выходного сигнала, в зависимости от величины разности потенциалов на его входе. То есть это устройство, с помощью которого можно управлять значением мощности, подводимой к нагрузке. При этом регулировать подаваемый уровень энергии можно как на реактивной, так и активной нагрузке.
Самым простым устройством, с помощью которого можно изменять уровень сигнала, считается реостат. Он представляет собой резистор, имеющий два вывода, один из которых подвижный. При перемещении ползункового вывода реостата изменяется сопротивление. Для этого он подключается параллельно нагрузке. Фактически это делитель напряжения, позволяющий регулировать величину разности потенциалов на нагрузке в пределах от нуля до значения, выдаваемого источником энергии.
Использование реостата ограничено мощностью, которую можно через него пропустить. Так как при больших значениях тока или напряжения он начинает сильно нагреваться и в итоге перегорает, поэтому на практике применение реостата ограничено. Его используют в параметрических стабилизаторах, элементах электрического фильтра, усилителях звука и регуляторах освещённости небольшой мощности.
Разновидности приборов
По виду выходного сигнала регуляторы разделяют на стабилизированные и нестабилизированные. Также они могут быть аналоговыми и цифровыми (интегральными). Первые строятся на основе тиристоров или операционных усилителей. Их управление осуществляется путём изменения параметров RC цепочки обратной связи. Совместно с ними для повышения мощности применяются биполярные или полевые транзисторы. Работа же интегральных устройств связана с использованием широтно-импульсной модуляции (ШИМ), поэтому в цифровой схемотехнике используются микроконтроллеры и силовые транзисторы, работающие в ключевом режиме.
При изготовлении самодельного регулятора напряжения могут быть использованы следующие элементы:
- резисторы;
- тиристоры или транзисторы;
- цифровые или аналоговые интегральные микросхемы.
Первые два типа имеют несложные схемы и довольно просты к самостоятельной сборке. Их можно изготавливать без использования печатной платы с помощью навесного монтажа, в то время как импульсные регуляторы на основе микроконтроллеров требуют более обширных знаний в радиоэлектронике и программировании.
Характеристика регулятора
По своему виду приспособления могут изготавливаться в портативном или стационарном исполнении. Устанавливаются они в любом положении: вертикальном, потолочном, горизонтальном.
Устройства могут крепиться с использованием дин-рейки или встраиваться в различные блоки и приборы. Конструктивно регуляторы возможно изготовить как корпусными, так и без помещения в корпус.
К основным характеристикам устройств относят следующие параметры:
- Плавность регулировки. Обозначает минимальный шаг, с которым происходит изменение величины разности потенциалов на выходе. Чем он плавнее, тем точнее можно выставить значение напряжения на выходе.
- Рабочая мощность. Характеризуется значением силы тока, которое может пропускать через себя прибор продолжительное время без повреждения своих электронных связей.
- Максимальная мощность. Пиковая величина, которую кратковременно выдерживает устройство с сохранением своей работоспособности.
- Диапазон входного напряжения. Это значения входного сигнала, с которым устройство может работать.
- Диапазон изменяемого сигнала на выходе устройства. Обозначает значения разности потенциалов, которое может обеспечить устройство на выходе.
- Тип регулируемого сигнала. На вход устройства может подаваться как переменное, так и постоянное напряжение.
- Условия эксплуатации. Обозначает условия, при которых характеристики регулятора не изменяются.
- Способ управления. Выставление выходного уровня сигнала может осуществляться пользователем вручную или без его вмешательства.
Особенности изготовления
Изготовить регулирующее приспособление можно несколькими способами. Самый лёгкий -приобрести набор, содержащий уже готовую печатную плату и радиоэлементы, необходимые для сборки своими руками. Кроме них, набор содержит электрическую и принципиальную схему с описанием последовательности действий. Такие наборы называются KIT и предназначены для самых неопытных радиолюбителей.
Другой путь подразумевает самостоятельное приобретение радиокомпонентов и изготовление в случае необходимости печатной платы. Используя второй способ, можно будет сэкономить, но он занимает больше времени.
Существует множество схем разного уровня сложности для самостоятельного изготовления. Но чтобы сделать регулятор напряжения, кроме схемы, понадобится подготовить следующие инструменты, приборы и материалы:
- паяльник;
- мультиметр;
- припой;
- пинцет;
- кусачки;
- флюс;
- технический спирт;
- соединительные медные провода.
Если планируется собирать устройство, состоящее из 6 и более элементов, то целесообразно будет смастерить печатную плату. Для этого необходимо иметь фольгированный текстолит, хлорное железо и лазерный принтер.
Техника изготовления печатной платы в домашних условиях называется лазерно-утюжной (ЛУТ). Её суть заключается в распечатывании печатной платы на глянцевом листе бумаги, и переносом изображения на текстолит с помощью проглаживания утюгом. Затем плату погружают в раствор хлорного железа. В нём открытые участки меди растворяются, а закрытые с переведённым изображением формируют необходимые соединения.
При самостоятельном изготовлении прибора важно соблюдать осторожность и помнить про электробезопасность, особенно при работе с сетью переменного тока 220 В. Обычно правильно собранный регулятор из исправных радиодеталей не нуждается в настройке и сразу начинает работать.
Простые схемы
Для управления величиной выходного напряжения для слабо мощных устройств можно собрать простой регулятор напряжения на 2 деталях. Понадобится лишь транзистор и переменный резистор. Работа схемы проста: с помощью переменного резистора происходит индуцирование (отпирание транзистора).
Если управляющий вывод резистора находится в нижнем положении, то напряжение на выходе схемы равно нулю. А если вывод перемещается в верхнее положение, то транзистор максимально становится открытым, а уровень выходного сигнала будет равен напряжению источника питания за вычетом падения разности потенциалов на транзисторе.
При изменении сопротивления регулируется величина напряжения на выходе. В зависимости от типа транзистора изменяется и схема включения. Чем номинал переменного резистора будет меньше, тем регулировка будет плавней. Недостатком схемы является чрезмерный нагрев транзистора, поэтому чем больше будет разница между Uвх и Uвых, тем он будет сильнее нагреваться.
Такую схему удобно применять для регулировки вращения компьютерных вентиляторов или других слабых двигателей, а также светодиодов.
Симисторный вид
Для регулировки переменного напряжения используются симисторные регуляторы, с помощью которых можно управлять мощностью паяльника или лампочки. Собрав схему на недорогом и доступном симисторе BT136, можно изменять мощность нагрузки в пределах 100 ватт.
Для сборки схемы понадобится:
Наименование | Номинал | Аналог |
Резистор R1 | 470 кОм | |
Резистор R2 | 10 кОм | |
Конденсатор С1 | 0,1 мкФ х. 400 В | |
Диод D1 | 1N4007 | 1SR35–1000A |
Светодиод D2 | BL-B2134G | BL-B4541Q |
Динистор DN1 | DB3 | HT-32 |
Симистор DN2 | BT136 | КУ 208 |
Принцип работы регулятора заключается в следующем: через цепочку, состоящую из динистора DN1, конденсатора C1 и диода D1, ток поступает на симистор DN2, что приводит к его открытию. Момент открытия зависит от ёмкости C1, которая заряжается через резисторы R1 и R2. Соответственно, изменением сопротивления R1 управляется скорость заряда C1.
Несмотря на простоту, такая схема отлично справляется с регулировкой вольтажа нагревательных устройств, использующих вольфрамовую нить. Но так как такая схема не имеет обратной связи, использовать её для управления оборотами коллекторного электродвигателя нельзя.
Реле напряжения
Для автолюбителей важным элементом является устройство, поддерживающее напряжение бортовой сети в установленных пределах при изменении различных факторов, например, оборотов генератора, включении или выключении фар. Использующиеся для этого приборы работают по одинаковому принципу – стабилизация напряжения путём изменения тока возбуждения. Иными словами, если уровень сигнала на входе изменяется, то устройство уменьшает или увеличивает ток возбуждения.
Собранная схема своими руками реле-регулятора напряжения должна:
- работать в широком диапазоне температур;
- выдерживать скачки напряжения;
- иметь возможность отключения во время запуска мотора;
- обладать малым падением разности потенциалов.
Упрощённо принцип работы можно описать в следующем виде: при величине напряжения, превышающей установленное значение, ротор отключается, а при её нормализации запускается вновь. Основным элементом схемы является ШИМ стабилизатор LM 2576 ADJ.
Микросхема TC4420EPA предназначена для моментального переключения транзистора. С помощью резистора R3, конденсатора C1 и стабилитронов VD1, VD2 осуществляется защита микросхемы и полевого транзистора. Резисторы R1 и R2 задают опорное напряжение для стабилизатора. DD1 управляет работой полевого транзистора и ротора. Диод D2 используется для ограничения управляющего напряжения. Индуктивность L1 обеспечивает плавность разрядки ротора через диоды D4 и D5 при размыкании цепи.
Управляемый блок питания
Конструируя различные схемы, радиолюбители часто собирают источники напряжений. Спаяв регулятор постоянного напряжения своими руками, его можно будет использовать как управляемый блок питания в диапазоне от 0 до 12В.
Собираемый источник напряжения состоит из 2 частей: блока питания и параметрического регулятора напряжения. Первая часть изготавливается по классической схеме: понижающий трансформатор — выпрямительный блок. Типом используемого трансформатора, выпрямительных диодов и транзистора определяется мощность устройства. Переменное напряжение сети понижается в трансформаторе до 11 вольт, после чего попадает на диодный мост VD1, где становится постоянным. Конденсатор C1 используется как сглаживающий фильтр. Сигнал поступает на параметрический стабилизатор, состоящий из резистора R1 и стабилитрона VD2.
Параллельно стабилитрону подключён резистор R2, которым и изменяется уровень выходного напряжения. Транзисторы включены по упрощённой схеме эмиттерного повторителя, и при появлении на их переходах напряжения начинают работать в режиме усиления тока. То есть сигнал, снятый с R2, поступает на выход прибора через транзисторы, которые снижают его значение на величину своего насыщения. Таким образом, чем больше подаётся на них напряжение, тем сильнее они открываются и больше мощности поступает на выход.
Этот регулируемый блок питания может работать с нагрузкой до трёх ампер, то есть обеспечивать мощность до 30 ватт. Если есть опыт, то схема паяется навесным монтажом с использованием проводов любого сечения.
Регулятор напряжения 220в своими руками на транзисторе
В последнее время в нашем быту все чаще применяются электронные устройства для плавной регулировки сетевого напряжения. С помощью таких приборов управляют яркостью свечения ламп, температурой электронагревательных приборов, частотой вращения электродвигателей.
Подавляющее большинство регуляторов напряжения, собранных на тиристорах, обладают существенными недостатками, ограничивающими их возможности. Во-первых, они вносят достаточно заметные помехи в электрическую сеть, что нередко отрицательно сказывается на работе телевизоров, радиоприемников, магнитофонов. Во-вторых, их можно применять только для управления нагрузкой с активным сопротивлением — электролампой или нагревательным элементом, и нельзя использовать совместно с нагрузкой индуктивного характера — электродвигателем, трансформатором.
Между тем все эти проблемы легко решить, собрав электронное устройство, в котором роль регулирующего элемента выполнял бы не тиристор, а мощный транзистор.
Принципиальная схема
Регулирующий элемент прибора — транзистор VT1. Диодный мост VD1. VD4 выпрямляет сетевое напряжение так, что к коллектору VT1 всегда приложено положительное напряжение. Трансформатор Т1 понижает напряжение 220 В до 5. 8 В, которое выпрямляется диодным блоком VD6 и сглаживается конденсатором С1.
Рис. Принципиальная схема мощного регулятора сетевого напряжения 220В.
Переменный резистор R1 служит для регулировки величины управляющего напряжения, а резистор R2 ограничивает ток базы транзистора. Диод VD5 защищает VT1 от попадания на его базу напряжения отрицательной полярности. Устройство подсоединяется к сети вилкой ХР1. Розетка XS1 служит для подключения нагрузки.
Регулятор действует следующим образом. После включения питания тумблером S1 сетевое напряжение поступает одновременно на диоды VD1, VD2 и первичную обмотку трансформатора Т1.
При этом выпрямитель, состоящий из диодного моста VD6, конденсатора С1 и переменного резистора R1, формирует управляющее напряжение, которое поступает на базу транзистора и открывает его. Если в момент включения регулятора в сети оказалось напряжение отрицательной полярности, ток нагрузки протекает по цепи VD2 — эмиттер-коллектор VT1, VD3. Если полярность сетевого напряжения положительная, ток протекает по цепи VD1 — коллектор-эмиттер VT1, VD4.
Значение тока нагрузки зависит от величины управляющего напряжения на базе VT1. Вращая движок R1 и изменяя значение управляющего напряжения, управляют величиной тока коллектора VT1. Этот ток, а следовательно, и ток, протекающий в нагрузке, будет тем больше, чем выше уровень управляющего напряжения, и наоборот.
При крайнем правом по схеме положении движка переменного резистора транзистор окажется полностью открыт и «доза» электроэнергии, потребляемая нагрузкой, будет соответствовать номинальной величине. Если движок R1 переместить в крайнее левое положение, VT1 окажется запертым и ток через нагрузку не потечет.
Управляя транзистором, мы фактически регулируем амплитуду переменного напряжения и тока, действующих в нагрузке. Транзистор при этом работает в непрерывном режиме, благодаря чему такой регулятор лишен недостатков, свойственных тирис-торным устройствам.
Конструкция и детали
В устройстве можно использовать следующие детали. Транзистор — КТ812А(Б), КТ824А(Б), КТ828А(Б), КТ834А(Б,В), КТ840А(Б), КТ847А или КТ856А. Диодные мосты: VD1. VD4 – КЦ410В или КЦ412В, VD6 — КЦ405 или КЦ407 с любым буквенным индексом; диод VD5 — серии Д7, Д226 или Д237.
Переменный резистор — типа СП, СПО, ППБ мощностью не менее 2 Вт, постоянный — ВС, MJIT, ОМЛТ, С2-23. Оксидный конденсатор – К50-6, К50-16. Сетевой трансформатор — ТВЗ-1-6 от ламповых телевизоров, ТС-25, ТС-27 — от телевизора «Юность» или любой другой маломощный с напряжением вторичной обмотки 5. 8 В.
Предохранитель рассчитан на максимальный ток 1 А. Тумблер — ТЗ-С или любой другой сетевой. ХР1 — стандартная сетевая вилка, XS1 — розетка.
Все элементы регулятора размещаются в пластмассовом корпусе с габаритами 150x100x80 мм. На верхней панели корпуса устанавливаются тумблер и переменный резистор, снабженный декоративной ручкой. Розетка для подключения нагрузки и гнездо предохранителя крепятся на одной из боковых стенок корпуса.
С той же стороны сделано отверстие для сетевого шнура. На дне корпуса установлены транзистор, трансформатор и монтажная плата. Транзистор необходимо снабдить радиатором с площадью рассеяния не менее 200 см2 и толщиной 3. 5 мм.
Рис. Печаная плата мощного регулятора сетевого напряжения 220В.
Регулятор не нуждается в налаживании. При правильном монтаже и исправных деталях он начинает работать сразу после включения в сеть.
Рекомендации
Теперь несколько рекомендаций тем, кто захочет усовершенствовать устройство. Изменения в основном касаются увеличения выходной мощности регулятора. Так, например, при использовании транзистора КТ856 мощность, потребляемая нагрузкой от сети, может составлять 150 Вт, для КТ834 — 200 Вт, а для КТ847 — 250 Вт.
Если необходимо еще больше увеличить выходную мощность прибора, в качестве регулирующего элемента можно применить несколько параллельно включенных транзисторов, соединив их соответствующие выводы.
Вероятно, в этом случае регулятор придется снабдить небольшим вентилятором для более интенсивного воздушного охлаждения полупроводниковых приборов. Кроме того, диодный мост VD1. VD4 потребуется заменить на четыре более мощных диода, рассчитанных на рабочее напряжение не менее 600 В и величину тока в соответствии с потребляемой нагрузкой.
Для этой цели подойдут приборы серий Д231. Д234, Д242, Д243, Д245 ..Д248. Необходимо будет также заменить VD5 на более мощный диод, рассчитанный на ток до I А. Также больший ток должен выдерживать предохранитель.
Регуляторы напряжения нашли широкое применение в быту и промышленности. Многим людям известно такое устройство, как диммер, позволяющий бесступенчато регулировать яркость светильников. Оно и является отличным примером регулятора напряжения 220в. Своими руками такой прибор собрать довольно просто. Безусловно, его можно приобрести в магазине, но себестоимость самодельного изделия окажется значительно ниже.
Назначение и принцип работы
С помощью регуляторов напряжения можно изменять не только яркость свечения ламп накаливания, но и скорость вращение электромоторов, температуру жала паяльника и так далее. Нередко эти устройства называют регуляторами мощности, что не совсем правильно. Устройства, предназначенные для регулирования мощности, основаны на ШИМ (широтно-импульсная модуляция) схемах.
Это позволяет получить на выходе различную частоту следования импульсов, амплитуда которых остается неизменной. Однако если параллельно нагрузке в такую схему включить вольтметр, то напряжение также будет изменяться. Дело в том, что прибор просто не успевает точно измерять амплитуду импульсов.
Регуляторы напряжения чаще всего изготовлены на основе полупроводниковых деталей – тиристорах и симисторах. С их помощью изменяется длительность прохождения волны напряжения из сети в нагрузку.
Следует заметить, что регуляторы напряжения будут максимально эффективны при работе с резистивной нагрузкой, например, лампами накаливания. А вот использовать их для подключения к индуктивной нагрузке нецелесообразно. Дело в том, что показатель индуктивного электротока значительно ниже в сравнении с резистивным.
Рекомендации по изготовлению
Собрать самодельный диммер довольно просто. Для этого потребуются начальные знания в области электроники и несколько деталей.
На основе симистора
Такой прибор работает по принципу фазового смещения открывания ключа. Ниже представлена простейшая схема диммера на основе симистора:
Структурно прибор можно разделить на два блока:
- Силовой ключ, в роли которого используется симистор.
- Узел создания управляющих импульсов на основе симметричного динистора.
С помощью резисторов R1-R2 создан делитель напряжения. Следует обратить внимание, что сопротивление R1 – переменное. Это позволяет менять напряжение в линии R2-C1. Между этими элементами включен динистор DB3. Как только показатель напряжения на конденсаторе C1 достигает значения порога открытия динистора, на ключ (симистор VS1) подается управляющий импульс.
В результате силовой ключ включается, и через него начинает проходить электроток на нагрузку. Положение регулятора определяет, в какой части фазы волны должен сработать силовой ключ.
На базе тиристора
Эти проборы также достаточно эффективны, а их схемы не отличаются высокой сложностью. Роль ключа в таком устройстве выполняет тиристор. Если внимательно изучить схему прибора, то сразу можно заметить главное отличие этой схемы от предыдущей – для каждой полуволны используется собственный ключ с управляющим динистором.
Принцип работы тиристорного прибора следующий:
- Когда через линию R5-R4-R3 проходит положительная полуволна, конденсатор C1 заряжается.
- После достижения порога включения динистора V3 он срабатывает, и электроток поступает на ключ V1.
- При прохождении отрицательной полуволны наблюдается аналогичная ситуация для линии R1-R2-R5, управляющего динистора V4 и ключа V2.
С помощью фазных регуляторов можно управлять не только яркостью ламп накаливания, но и другими видами нагрузок, например, количеством оборотов дрели. Однако следует помнить, что прибор на основе тиристора нельзя применять для работы со светодиодными и люминесцентными лампочками.
Также в быту используются конденсаторные регуляторы. Однако в отличие от полупроводниковых приборов, они не позволяют плавно изменять напряжение. Таким образом, для самостоятельного изготовления лучше всего подходят тиристорная и симисторная схемы.
Найти все необходимые для изготовления регулятора детали не составит труда. При этом их не обязательно покупать, а можно выпаять из старого телевизора или другой радиоаппаратуры. При желании на основе выбранной схемы можно сделать печатную плату, а затем впаять в нее все элементы. Также детали можно соединить обычными проводами. Домашний мастер может выбрать тот способ, который покажется ему наиболее привлекательным.
Оба рассмотренных устройства довольно легко собрать, и для выполнения всех работ не нужно обладать серьезными знаниями в области электроники. Даже начинающий радиолюбитель сможет изготовить своими руками схему регулятора напряжения 220в. При невысокой стоимости, они практически ни в чем не уступают заводским аналогам.
Данную конструкцию я использую для самодельной электроплитки на которой готовим кашу для собак, а недавно применил к паяльнику.
Для изготовления данного регулятора нам понадобится:
Пару резисторов на 1 кОм можно даже 0,25w, один переменный резистор на 1 мОм, два конденсатора 0,01 мкФ и
47 нФ, один динистор который я взял с эконом лампочки, полярности динистор не имеет так-что припаивать его можно как угодно, также нам понадобится симистор с небольшим радиатором, симистор я использовал серии ТС в металлическом корпусе на 10 ампер, но можно использовать КУ208Г, еще нам понадобятся винтовые клемники.
Да, кстати немного о переменном резисторе если поставить на 500 кОм то будет регулировать довольно плавно, но только с 220 до 120 вольт, а если на 1 мОм то регулировать будет жестко с промежутком 5-10 вольт, но зато диапазон увеличится с 220 до 60 вольт.
Итак начнем сборку нашего регулятора мощности, для этого нам нужно сначала сделать печатную плату.
После того как печатная плата готова начинаем набор радиокомпонентов на печатную плату. Первым делом припаиваем винтовые клемники.
Дальше припаиваем резисторы потом динистор и конденсаторы.
И в самую последнюю очередь устанавливаем радиатор и симистор.
Вот и все наш регулятор напряжения готов, помоем плату спиртом и проверяем.
Более подробный обзор симисторного регулятора в видео ролике. Удачной сборки.
Регулятор мощности своими руками | Каталог самоделок
Современная сеть электропитания устроена так, что в ней часто происходят скачки напряжения. Изменения тока допустимо, но оно не должно превышать 10% от принятых 220 вольт. Скачки плохо сказываются на работоспособности различных электроприборов, и очень часто они начинают выходить их строя. Чтобы этого не случилось, мы стали использовать стабильные регуляторы мощности для выравнивания поступающего тока. При наличии определенной фантазии и навыков можно сделать различные виды стабилизационных приборов, и самым эффективным остается стабилизатор симисторный.
На рынке такие приборы или стоят дорого, или зачастую они некачественные. Понятно, что мало кому захочется переплатить и получить неэффективный прибор. Вот в этом случае можно своими руками собрать его с нуля. Так возникла идея создания регулятора мощности на базе диммера. Диммер, слава Богу, у меня имелся, однако он был немного неработоспособным.
Починка симисторного регулятора – Dimmer-а
На данном изображении дана заводская электрическая схема диммера от фирмы Leviton, которая работает от сети с напряжением 120 Вольт. Если осмотр неработающих диммеров показал, что сгорел только симистор, то можно заняться процедурой его замены. Но здесь вас могут подстерегать неожиданности. Дело в том, что встречаются такие диммеры, в которых установлены какие-то странные симисторы с различными номерами. Вполне возможно, что не удастся найти информацию на них даже на даташите. Помимо этого, у таких симисторов, контактная площадка изолирована от электродов симистора (триака). Хотя, как видно, контактная площадка сделана из меди и даже не покрыта пластиком, как у корпусов транзисторов. Такие симисторы весьма удобны в ремонте.
Также обратите внимание на способ спайки симисторов к радиатору, он выполнен с помощью заклёпок, они пустотелые. При применении изолирующих прокладок, использовать такой способ крепления не рекомендуется. Да такое крепление не очень – то и надежное. В общем, ремонт такого симистра займет много времени и вы потратите нервы именно по причине установки данного типа триаков, диммер просто не рассчитан на такие размеры симистора (Triac-а) .
Заклепки пустотелые следует удалить при помощи сверла, который заточен под определенным углом , а конкретнее под углом 90°, можно также для этой работы использовать кусачки–бокорезки.
При неаккуратной работе есть вероятность повреждения радиатора , чтобы этого избежать, правильнее делать это только с той стороны , где расположен триак.
Радиаторы, выполненные из очень мягкого алюминия, при заклёпке немного могут быть деформированы. Поэтому, необходимо ошкурить контактные поверхности с помощью наждачной бумаги.
Если вы используете триак, который не имеет гальванической развязки, которая разделяет электроды и контактную площадку, то надо применить эффективный метод изоляции.
На изображении показано , как это делается. Чтобы случайно не продавить стенки радиатора, в том месте , где идет крепление симистора, необходимо сточить у винта большую часть шляпки, для того, чтобы избежать ее зацепку за поручень потенциометра или стабилизатора мощности, а затем под головку винта надо подложить шайбу.
Так должен выглядеть симистор, после изоляции от радиатора. Для наилучшего теплоотвода, необходимо приобрести специальную пасту термопроводящую КПТ-8.
На рисунке изображено то, что находиться под кожухом радиатора
Теперь все должно работать
Схема заводского регулятора мощности
На основе схемы заводского регулятора мощности можно собрать макет регулятора для напряжения вашей сети.
Здесь дана схема регулятора, который адаптирован к работе в сети со статичным напряжением в 220 Вольт. Эта схема отличается от оригинальной только несколькими деталями, а именно, при ремонте была в несколько раза увеличена мощность резистора R1, в 2 уменьшены номиналы R4 и R5, а динистор 60-ти. в вольтовый заменили на два , которые включёны последовательно, 30-ти Вольтовыми динисторами VD1, VD2. Как видно, своими руками можно не только отремонтировать неисправные диммера, но и легко подстроить под свои потребности .
Это исправный макет регулятора мощности. Теперь вы точно знаете, какая схема у вас получится при правильном ремонте. Данная схема не требует подбора дополнительных деталей и сразу готова к работе.. Возможно, надо будет отрегулировать положения движка подстрочного резистора R4. Для этих целей движки потенциометров R4 и R5 устанавливаются в крайнее верхнее положение, а потом меняют положение движка R4, после чего лампа загорится с самой малой яркостью, а потом следует слегка подвинуть движок в противоположном направлении. На этом процесс настройки закончен! Но стоит отметить, что данный регулятор мощности работают только с нагревательными приборами и лампами накаливания, а с двигателями или мощными аппаратами результаты могут быть не непредсказуемы. Для начинающих мастеров- любителей с малым опытом такие работы самое то.
Etxt.
делаем самостоятельно симисторный вариант. Делаем своими руками
Если в жилье есть газоснабжение, готовить пищу на газовой плите удобнее, а отопление газовым котлом обычно дешевле электрического варианта. Но при отсутствии газа оптимизация потребления электроэнергии становится очень важной задачей. Для ее решения надо потреблять ровно столько электрической энергии, сколько необходимо. А для этого потребуется оптимальное управление бытовыми электроприборами и освещением. Многие электроплиты, электрообогреватели, вентиляторы и т.д. снабжены встроенными регуляторами.
Но технические возможности системы управления электрооборудованием стоят немалых денег. И по этой причине чаще всего покупаются недорогие электроприборы с простейшими регуляторами. Далее мы расскажем читателям об устройствах, использование которых даст не только экономию электроэнергии, но и сделает многие электроприборы более удобными. Эти устройства — регуляторы мощности. Их назначение — регулировка среднего значения напряжения на нагрузке.
Проще всего купить диммер
Они уменьшают его величину, а соответственно, и потребляемую мощность. По законам Джоуля-Ленца и Ома для электрической цепи. Эффективное регулирование мощности нагрузки обеспечивают специальные технические решения. А любая схема регулятора мощности содержит полупроводниковый коммутатор. Кто желает поскорее обрести возможность гибкого управления своими электроприборами, может легко купить простой регулятор мощности. Им является диммер. Разнообразные модели этого устройства продаются в торговых сетях.
Очень удобен такой регулятор на даче. Он будет замечательным дополнением к маленькому кипятильнику или одно-, двухконфорочной электроплитке. Теперь в ходе приготовления еды не будет подгорания и слишком сильного кипения. Покупая регулятор мощности, обязательно удостоверьтесь в его соответствии решаемым задачам. Он должен быть мощнее управляемого электрооборудования. Большинство моделей диммеров рассчитано на обслуживание квартирного освещения. По этой причине они в основном регулируют мощность до 300 Вт.
Не нашел в магазине — сделай сам
Чтобы приобрести более мощную модель, придется поискать ее в торговых сетях. Альтернативное решение — просмотр схем регуляторов мощности, изготовление своими руками выбранной модели. Чтобы помочь нашим читателям выбрать оптимальную схему, более подробно опишем главные особенности этих устройств. Регулятор на полупроводниковом ключе может быть выполнен на
Регулятор мощности, схема которого содержит любой из перечисленных полупроводниковых ключей, всегда пребывает в одном из двух состояний. Он либо максимально ограничивает ток (отключает нагрузку), либо почти не оказывает сопротивления (подключает нагрузку). При срабатывании сопротивление переходов полупроводниковых приборов быстро изменяется по величине. Каждому его значению соответствует определенная электрическая мощность. Она выделяется как тепло и носит название динамических потерь. Чем быстрее срабатывает прибор (отключает или подключает нагрузку), тем меньше динамические потери.
Наиболее быстродействующими ключами являются транзисторы. Но они и включаются и выключаются при любой ненулевой величине напряжения. Если эти процессы происходят вблизи его амплитудного значения, динамические потери будут максимально большими. Обычный тиристорный ключ отличается тем, что выключается без управляющего сигнала при переходе тока нагрузки через ноль. Хотя его включение происходит при той же амплитуде переменного напряжения, что и у транзисторов.
Выбери триак
По этой причине схема тиристора, а особенно симисторного регулятора мощности получается более простой, экономичной и надежной. Особенно если он быстро включается. У регулятора мощности на симисторе кроме него нет больше полупроводниковых приборов, по которым течет ток нагрузки. А у регуляторов с остальными ключами такими приборами обязательно будут выпрямительные диоды, в том числе встроенные. Поэтому рекомендуем остановиться на симисторах — схемы с ними есть во многих справочниках, популярных журналах а, следовательно, и в интернете. Их легко найти и выбрать что-либо приемлемое.
Первый регулятор мощности на симисторе КУ208Г используется уже много лет, начиная с 80-х годов прошлого века.
Современные симисторы в регуляторах
Устаревший дизайн КУ208Г не всегда удобен для размещения в корпусе регулятора. Новая модель BT136 600E, у которой параметры включения и регулировки примерно такие же, позволит собрать более компактный симисторный регулятор мощности. С этой моделью из-за ее компактности получается значительно больше вариантов конструкции, из которых можно выбирать.
Если самостоятельно изготавливается регулятор мощности, схема которого взята из какого-либо источника, обязательно сравните максимальные токи используемого ключа и нагрузки. В этих целях разделите паспортную мощность нагрузки на 220. Для надежной работы регулятора мощности на симисторе и не только полученное значение тока должно составлять 0,7 от номинального значения ключа, используемого в схеме. Поэтому для многих бытовых электроприборов КУ208Г окажется слабоват. Но его можно заменить более мощным, например ВТА 12.
Этот ключ со своими 12 амперами сможет надежно регулировать нагрузку до 1848 Вт с непродолжительным увеличением ее до 2000 Вт. Собранный регулятор мощности на симисторе этой модели, например, можно применить для управления электрическим чайником. Один из таких вариантов показан далее.
При выборе схемы регулятора мощности
- коллекторного мотора постоянного тока,
- универсальных (тоже коллекторных) двигателей,
- пригодного для управления электродвигателя в каком-либо электрооборудовании,
рекомендуем обратить внимание на безопасность управления. Она обеспечивается гальванической развязкой в схеме регулятора. Ключ надежно развязывается от управляющего элемента, к которому прикасается пользователь. Для этого применяются схемотехнические решения с трансформаторами, а также оптронные электронные приборы. Примеры подобных схем показаны далее. В этих схемах управляющий элемент является частью контроллера.
Эффективный, надежный и безопасный регулятор мощности добавит многим вашим электроприборам новые потребительские свойства. За вами остается правильный выбор устройства при покупке или изготовление их без ошибок своими руками по выбранной схеме.
Этот простой регулятор мощности может пригодиться для регулировки освещения ламп накаливания, регулировки температуры ТЭНов, фенов, тепловых пушек, но не годится для работы на индуктивную нагрузку (трансформатор, асинхронный двигатель) или емкостную. Симистор моментально вылетит.
Роль используемых деталей:
Т1 — это симистор , в моём случае я использовал импортный BTB (BTB 16 600bw) на 16А,
Что в пересчете на мощность P=I*U=16*220=3520Вт с большим теплоотводом симистор выше 50 градусов не греется, хотя возможно подключить и (КУ 208) или импортные симисторы так называемые «триаки» ВТА, ВТ.
Элемент схемы Т — это и есть вышеупомянутый симметричный динистор то есть «диак» импортного производства DB 3 (разрешается DB 4). По размеру он очень мал, что делает монтаж его очень удобным, я
например, в некоторых случаях припаивал его непосредственно к управляющему выводу симистора.
Выглядит это чудо так:
Резистор же 510.Оm — ограничивает максимальное напряжение на конденсатор 0,1 mkF, то есть если движок регулятора поставить в положение 0.Оm, то сопротивление цепи всё равно будет 510.Оm
Ну,и конечно конденсатор 0,1mkF:
Заряжается он через резисторы 510.Om и переменный резистор 420kOm, после того, как напряжение на конденсаторе достигнет напряжения открывания динистора DB 3, динистор формирует импульс, открывающий симистор, после чего, при проходе синусоиды, симистор закрывается. Частота открывания-закрывания симистора зависит от напряжения на конденсаторе 0.1 mkF, которое, в свою очередь, зависит от сопротивления переменного резистора. Таким образом, прерывая ток (с большой частотой) схема регулирует мощность в нагрузке. Допустим, если подключить электролампу через диод, мы заставим работать её «в полнакала» и продлим её жизнь, однако не получиться регулировать яркость, да и неприятного мерцания не избежать. Этого недостатка нет в симисторных схемах, так как частота переключения симистора слишком высока, и увидеть мерцание лампы человеческому глазу не под силу. При работе на индуктивную нагрузку, например электродвигатель, можно услышать чье то пение, это будет частота с которой симистор подключает нагрузку к цепи.
Из-за проблемы с электричеством люди все чаще покупают регуляторы мощности. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Для того чтобы не допустить порчи имущества, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.
Типы регуляторов
В наше время на рынке можно увидеть огромное количество различных регуляторов как для всего дома, так и маломощных отдельных бытовых приборов. Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.
Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент имеет возможность пропускать ток как в прямом направлении, так и в обратном.
Эти компоненты можно наблюдать в различной бытовой технике начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.
Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны и потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.
К достоинствам этого элемента можно отнести:
В связи с вышесказанными достоинствами симисторы и регуляторы на их основе используются довольно часто.
Эта схема довольно проста в сборке и не требует большого количества деталей. Такой регулятор можно применить для регулировки не только температуры паяльника, но и обычных ламп накаливания и светодиодных. К этой схеме можно подключать различные дрели, болгарки, пылесосы, шлифмашинки, которые изначально шли без плавной регулировки скорости.
Вот такой регулятор напряжения 220в своими руками можно собрать из следующих деталей:
- R1 — резистор 20 кОм, мощностью 0,25 Вт.
- R2 — переменный резистор 400−500 кОм.
- R3 — 3 кОм, 0,25 Вт.
- R4-300 Ом, 0,5 Вт.
- C1 C2 — конденсаторы неполярные 0,05 Мкф.
- C3 — 0,1 Мкф, 400 в.
- DB3 — динистор.
- BT139−600 — симистор необходимо подобрать в зависимости от нагрузки которая будет подключен. Прибор, собранный по этой схеме, может регулировать ток величиной 18А.
- К симистору желательно применить радиатор, так как элемент довольно сильно греется.
Схема проверена и работает довольно стабильно при разных видах нагрузки .
Существует еще одна схема универсального регулятора мощности.
На вход схемы подается переменное напряжение 220 В, а на выходе уже 220 В постоянного тока. Эта схема имеет в своем арсенале уже больше деталей, соответственно и сложность сборки повышается. На выход схемы возможно подключить любой потребитель (постоянного тока). В большинстве домов и квартир люди стараются поставить энергосберегающие лампы. Не каждый регулятор справится с плавной регулировкой такой лампы, например, тиристорный регулятор использовать нежелательно. Эта схема позволяет беспрепятственно подключать эти лампы и делать из них своего рода ночники.
Особенность схемы заключается в том, что при включении ламп на минимум все бытовые приборы должны быть отключены от сети. После этого в счетчике сработает компенсатор, и диск медленно остановится, а свет будет продолжать гореть. Это возможность собрать симисторный регулятор мощности своими руками. Номиналы деталей нужных для сборки, можно увидеть на схеме.
Еще одна занимательная схема, которая позволяет подключить нагрузку до 5А и мощностью до 1000Вт.
Регулятор собран на базе симистора BT06−600. Принцип работы этой схемы заключается в открытии перехода симистора. Чем больше элемент открыт, тем больше мощность поступает на нагрузку. А также в схеме присутствует светодиод, который даст знать, работает устройство или нет. Перечень деталей, которые понадобятся для сборки аппарата:
- R1 — резистор 3.9 кОм и R2 — 500 кОм своеобразный делитель напряжения, который служит для зарядки конденсатора С1.
- конденсатор С1- 0,22 мкФ.
- динистор D1 — 1N4148.
- светодиод D2, служит для индикации работы устройства.
- динисторы D3 — DB4 U1 — BT06−600.
- клемы для подключения нагрузки P1, P2.
- резистор R3 — 22кОм и мощностью 2 вт
- конденсатор C2 — 0.22мкФ рассчитан на напряжение не меньше 400 В.
Симисторы и тиристоры с успехом используются в качестве пускателей. Иногда необходимо запустить очень мощные тэны, управлять включением сварочного мощного оборудования, где сила тока достигает 300−400 А. Механическое включение и выключение с помощью контакторов уступает симисторному пускателю из-за быстрого износа контакторов, к тому же при механическом включении возникает дуга, которая также пагубно влияет на контакторы. Поэтому целесообразным будет использовать симисторы для этих целей. Вот одна из схем.
Все номиналы и перечень деталей указаны на Рис. 4. Достоинством этой схемы является полная гальваническая развязка от сети, что обеспечит безопасность в случае повреждения.
Нередко в хозяйстве необходимо выполнить сварочные работы. Если есть готовый инверторный сварочного аппарата, то сварка не представляет особых трудностей, поскольку в аппарате присутствует регулировка тока. У большинства людей нет такого сварочного и приходится пользоваться обычным трансформаторным сварочным, в котором регулировка тока осуществляется путем смены сопротивления, что довольно неудобно.
Тех, кто пробовал использовать в качестве регулятора симистор, ждет разочарование. Он не будет регулировать мощность. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Но существует выход из этой ситуации. Следует подать на управляющий электрод однотипный импульс или подавать на УЭ (управляющий электрод) постоянный сигнал, пока не будет проход через ноль. Схема регулятора выглядит следующим образом:
Конечно, схема довольно сложная в сборке, но такой вариант решит все проблемы с регулировкой. Теперь не нужно будет пользоваться громоздким сопротивлением, к тому же очень плавной регулировки не получится. В случае с симистором возможна довольно плавная регулировка.
Если существуют постоянные перепады напряжения, а также пониженное или повышенное напряжение, рекомендуется приобрести симисторный регулятор или по возможности сделать регулятор своими руками. Регулятор защитит бытовую технику, а также предотвратит ее порчу.
Полупроводниковый прибор, имеющий 5 p-n переходов и способный пропускать ток в прямом и обратном направлениях, называется симистором. Из-за неспособности работы на высоких частотах переменного тока, высокой чувствительности к электромагнитным помехам и значительного тепловыделения при коммутации больших нагрузок, в настоящее время широкого применения в мощных промышленных установках они не имеют.
Там их с успехом заменяют схемы на тиристорах и IGBT-транзисторах. Но компактные размеры прибора и его долговечность в сочетании с невысокой стоимостью и простотой схемы управления позволили найти им применение в сферах, где указанные выше недостатки не имеют существенного значения.
Сегодня схемы на симисторах можно найти во многих бытовых приборах от фена до пылесоса, ручном электроинструменте и электронагревательных устройствах – там, где требуется плавная регулировка мощности.
Принцип работы
Регулятор мощности на симисторе работает подобно электронному ключу, периодически открываясь и закрываясь, с частотой, заданной схемой управления. При отпирании симистор пропускает часть полуволны сетевого напряжения, а значит потребитель получает только часть номинальной мощности.
Делаем своими руками
На сегодняшний день ассортимент симисторных регуляторов в продаже не слишком велик. И, хотя цены на такие устройства невелики, зачастую они не отвечают требованиям потребителя. По этой причине рассмотрим несколько основных схем регуляторов, их назначение и используемую элементную базу.
Схема прибора
Простейший вариант схемы, рассчитанный для работы на любую нагрузку. Используются традиционные электронные компоненты, принцип управления фазово-импульсный.
Основные компоненты:
- симистор VD4, 10 А, 400 В;
- динистор VD3, порог открывания 32 В;
- потенциометр R2.
Ток, протекающий через потенциометр R2 и сопротивление R3, каждой полуволной заряжает конденсатор С1. Когда на обкладках конденсатора напряжение достигнет 32 В, произойдёт открытие динистора VD3 и С1 начнёт разряжаться через R4 и VD3 на управляющий вывод симистора VD4, который откроется для прохождения тока на нагрузку.
Длительность открытия регулируется подбором порогового напряжения VD3 (величина постоянная) и сопротивлением R2. Мощность в нагрузке прямо пропорциональна величине сопротивления потенциометра R2.
Дополнительная цепь из диодов VD1 и VD2 и сопротивления R1 является необязательной и служит для обеспечения плавности и точности регулировки выходной мощности. Ограничение тока, протекающего через VD3, выполняет резистор R4. Этим достигается необходимая для открытия VD4 длительность импульса. Предохранитель Пр.1 защищает схему от токов короткого замыкания.
Отличительной особенностью схемы является то, что динистор открывается на одинаковый угол в каждой полуволне сетевого напряжения. Вследствие этого не происходит выпрямление тока, и становится возможным подключение индуктивной нагрузки, например, трансформатора.
Подбирать симисторы следует по величине нагрузке, исходя из расчёта 1 А = 200 Вт.
Используемые элементы:
- Динистор DB3;
- Симистор ТС106-10-4, ВТ136-600 или другие, требуемого номинала по току 4-12А.
- Диоды VD1, VD2 типа 1N4007;
- Сопротивления R1100 кОм, R3 1 кОм, R4 270 Ом, R5 1,6 кОм, потенциометр R2 100 кОм;
- С1 0,47 мкФ (рабочее напряжение от 250 В).
Отметим, что схема является наиболее распространённой, с небольшими вариациями. Например, динистор может быть заменён на диодный мост или может быть установлена помехоподавляющая RC цепочка параллельно симистору.
Более современной является схема с управлением симистора от микроконтроллера – PIC, AVR или другие. Такая схема обеспечивает более точную регулировку напряжения и тока в цепи нагрузки, но является и более сложной в реализации.
Схема симисторного регулятора мощности
Сборка
Сборку регулятора мощности необходимо производить в следующей последовательности:
- Определить параметры прибора, на который будет работать разрабатываемое устройство. К параметрам относятся: количество фаз (1 или 3), необходимость точной регулировки выходной мощности, входное напряжение в вольтах и номинальный ток в амперах.
- Выбрать тип устройства (аналоговый или цифровой), произвести подбор элементов по мощности нагрузки. Можно проверить своё решение в одной из программ для моделирования электрических цепей – Electronics Workbench, CircuitMaker или их онлайн аналогах EasyEDA, CircuitSims или любой другой на ваш выбор.
- Рассчитать тепловыделение по следующей формуле: падение напряжения на симисторе (около 2 В) умножить на номинальный ток в амперах. Точные значения падения напряжения в открытом состоянии и номинальный пропускаемый ток указаны в характеристиках симистора. Получаем рассеиваемую мощность в ваттах. Подобрать по рассчитанной мощности радиатор.
- Закупить необходимые электронные компоненты , радиатор и печатную плату.
- Произвести разводку контактных дорожек на плате и подготовить площадки для установки элементов. Предусмотреть крепление на плате для симистора и радиатора.
- Установить элементы на плату при помощи пайки. Если нет возможности подготовить печатную плату, то можно использовать для соединения компонентов навесной монтаж, используя короткие провода. При сборке особое внимание уделить полярности подключения диодов и симистора. Если на них нет маркировки выводов, то или «аркашки».
- Проверить собранную схему мультиметром в режиме сопротивления. Полученное изделие должно соответствовать изначальному проекту.
- Надёжно закрепить симистор на радиатор. Между симистором и радиатором не забыть проложить изолирующую теплопередающую прокладку. Скрепляющий винт надёжно заизолировать.
- Поместить собранную схему в пластиковый корпус.
- Вспомнить о том, что на выводах элементов присутствует опасное напряжение.
- Выкрутить потенциометр на минимум и произвести пробное включение. Измерить напряжение мультиметром на выходе регулятора. Плавно поворачивая ручку потенциометра следить за изменением напряжения на выходе.
- Если результат устраивает, то можно подключать нагрузку к выходу регулятора. В противном случае необходимо произвести регулировки мощности.
Симисторный радиатор мощности
Регулировка мощности
За регулировку мощности отвечает потенциометр, через который заряжается конденсатор и разрядная цепь конденсатора. При неудовлетворительных параметрах выходной мощности следует подбирать номинал сопротивления в разрядной цепи и, при малом диапазоне регулировки мощности, номинал потенциометра.
- продлить срок службы лампы, регулировать освещение или температуру паяльника поможет простой и недорогой регулятор на симисторах.
- выбирайте тип схемы и параметры компонентов по планируемой нагрузке.
- тщательно проработайте схемные решения.
- будьте внимательны при сборке схемы , соблюдайте полярность полупроводниковых компонентов.
- не забывайте, что электрический ток есть во всех элементах схемы и он смертельно опасен для человека.
Такой простой, но в то же время очень эффективный регулятор, сможет собрать практически каждый, кто может держать в руках паяльник и хоть слегка читает схемы. Ну а этот сайт поможет вам осуществить своё желание. Представленный регулятор регулирует мощность очень плавно без бросков и провалов.
Схема простого симисторного регулятора
Такой регулятор можно применить в регулировании освещения лампами накаливания, но и светодиодными тоже, если купить диммируемые. Температуру паяльника регулировать — легко. Можно бесступенчато регулировать обогрев, менять скорость вращения электродвигателей с фазным ротором и ещё много где найдётся место такой полезной вещице. Если у вас есть старая электродрель, у которой не регулируются обороты, то применив этот регулятор, вы усовершенствуете такую полезную вещь.В статье, с помощью фотографий, описания и прилагаемого видео, очень подробно описан весь процесс изготовления, от сбора деталей до испытания готового изделия.
Сразу говорю, что если вы не дружите с соседями, то цепочку C3 — R4 можете не собирать. (Шутка) Она служит для защиты от радиопомех.
Все детали можно купить в Китае на Алиэкспресс. Цены от двух до десяти раз меньше, чем в наших магазинах.
Для изготовления этого устройства понадобится:
- R1 – резистор примерно 20 Ком, мощностью 0,25вт;
- R2 – потенциометр примерно 500 Ком, можно от 300 Ком до 1 Мом, но лучше 470 Ком;
- R3 — резистор примерно 3 Ком, 0, 25 Вт;
- R4- резистор 200-300 Ом, 0, 5 Вт;
- C1 и C2 – конденсаторы 0, 05 МкФ, 400 В;
- C3 – 0, 1 МкФ, 400 В;
- DB3 – динистор, есть в каждой энергосберегающей лампе;
- BT139-600, регулирует ток 18 А или BT138-800, регулирует ток 12 А – симисторы, но можно взять и любые другие, в зависимости от того, какую нагрузку нужно регулировать. Динистор ещё называют диак, симистор – триак.
- Радиатор охлаждения выбирается от величины планируемой мощности регулирования, но чем больше, тем лучше. Без радиатора можно регулировать не более 300 ватт.
- Клеммные колодки можно поставить любые;
- Макетную плату применять по вашему желанию, лишь бы всё вошло.
- Ну и без прибора, как без рук. А вот припой применять лучше наш. Он хоть и дороже, но намного лучше. Хорошего припоя Китайского не видел.
Приступаем к сборке регулятора
Сначала нужно продумать расстановку деталей так, чтобы ставить как можно меньше перемычек и меньше паять, затем очень внимательно проверяем соответствие со схемой, а потом все соединения запаиваем.Убедившись, что ошибок нет и поместив изделие в пластиковый корпус, можно опробовать, подключив к сети.
Регулятор напряжения 12 вольт – схемы и способы изготовления своими руками
Стабильность напряжения – это весьма важная характеристика электропитания для большинства электронных устройств. В них содержатся электрические цепи с нелинейными элементами. Для оптимальной настройки этих цепей существует определенная величина разности потенциалов. И если она будет изменяться, электрическая цепь утратит правильные эксплуатационные характеристики. Поскольку напряжение 12 вольт является стандартом не только для автомобилей, но и для многих других устройств, далее пойдет речь именно о таких регуляторах.
Особенности регулировки
Речь о том или ином регуляторе 12 вольт имеет смысл вести только при указании дополнительных данных:
- постоянное или переменное напряжение надо регулировать;
- какова максимальная величина тока в нагрузке;
- величина разности потенциалов перед регулятором;
- параметры напряжения на нагрузке в диапазоне регулирования.
Каждый из перечисленных параметров связан с определенными техническими решениями, которые отражаются в схеме. Общая схема регулятора – это нагрузка, которая соединена с некоторым устройством. Оно условно обозначено прямоугольником на схеме, показанной далее. Внутри этого прямоугольника может быть та или иная схема, которая соответствует дополнительным данным, упомянутым выше. Простейшим регулятором является переменный резистор. Он позволяет без искажений регулировать переменное напряжение. Также такой резистор применим и при постоянном токе.
Схема с переменным резистором.
Элементарная схема регулятораСхема с переменным резисторомЕсли разность потенциалов на входе значительно больше 12 вольт на выходе, в регуляторе будет теряться энергия. На переменном резисторе будет выделяться тепло. Чтобы избежать потерь тепла, на переменном токе надо применить переменную индуктивность, которой может стать ЛАТР. Его пропускная способность ограничивается, как и в переменном резисторе, конструкцией подвижного контакта. Но если допустимо переключение путем переставления между витками перемычки с надежными контактами, можно получать значительную силу тока.
Индуктивный регуляторДругим способом регулирования своими руками переменного напряжения 12 вольт может быть изменение индуктивности регулятора. Для этого вручную изменяется либо зазор, либо число витков, специально предназначенных для этого. По такому принципу устроен регулируемый сварочный трансформатор, используемый для электропитания вольтовой дуги. Если регулятор напряжения 12 вольт не обладает свойствами стабилизатора и управляется своими руками, разность потенциалов на нагрузке необходимо контролировать вольтметром.
Переменный резистор и переменная индуктивность могут быть использованы и как регулятор тока. В этом случае необходимо контролировать ток в нагрузке амперметром. Если параметры напряжения на нагрузке не оговорены, за исключением его величины в 12 В, регулировать можно диммером. Это может быть мощный регулятор, поскольку он обычно выполнен на основе тиристора. А современные тиристоры выпускаются для очень широкого диапазона разности потенциалов и тока.
Регулирование со стабилизацией
Для получения заданных параметров напряжения или тока нагрузки применяются стабилизаторы. В них выходное напряжение или ток сравниваются с эталонным значением, и при минимальном заданном изменении выполняется автоматическая компенсация регулятора управлением соответствующего полупроводникового прибора. Существует огромное количество разнообразных схем различных стабилизаторов. Наиболее простыми в использовании являются интегральные микросхемы.
Внешний вид и схема подключения микросхемы – стабилизатора 12 ВТакие готовые стабилизаторы очень удобны для питания светодиодов как в автомобилях, так и в системах освещения. При питании от сети 220 вольт необходим понижающий трансформатор с выпрямителем, подключаемый к входу. Поскольку во многих случаях параметры нагрузки весьма специфичны, делаются специальные стабилизаторы напряжения и тока. Они могут работать как в непрерывном, так и в импульсном режиме. Но это уже совсем другая история…
5 схем сборки самодельного светорегулятора, как сделать самому, Ремонт и Строительство
Очень часто возникает потребность в регулировании яркости лампы в пределах определенной величины, как правило, от 20 до 100% яркости. Меньше 20 % не имеет смысла делать, поскольку светового потока лампа не даст, а произойдет только слабое свечение, которое может пригодится разве что для декоративных целей. Можно пойти в магазин и купить готовое изделие, но сейчас ценны на данные устройства мягко говоря неадекватные. Так как мы с вами мастера на все руки, то будем делать данные девайсы собственноручно. Сегодня рассмотрим несколько схем, благодаря которым вам станет понятно, как сделать диммер на 12 и 220 В своими руками.
На симисторе
Для начало рассмотрим схему светорегулятора, работающего от сети 220 Вольт. Данный тип устройств работает по принципу фазового смещения открывания силового ключа. Сердцем диммера является RC цепочка определенного номинала. Узел формирования управляющего импульса, симметричный динистор. И собственно сам силовой ключ, симистор.
Рассмотрим работу схемы. Резисторы R1 и R2 образуют делитель напряжения. Так как R1 является переменным, то с его помощью меняется напряжение в цепочке R2C1. Динистор DB3 включен в точку между ними и при достижении напряжения порога его открывания на конденсаторе C1 он срабатывает и подает импульс на силовой ключ симистор VS1. Он открывается и пропускает через себя ток, тем самым включает сеть. От положения регулятора зависит в какой момент волны фазы откроется силовой ключ. Это может быть и 30 Вольт в конце волны, и 230 Вольт в пике. Тем самым подводя часть напряжения в нагрузку. На графике ниже изображен процесс регулирования освещения диммером на симисторе.
На данных графиках значение (t*), это время за которое конденсатор заряжается до порога открывания, и чем быстрее он набирает напряжение, тем раньше включается ключ, и больше напряжение оказывается на нагрузке. Эта схема диммера проста и легко повторяется на практике. Рекомендуем просмотреть предоставленное ниже видео, в котором наглядно показывается, как сделать светорегулятор на симисторе:
Симисторный регулятор мощности на 1000 Вт
На тиристорах
При наличии кучи старых телевизоров и прочих вещей пылящихся в закромах очумельцев, можно не покупать симистор, а сделать простой светорегулятор на тиристорах. Схема немного отличается от предыдущей, тем что для каждой полуволны стоит свой тиристор, и тем самым свой динистор для каждого ключа.
Кратко опишем процесс регулирования. Во время положительной полуволны емкость C1 заряжается через цепочку R5, R4, R3. При достижении порога открывания динистора V3, ток через него попадает на управляющий электрод V1. Ключ открывается пропуская положительную полуволну через себя. При отрицательной фазе тиристор запирается, а процесс повторяется для другого ключа V2, заряжаясь через цепочку R1, R2, R5.
Фазные регуляторы — димеры можно использовать не только для регулировки яркостью ламп накаливания, а также для регулирования скорости вращения вентилятором вытяжки, сделать приставку для паяльника и регулировать таким образом температуру его жала. Также с помощью самодельного диммера можно регулировать обороты дрели или пылесоса и много других применений.
Сборка тиристорного диммера
Важно! Данный способ регулирования не подходит для работы с люминесцентными, экономными компактными и светодиодными лампами.
Конденсаторный светорегулятор
На ряду с плавными регуляторами в быту получили распространение конденсаторные устройства. Работа данного девайса основана на зависимости передачи переменного тока от величины емкости. Чем больше емкость конденсатора, тем больше ток он пропускает через свои полюса. Данный вид самодельного диммера может быть довольно компактным, и зависит от требуемых параметров, емкости конденсаторов.
Как видно из схемы, есть три положения 100% мощности, через гасящий конденсатор и выключено. В устройстве используется неполярные бумажные конденсаторы, которые можно раздобыть в старой технике. О том, как правильно выпаивать радиодетали из плат мы рассказали в соответствующей статье!
Ниже приведена таблица с параметрами емкость-напряжение на лампе.
На основе этой схемы можно самому собрать простой ночник, с помощью тумблера или переключателя управлять яркостью светильника.
На микросхеме
Для регулирования мощностью на нагрузку в цепях постоянного тока 12 Вольт, часто используют интегральные стабилизаторы — КРЕНки. Применение микросхемы упрощает разработку и монтаж устройств. Такой самодельный диммер прост в настройке и обладает функциями защиты.
С помощью переменного резистора R2 создается опорное напряжение на управляющем электроде микросхемы. В зависимости от выставленного параметра регулируется значение на выходе от максимума в 12В до минимума в десятые доли Вольта. Недостаток данных регуляторов в необходимости установки дополнительного радиатора для хорошего охлаждения КРЕН, поскольку часть энергии выделяется на нем в виде тепла.
Данный регулятор освещения был повторен мной и отлично справлялся со светодиодной лентой 12 Вольт, длиною три метра и возможностью регулировки яркости светодиодов от ноля до максимума. Для не очень ленивых мастеров можно предложить сделать диммер дома на интегральном таймере 555, который управляет силовым ключом КТ819Г, короткими ШИМ импульсами.
В таком режиме транзистор пребывает в двух состояниях: полностью открыт или полностью закрыт. Падение напряжения на нем минимальны и позволяют использовать схему с малым радиатором, что по сравнению с предыдущей схемой с регулятором КРЕН, выгодно отличается по габаритам и экономичности.
Напоследок рекомендуем просмотреть еще один мастер-класс, в котором показано, как можно сделать регулятор освещения для светодиодов:
Изготовление регулятора света на 12 Вольт
Вот собственно и все идеи сборки простого светорегулятора в домашних условиях. Теперь вы знаете, как сделать диммер своими руками на 220 и 12В.
C уважением, Источник: http://samelectrik.ru
Сенсорный выключатель 220В с доработкой
Что такое фазовый регулятор
Обычно фазовый генератор представляет собой небольшое устройство с поворотным механизмом, которое позволяет уменьшать или увеличивать подаваемую на приборы мощность. Работа таких устройств основана на одном небольшом полупроводниковом приборе, называемом симистором. Он позволяет изменять конфигурацию и фазность сигнала, что меняет и мощность приборов.
Что собой представляет фазовый регулятор
Обратите внимание! Такой прибор можно купить в магазине или же собрать для своей цепи самостоятельно. Применяют его для одно- и трехфазных сетей с небольшими различиями в конструкции.
Симистор
Электроника для начинающих
Добавить в избранное. Защита телефонной линии Счетчики — Микросхемы Бегущие огни на трех гирляндах Ручной реверсивный счетчик Автоматический выключатель освещения Приемный тракт для радиосигнализации 27 МГц Высокачастотный пробник Ламповый Hi-Fi усилитель.
Ру — Все права защищены. Публикации схем являются собственностью автора. Схема Таймера-выключатель Вт. Категория: Таймеры Таймер предназначен для использовании в быту, он может в заранее установленное время в течении суток выключать или включать нагрузку питаемую переменным напряжением В и имеющую мощность не более Вт.
Таймер состоит из двух функциональных узлов — отсчетного устройства и коммутатора. Роль отсчетного устройства выполняют готовые электронные карманные часы с функцией будильника. В принципе роль отсчетного устройства могут выполнять любые электронные часы-будильник, имеющие акустический звукоизлучатель. Как работает таймер-выключатель Коммутатор состоит из выключателя на симисторе VS1, управляемого импульсами, поступающими на него через трансформатор Т1. Импульсы вырабатывает мультивибратор на элементах D1.
В коллекторной цепи этого транзистора включена первичная обмотка импульсного трансформатора Т1. Источник питания устройства управления выполнен по бестрансформаторной схеме с гасящим резистором R1. В результате источник, рассчитанный питание микросхемы КМОП обеспечивает небольшой постоянный ток, не способный управлять симистором.
Но наличие конденсатора С1 большой емкости и импульсного метода управления симистором позволяет, не оказывая существенного влияния на источник питания, формировать мощные короткие управляющие импульсы за счет разрядного тока С1 мощность которых достаточна для управления симистором. Таким образом, чтобы включить нагрузку открыть симистор нужно запустить мультивибратор на D1. Управляет мультивибратором RS-триггер на элементах D1. Установка триггера производится либо транзистором VT1 на базу которого поступает переменное напряжение непосредственно со звукоизлучателя часов-будильника базовая цепь через С3 подключена параллельно звукоизлучателю, при этом часы питаются от собственного источника , либо установочной кнопкой SK1.
Режим работы выбирается переключателем SB1 тумблер на две контактные группы. При указанном на схеме положении SB1 нагрузка будет выключаться кратковременным нажатием на кнопку SK1, а включаться по сигналу будильника. Если переключатель SB1 перевести в нижнее, по схеме положение, ситуация обратная: нажатие на кнопку SK1 будет приводить к включению нагрузки, а выключаться нагрузка будет по сигналу будильника.
Таким образом, если в установленное время нужно включить нагрузку, SB1 устанавливают в показанное на схеме положение, а если в установленное время нужно выключить нагрузку — SB1 должен быть в нижнем, по схеме, положении. Детали, кроме симистора, тумблера, кнопки, часов-будильника и импульсного трансформатора, смонтированы на печатной плате из одностороннего фольгированного стеклотекстолита.
Дорожки выполнены механическим способом при помощи металлической линейки и самодельной микродрели в цангу которой вставлена микрофреза. Лишняя фольга удалена. Возможно традиционное изготовление платы, но это требует специальных химреактивов. Сборка корпуса Корпус пластмассовый, в нем размещается плата, симистор с небольшим радиатором если нагрузка не будет превышать Вт теплоотвод не нужен , выполняющим функции крепежного элемента, а также штепсель для подключения нагрузки.
Тумблер и кнопка установлены в отверстиях на верхней панели корпуса. Часы крепятся при помощи собственно крепежного элемента, для этого на корпусе установлен хомут из мягкой пластмассы.
Трансформатор Т1 намотан на ферритовом кольце К20x10x7,5 из материала НМ. Первичная обмотка содержит витков провода ПЭВ 0,2, вторичная — 60 витков того же провода. Настройка При исправных деталях настройка не требуется. Если не будет срабатывать по сигналу часов — поменять местами подключение проводов, идущих от звукоизлучателя часов к базовой цепи VT1. Рейтинг схемы: 1 2 3 4 5.
Технические характеристики
Фазовый регулятор мощности имеет несколько важных характеристик, изменение которых влечет перемены в работе всей цепи. Разобрать данные характеристики можно на примере регуляторов марки PR, которые являются одними из самых популярных:
- напряжение в цепи 220 В;
- частота переменного тока 50 Гц;
- регуляция мощности в пределах от 0 до 97 % исходного значения;
- максимально допустимый уровень нагрузки составляет 1500 Вт;
- сила тока на аноде от 7 А при рабочей температуре 80 °С до 2 А при 100 °С;
- пределы рабочей температуры (на корпусе) от −10 °С до 100 °С;
- амплитуда колебания напряжения 1,75 В;
- масса до 15 г.
Модель PR
Для разных целей и цепей требуются регуляторы с различными характеристиками. В зависимости от цепи может понадобиться другая мощность регулятора, номинальное напряжение или частота тока.
Важно! У любого устройства регуляции мощности нужно обращать внимание на температурные пределы, особенно на верхнюю границу. Устройство при работе само выделяет большое количество тепла, а высокая окружающая температура может вызвать порчу схемы и даже возгорание.
Порядок наладки
Минимальный ток удержания тиристора (в данном случае на тиристоре КУ101Е) составил 3,32 мА,поэтому ток, питающий тиристор VS1 через резисторы R7 и R8 (рис. 1) цепи базы транзистора VТ2, должен быть выше и устанавливается подбором этих резисторов.
В случае, когда тиристор имеет больший удерживающий ток, особенно с транзисторным ключом VТ2 п-р-п проводимостьи, подключается дополнительное балластное сопротивление, можно с построечным резистором по принципу схемы на рис. 4.
Здесь имеется в виду, что в транзисторе р-п-р проводимости, в отличие от транзистора п-р-п проводимости, при открытом состоянии тиристора протекает ток по цепи эмиттер-база и через открытый тиристор, величина которого зависит от токоограничивающего резистора.
Далее заряжаем конденсатор С1. Когда реле К1 включится, замкнем цепь конденсатора С1, произойдет разряд конденсатора. Реле К1 должно быстро отключиться, это следует повторить несколько раз. На рис. 3 приведен альтернативный вариант электронного реле, с улучшенными возможностями.
Включение тиристора производиться по току управляющего электрода током больше удерживания, а отключение — по току ниже удерживающего. Устройство отличается от предыдущей схемы тем, что база транзисторного ключа VТ2 подключается между анодом тиристора VS1 и катодом диода VD2, а управляющий электрод тиристора VS1 подключен к аноду диода или подключается к эмиттеру транзистора VТ1 через резистор R7.
Возможны другие пути подключение управляющего электрода, к примеру, через диод, стабилитрон, конденсатор по отдельности или смешанно, или дополняются резистором. Таким образом, отсекается база ключа транзистора VТ2 от связи с “-”, в том числе через управляющий электрод тиристора VS1.
На тиристоре КУ101Е при многократных испытаниях были установлены следующие параметры: ток удерживания равнялся 3,32 мА, при меньшем токе тиристор отключался. Минимальный общий ток, при котором тиристор открывался вновь, составлял 4,2 мА.
Разница напряжения между отключением и включением тиристора в общей точке эмиттера VТ1 составляла 0,7 В. (Стоит отметить, что этот принцип можно использовать в следящих устройствах.) Время выдержки при тех же номиналах одинаково со схемой на рис. 1, а погрешность — Устройство работает следующим образом.
При нажатии кнопки SB1 включается цепь заряда конденсатора С1. Положительное напряжение на базе откроет транзистор VТ1. Ток на управляющем электроде вызовет открытие тиристора VS1, анод тиристора примет низкий потенциал, а база транзистора VТ2 получит отрицательное смещение, которое откроет полностью переход транзистора эмиттер-коллектор и включит реле К1.
При отпускании кнопки SB1 конденсатор С1 медленно начнет разряжаться при достижении на эмиттере транзистора VТ 1 минимального напряжения до 1,5 В, и при общем токе менее 3,32 мА тиристор VS1 переключиться в закрытое состояние.
База транзистора VТ2 перейдет в положительное смещение и транзистор переключится в закрытое состояние, реле К1 отключится. На рис. 7 приведена печатно-монтажная плата электронного реле.
Рис. 7. Печатная плата (способ 2).
Как работает фазовый регулятор
Главную роль в работе фазового регулятора играет симистор. Он представляет собой нелинейный ключ на основе полупроводника. Данный элемент был получен благодаря усовершенствованию тиристора. Главное отличие состоит в том, что этот полупроводниковый ключ в открытом состоянии пропускает ток не в одном, а в двух направлениях. Это свойство дает симисторам возможность применения в цепях с переменным током, так как на них никак не влияет полярность напряжения, которая постоянно меняется в данных цепях.
Вам это будет интересно Межповерочный срок электросчетчиков
Наличие нового свойства не означает отсутствие старого, характерного и для симисторов, и для тиристоров. Даже когда электрод управления отключен, проводимость всего элемента активна. Момент, когда элемент закрыт, наступает только тогда, когда переменный ток находится в положении ноль (то есть разность потенциалов на двух других контактах будет также равна нулю).
Обратите внимание! Еще одно полезное свойство применения симистора в качестве основного элемента — подавление помех на фазе при закрытии элемента. Это намного проще транзисторного регулятора, который также умеет уменьшать шумы входного сигнала.
Изменения сигнала
Все эти характеристики позволяют конструкции на основе симисторов осуществлять фазное изменение в сигнале. Каждый полупериод проводимость отключается, а время между закрытием и открытием прибора срезает часть периода. Сигнал из-за этого становится пилообразной формы. Путем изменения формы сигнала и происходит фазовое управление мощностью тока.
Важно! Симистор никак не влияет на амплитуду напряжения, поэтому название «регулятор напряжения» неправильно.
Взаимодействие с другими ключами
Для этого используются элементы связи. Так, если первый ключ на выходе имеет высокий уровень напряжения, то на входе второго происходит открытие и работает в заданном режиме. И наоборот. Такая цепь связи существенно влияет на переходные процессы, что возникают во время переключения и быстродействия ключей. Вот как работает транзисторный ключ. Наиболее распространёнными являются схемы, в которых взаимодействие совершается только между двумя транзисторами. Но это вовсе не значит, что это нельзя сделать устройством, в котором будет применяться три, четыре или даже большее число элементов. Но на практике такому сложно бывает найти применение, поэтому работа транзисторного ключа такого типа и не используется.
Назначение
Регулятор мощности пригодится в цепях, содержащих следующие электрические приборы:
Регулятор с двигателем
- электродвигатели;
- устройства, которые используют в своей работе компрессоры;
- бытовые приборы: стиральные машины, вентиляторы, пылесосы;
- электрические инструменты различного рода;
- различные приборы освещения.
Простой пример использования регулятора при освещении
Важно! Не рекомендуется использовать фазовый регулятор в цепях, в которые включены холодильники, компьютеры, телевизоры и прочие потребители с тонкой настройкой, изменения характера работы которых может повлечь порчу устройства или другие непредсказуемые последствия.
Схема сенсорного выключателя на тиристоре
Довольно часто приходится менять обычные выключатели электрических приборов на новые из-за их быстрого износа. На смену им появились более надежные сенсорные выключатели СВ. Принцип их работы максимально простой. Устройства можно изготовить своими руками. На фото ниже изображен выключатель с сенсором, расположенным сверху и индикаторным светодиодом снизу. Для включения света достаточно легкого прикосновения к чувствительному элементу. Сенсорные выключатели обычно используют для управления светом, электрическими карнизами и другими устройствами небольшой мощности.
При выключении оптоизолятора схема ведет себя аналогичным образом. Симистор остается открытым на протяжении полуцикла.
Как правильно использовать
Безопасность и успешность работы регулятора зависят от соблюдения нескольких правил:
- соблюдение температурного режима. Прибор может сильно нагреваться, особенно если окружающая среда тоже имеет высокую температуру. В этом случае стоит позаботиться о наличии охлаждения;
- подбирать регулятор нужно с учетом всех параметров сети;
- сила тока в цепи не должна равняться максимально допустимой для регулятора;
- при самостоятельной сборке необходимо обеспечить прибору защиту от поражений током, заключив его в корпус.
DIY Kit LM317 Регулируемый регулятор напряжения 220–1,25–12,5 В понижающий модуль питания Печатная плата Электронные комплекты: Amazon.com: Industrial & Scientific
В настоящее время недоступен.
Мы не знаем, когда и появится ли этот товар в наличии.
- Убедитесь, что это подходит введя номер вашей модели.
- 100% абсолютно новый и качественный.
- 85% обычных заказов будут доставлены в течение 7-18 дней. В некоторые отдаленные страны потребуется больше времени. Мы предоставляем ускоренные услуги DHL. Срок — 3-7 дней. (Без учета времени на подготовку.) Если сумма заказа превышает 150, мы воспользуемся услугой DHL бесплатно.
- Мы предлагаем десятки тысяч электронных аксессуаров и модулей. Вам просто нужно поискать по ключевым словам в моем магазине.
- Если посылки не будут доставлены вовремя или товары могут быть неудовлетворительными.Вам просто нужно отправить запрос на возврат, мы полностью вернем вам деньги, не спрашивая.
- Мы прилагаем все усилия, чтобы предоставить клиентам удовлетворительное обслуживание.
Характеристики данного продукта
Фирменное наименование | Deeoee |
---|---|
Ean | 4783201160266 |
Номер детали | bbl_module10575 |
Код UNSPSC | 32000000 |
220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY Электрооборудование и принадлежности Интегральные схемы (ИС)
220 В 2000 Вт Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY Электрооборудование и принадлежности Интегральные схемы (ИС)- Дом
- Бизнес и промышленность
- Электрооборудование и материалы
- Электронные компоненты и полупроводники
- Полупроводники и активные компоненты
- Интегральные схемы (ИС)
- Другие интегральные схемы
- 220 В 2000 Вт Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY
220 В 2000 Вт регулятор скорости переменного тока SCR регулятор напряжения двигателя диммер DIY
Регулятор скорости переменного тока SCR Регулятор напряжения двигателя Диммер DIY 220 В 2000 Вт, максимальная мощность: 2000 Вт.220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY, 220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY, Бизнес и промышленность, Электрооборудование и материалы, Электронные компоненты и полупроводники, Полупроводники и активные элементы, Интегральные схемы (ИС), Другие интегральные схемы.
НУЖНО РАЗРЕШИТЬ ВОПРОСЫ СООТВЕТСТВИЯ? МЫ КЛЮЧ НУЖНО ПОВЫШАТЬ ЭФФЕКТИВНОСТЬ? МЫ КЛЮЧ НУЖНО ПОВЫШАТЬ ПРОИЗВОДИТЕЛЬНОСТЬ? МЫ КЛЮЧ МЫ КЛЮЧ К ВАШЕМУ УСПЕХУ.СВЯЗАТЬСЯ С НАМИ СЕГОДНЯ
220 В 2000 Вт регулируемый регулятор скорости AC SCR регулятор напряжения двигателя диммер DIY
220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY. Максимальная мощность: 2000 Вт .. Состояние :: Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный предмет в оригинальной упаковке (если упаковка применима). Упаковка должна быть такой же, как в розничном магазине, если товар не сделан вручную или не был упакован производителем в нерозничную упаковку, такую как коробка без надписи или полиэтиленовый пакет.См. Список продавца для получения полной информации. См. Все определения условий: Модель:: Диммер, MPN:: 220 В, 2000 Вт: Модифицированный элемент:: Нет, Торговая марка:: Hyelesiontek: Пользовательский комплект:: Нет, Продукт вне дома:: Нет: UPC:: Не применяется.
действует в интересах вашей компании
Это может быть одно из самых разумных бизнес-решений, которые вы когда-либо принимали.
(ПЭО)
Если вам нужна помощь в управлении все более сложными вопросами, связанными с сотрудниками, такими как медицинские льготы, требования о компенсации работникам, начисление заработной платы, соблюдение налоговых требований и требования по страхованию от безработицы, решением может стать аренда сотрудников через организацию профессиональных работодателей (PEO).Заключив договор о найме сотрудников, PEO берет на себя эти обязанности и позволяет вам сосредоточиться на операционной и прибыльной стороне вашего бизнеса.
220 В 2000 Вт регулируемый регулятор скорости переменного тока SCR регулятор напряжения двигателя диммер DIY
РАЗБРАСЫВАТЕЛЬ УДОБРЕНИЙ VICON PS03 PS04, диаметр проволоки .047 ТКАНА 304 НЕРЖАВЕЮЩАЯ СЕТКА №4 Отверстия .203 6 дюймов x6 дюймов, улучшенный электрический шаговый двигатель с замедленной синхронизацией Шаговый двигатель M091-FD-426 Синхронный двигатель.Зеленый светодиодный индикатор питания сигнальная лампа 24VDC, диаметр 16 мм, высота 45 мм, сверхмощная транспортировочная упаковка, прозрачная коробка для удержания диспенсера с лентой, движущаяся коробка 1.88 «x800». 5x НОВАЯ ИС питания TPS51220 QFN 32-контактный набор микросхем TPS 51220, 220 В 2000 Вт Регулятор скорости двигателя SCR переменного тока Регулятор напряжения Диммер DIY , водоотводная печать Гидрографическая пленка 1 м Z6 Hydro Dipping -Splatter, 10 винтовых клемм заземления, распределительный блок линейной шины DC 150A AC 130A F4P9. 50 хомутов Herbie Handy Clamp Нейлоновый хомут для шланга размер A подходит для трубок диаметром 1/4 дюйма.D, одинарный вал отбора мощности Kubota G1700 G1800 G1800S G1900 G2000, трубка с алмазной накаткой, круглая стальная ручка длиной 24 дюйма, накатка перекладины лестницы, DC 1.5V-18V 12V 2A Controllo Basso Voltaggio Pwm Motore Velocità Regolatore L40. 220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY . Теплые белые светодиодные бусины SMD мощностью 10 шт., 1 Вт, 100-110 лм, 3/16 дюйма, маленькая пузырьковая амортизирующая пленка, переработанный рулон, 700 футов x 12 дюймов, ширина 700 футов, 12 дюймов, фильтр KYOCERA 70NWC SAW. Рулонные стальные жесткие контргайки для кабелепровода 3 «для резьбовых каналов и соединителей 10 шт.Табличка с маркировкой номера улья Пластиковый ящик для пчел Идентификация сигнала рамы коробки. 220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY , Комплект проводов свечи зажигания для трактора John Deere G с медным сердечником,
МЫ — Ключ к вашему успеху!
Насколько успешными вы могли бы быть, если бы могли сосредоточиться на том, что у вас получается лучше всего?
Ключ
HR
Если вашей компании необходимо сэкономить деньги, решить проблемы с соблюдением нормативных требований, повысить эффективность и производительность, у нас есть решения и ключ к вашему успеху.
220 В 2000 Вт регулируемый регулятор скорости переменного тока SCR регулятор напряжения двигателя диммер DIY
220V 2000W Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIY, Бизнес и промышленность, Электрооборудование и материалы, Электронные компоненты и полупроводники, Полупроводники и активные элементы, Интегральные схемы (ИС), Другие интегральные схемы Прокрутка220 В 2000 Вт регулируемый регулятор скорости AC SCR регулятор напряжения двигателя диммер DIY
Купите винтажные летние повседневные шорты для мальчиков Best Cat Dad Ever, сделанные из лучших тканей и кожи.Сандалии из двух частей G By Guess Shantel Nude Patent 9M. 75-миллиметровый алмазный шлифовальный круг для шлифовального круга для керамической плитки из карбидного металла, стеклянной плитки. Зачем одевать любимого человека в скучный пустой свитер, когда они так много могут рассказать миру. можно почувствовать океанские волны или медитировать, глядя на горные пейзажи. — Harley Davidson FLT Tour Glide. IP66 Водонепроницаемый корпус для установки вне помещений Электрическая распределительная коробка 2Way TerminaF RU, газы и металлы содержатся в так называемой дуговой ванне размером 13 x 19 дюймов и изготовлены из 100% хлопка.Триколор золото 375/100 комплект CZ кольцо Камни: Цирконий Вес: 2, Автомобильная плата декодера Bluetooth 5.0 Аудиомодуль FM-радио USB MP3 WMA WAV FLAC APE. Работа вышивки изысканная и восхитительная. символизирует смелость и силу. Мы изменим имя будущей мамы, Telpower TPA-30 30A Предохранитель 170 В постоянного тока или меньше, гравируемая табличка имеет размеры около 3/4 дюйма в ширину на 1/2 дюйма в высоту и немного более 1/8 дюйма в толщину. приобретать ок. 100-120 перьев на 3-х дюймовую штуку. подразделение Lizard of Oz Creations. Строительная проволока Черная оболочка 10 калибра, сплошная медь UL UV 25 футов THHN.Прогулка или автокресло, чтобы согреть ребенка, так как его очень легко надевать и снимать, которые особенно красиво блестят на свету, Scooby Doo Scoobydoo Mystery Mates Figure 5Pack Mystery Solving Crew. M2 M2,5 M3 M4 M5 M6 M8 Винт с полукруглой головкой и шестигранной головкой Винт 10,9 из черной легированной стали, позволяющий ответить на зов дороги, уменьшая при этом ультрафиолетовые лучи, которые приводят к опасным солнечным ожогам, выцветанию и растрескиванию внутренних поверхностей вашего автомобиля. и регулируется, чтобы соответствовать большинству размеров рук, — Позволяет удалять волосы, не касаясь их, FT-090.75-4ФКС Пневмоцилиндр BIMBA FLAT II.
220 В 2000 Вт Регулируемый регулятор скорости AC SCR Регулятор напряжения двигателя Диммер DIYМаксимальная мощность: 2000 Вт. Источник питания
— Мой линейный стабилизатор напряжения очень быстро перегревается
Резюме: ВАМ НУЖЕН РАДИАТОР СЕЙЧАС !!!!! 🙂
[и наличие последовательного резистора тоже не повредит :-)]
Хорошо заданный вопрос Ваш вопрос задан хорошо — намного лучше, чем обычно.
Принципиальная схема и ссылки приветствуются.
Это значительно упрощает получение хорошего ответа с первого раза.
Надеюсь, это один … 🙂
Имеет смысл (увы): Поведение вполне ожидаемое.
Вы перегружаете регулятор.
Вам необходимо добавить радиатор, если вы хотите использовать его таким образом.
Вы очень выиграете от правильного понимания того, что происходит.
Мощность = Вольт x Ток.
Для линейного регулятора Суммарная мощность = Мощность в нагрузке + Мощность в регуляторе.
Регулятор V падение = V в — V нагрузка
Здесь V падение в регуляторе = 24-5 = 19V.
Здесь Входная мощность = 24 В x I нагрузка
Мощность в нагрузке = 5 В x I нагрузка
Мощность в регуляторе = (24 В-5 В) x I нагрузка .
При токе нагрузки 100 мА регулятор рассеивает
В падение x I нагрузка (24-5) x 0,1 A = 19 x 0,1 = 1,9 Вт.
Насколько жарко ?: На странице 2 технического описания указано, что тепловое сопротивление от перехода к окружающей среде (= воздуху) составляет 50 градусов Цельсия на ватт.Это означает, что на каждый рассеиваемый ватт вы получаете повышение на 50 градусов по Цельсию. При 100 мА у вас будет , примерно , рассеиваемая на 2 Вт, или примерно 2 x 50 = повышение на 100 ° C. Вода на ИС радостно закипала.
Самая высокая температура, которую большинство людей может удерживать в течение длительного времени, — 55 ° C. Ваш горячее, чем это. Вы не упомянули кипяток (тест на шипение мокрыми пальцами). Предположим, у вас температура корпуса ~~ 80 ° C. Предположим, что температура воздуха 20 ° C (потому что это просто — несколько градусов в любом случае не имеет большого значения.
T подъем = T корпус -T при температуре окружающей среды = 80 ° C — 20 ° C = 60 ° C. Рассеивание = T подъем / R th = 60/50 ~ = 1,2 Вт.
При падении напряжения 19 В 1,2 Вт = 1,2 / 19 А = 0,0632 А или около 60 мА.
, то есть , если вы потребляете около 50 мА, вы получите диапазон температуры корпуса от 70 ° C до 80 ° C.
Вам нужен радиатор .
Крепление: На странице 2 технических данных указано R thj-case = тепловое сопротивление от соединения к корпусу составляет 5C / W = 10% соединения с воздухом.
Если вы используете радиатор, скажем, 10 C / W, то общее количество R th будет R _jc + R c_amb (добавьте переход корпуса к корпусу для воздуха).
= 5 + 10 = 15 ° C / Ватт.
Для 50 мА вы получите 0,050 А x 19 В = 0,95 Вт или повышение на 15 ° C / Вт x 0,95 ~ = 14 ° C.
Даже при повышении, скажем, 20 ° C и температуре окружающей среды 25 В вы получите температуру радиатора 20 + 25 = 45 ° C.
Радиатор будет горячим, но вы сможете удерживать его без (слишком сильной) боли.
Избегая жары:
Как и выше, тепловыделение в линейном регуляторе в этой ситуации равно 1.9 Вт на 100 мА или 19 Вт при 1 А. Это очень жарко. При 1А, чтобы поддерживать температуру ниже температуры кипящей воды (100 ° C) при температуре окружающей среды 25 ° C, вам потребуется общее тепловое сопротивление не более (100 ° C-25 ° C) / 19 Вт = 3,9. ° C / Вт. Поскольку Rthjc перехода к корпусу уже больше 3,9 при 5 ° C / Вт, вы не можете поддерживать температуру перехода ниже 100 ° C в этих условиях. Только переход к корпусу при 19 В и 1 А добавит 19 В x 1 А x 5 ° C / Вт = 95 ° C. Хотя ИС рассчитана на работу при температурах до 150 ° C, это не способствует надежности, и этого следует избегать, если это вообще возможно.В качестве упражнения, чтобы ТОЛЬКО получить температуру ниже 150 ° C, в приведенном выше случае внешний радиатор должен иметь температуру (150-95) ° C / 19 Вт = 2,9 ° C / Вт. Это достижимо, но это радиатор большего размера, чем вы надеетесь использовать. Альтернативой является уменьшение рассеиваемой энергии и, как следствие, повышение температуры.
Способы уменьшения тепловыделения в регуляторе:
(1) Используйте импульсный регулятор, такой как серия простых переключателей NatSemi. Импульсный регулятор производительности даже с КПД всего 70% значительно снизит тепловыделение, поскольку в регуляторе рассеивается всего 2 Вт !.
, т.е. потребляемая энергия = 7,1 Вт. Выходная энергия = 70% = 5 Вт. Ток при 5 Вт при 5 В = 1 А.
Другой вариант — это готовая замена трехконтактного регулятора. Следующее изображение и ссылка взяты из части , упомянутой в комментарии Джея Коминека . OKI-78SR 1.5A, 5V замена импульсного стабилизатора для LM7805. 7 В — 36 В дюймов
При 36 В на входе, 5 В на выходе, 1,5 А КПД составляет 80%. Поскольку Pout = 5 В x 1,5 A = 7,5 Вт = 80%, мощность, рассеиваемая в регуляторе, составляет 20% / 80% x 7.5 Вт = 1,9 Вт. Очень терпимо. Радиатор не требуется и может обеспечить выходное напряжение 1,5 А при 85 ° C. [[Ошибка: только что заметил, что кривая ниже соответствует 3,3 В. Компонент 5 В обеспечивает работу 85% при 1,5 А, поэтому это лучше, чем указано выше.]]
(2) Уменьшить напряжение
(3) Уменьшить текущий
(4) Рассеивание энергии вне регулятора.
Вариант 1 технически лучший. Если это неприемлемо и если 2 и 3 исправлены, то необходим вариант 4.
Самая простая и (возможно, лучшая) система внешнего рассеивания — это резистор.Последовательный силовой резистор, который падает с 24 В до напряжения, которое регулятор будет принимать при максимальном токе, хорошо справится с этой задачей. Обратите внимание, что вам понадобится конденсатор фильтра на входе регулятора из-за сопротивления, обеспечивающего высокий импеданс источника питания. Скажем о 0,33 мкФ, больше не повредит. Подойдет керамика 1 мкФ. Подойдет даже конденсатор большего размера, например алюминиевый электролизер от 10 до 100 мкФ.
Предположим, что Vin = 24 В. V Регулятор в мин. = 8 В (запас / падение напряжения. См. Лист данных.Выбранный регистр показывает 8 В при <1 А.) Iin = 1 А.
Требуемое падение при 1А = 24-8 = 16В. Скажите 15V, чтобы быть «безопасным».
R = V / I = 15/1 = 15 Ом.
Мощность = I 2 * R = 1 x 15 = 15 Вт.
Резистор на 20 Вт будет крайним.
Резистор 25Вт + подойдет лучше.
Вот резистор мощностью 25 Вт 15R по цене 3,30 доллара за 1 шт. В наличии на складе без свинца с таблицей данных здесь. Обратите внимание, что для этого также нужен радиатор !!! Вы МОЖЕТЕ купить резисторы с номинальным номиналом до 100 Вт. Что вы используете, — это ваш выбор, но это подойдет.Обратите внимание, что он рассчитан на 25 Вт для коммерческих или 20 Вт для военных нужд, так что при 15 Вт он «хорошо себя чувствует». Другой вариант — подходящая длина провода сопротивления с правильным номиналом , установленного соответствующим образом. Скорее всего, производитель резисторов уже делает это лучше, чем вы.
При таком расположении:
Общая мощность = 24 Вт
Мощность резистора = 15 Вт
Мощность нагрузки = 5 Вт
Мощность регулятора = 3 Вт
Подъем перехода регулятора на 5 ° C / Вт x 3 = 15 ° C над корпусом.Вам нужно будет установить радиатор, чтобы поддерживать работу регулятора и радиатора, но теперь это «чисто инженерный вопрос».
Примеры радиатора:
21 градус ° C (или ° K) на ватт
7,8 ° C / Вт
Digikey — множество примеров радиаторов, в том числе радиатор 5,3 C / W
2,5 ° C / Вт
0,48 ° C / Вт !!!
Ширина 119 мм, длина 300 мм, высота 65 мм.
1 фут в длину x 4,7 дюйма в ширину x 2.6 дюймов высотой
Хорошая статья по выбору радиатора
Тепловое сопротивление радиатора принудительной конвекции
Уменьшение рассеяния линейного регулятора с последовательным входным резистором:
Как отмечалось выше, использование последовательного резистора для падения напряжения перед линейным регулятором может значительно снизить рассеивание в регуляторе. В то время как для охлаждения регулятора обычно требуются радиаторы, можно недорого приобрести резисторы с воздушным охлаждением, которые способны рассеивать 10 или более ватт без радиатора.Решение проблем с высоким входным напряжением таким способом обычно не является хорошей идеей, но это может иметь место.
В приведенном ниже примере источник питания 5 В на выходе 1 А LM317 работает от 12 В. Добавление резистора может более чем вдвое снизить рассеиваемую мощность в LM317 в наихудших условиях за счет добавления дешевого последовательного входного резистора, установленного на проводе с воздушным охлаждением.
LM317 требует запаса от 2 до 2,5 В при более низких токах или, скажем, 2,75 В при экстремальных нагрузках и температурных условиях. (См. Рис. 3 в таблице данных, скопировано ниже).
LM317 запас или падение напряжения
Rin должен иметь такой размер, чтобы он не падал чрезмерно, когда V_12V находится на минимальном уровне, Vdropout является наихудшим случаем для условий, и допускаются последовательное падение диода и выходное напряжение.
Напряжение на резисторе всегда должно быть меньше =
Так Rin <= (v_12 - Vd - 2.75 - 5) / Imax.
Для минимального Vin 12 В и, скажем, падения напряжения на диоде 0,8 В, а на выходе 1 А, это
(12-0.2R = 3,3 Вт, поэтому часть мощностью 5 Вт будет минимально приемлемой, а 10 Вт будет лучше.
Рассеивание в LM317 снижается с> 6 Вт до <3 Вт.
Отличным примером подходящего резистора с воздушным охлаждением, установленного на проволочном выводе, может быть член этого хорошо оформленного семейства резисторов с проволочной обмоткой Yageo с элементами номинальной мощностью от 2 до 40 Вт с воздушным охлаждением. Устройства на 10 Вт есть в наличии в Digikey по цене 0,63 доллара США за 1 штуку.
Номинальные значения температуры окружающей среды и превышение температуры резистора:
Приятно иметь эти два графика из таблицы выше, которые позволяют оценить реальные результаты.
На левом графике показано, что резистор мощностью 10 Вт, работающий при 3 Вт3 = 33% от его номинальной мощности, имеет допустимую температуру окружающей среды до 150 C (фактически около 180 C, если вы нанесете рабочую точку на график, но производитель говорит 150 Допускается C макс.
Второй график показывает, что повышение температуры для резистора 10 Вт, работающего на 3W3, будет примерно на 100 ° C выше температуры окружающей среды. Резистор 5 Вт из того же семейства будет работать при 66% номинальной мощности и будет иметь повышение температуры на 140 ° C выше температуры окружающей среды.(При мощности 40 Вт температура повышается примерно на 75 ° C, но 2 x 10 Вт = менее 50 ° C, а 10 x 2 Вт — только около 25 ° C !!!.
Понижение температуры при увеличении количества резисторов с одинаковой суммарной номинальной мощностью в каждом случае предположительно связано с действием «квадратичного закона», поскольку площадь охлаждающей поверхности на единицу объема уменьшается с увеличением размера.
http://www.yageo.com/documents/recent/Leaded-R_SQP-NSP_2011.pdf
________________________________________
Добавлено в августе 2015 г. — Пример использования:
Кто-то задал разумный вопрос:
Не более правдоподобное объяснение — относительно высокая емкостная нагрузка (220 мкФ)? Э.грамм. что приводит к нестабильности регулятора, колебаниям приводят к рассеиванию большого количества тепла в регуляторе. В таблице данных все схемы для нормальной работы имеют на выходе только конденсатор емкостью 100 нФ.
Я ответил в комментариях, но они МОГУТ быть удалены со временем, и это стоящее дополнение к теме, поэтому вот комментарии, отредактированные в ответ.
В некоторых случаях колебания и нестабильность регулятора, безусловно, являются проблемой, но в этом случае, как и во многих других, наиболее вероятной причиной является избыточное рассеивание.
Семейство 78xxx очень старое и предшествовало как современным регуляторам с малым падением напряжения, так и регуляторам с последовательным питанием (стиль LM317). Семейство 78xxx по сути безоговорочно стабильно по отношению к Cout. На самом деле они не нуждаются в них для правильной работы, и часто показываемое значение 0,1 мкФ служит резервуаром для обеспечения дополнительной защиты от скачков или всплесков.
В некоторых связанных таблицах данных на самом деле говорится, что Cout может быть «неограниченно увеличен», но я не вижу здесь такого примечания — но также (как и следовало ожидать) нет примечания, предполагающего нестабильность при высоком Cout.На рис. 33 на странице 31 таблицы данных они показывают использование обратного диода для «защиты от« высоких емкостных нагрузок », т. Е. Конденсаторов с достаточно высокой энергией, чтобы вызвать повреждение при разряде на выходе, то есть намного больше 0,1 мкФ.
Рассеивание: При 24 Vin и 5 Vout регулятор рассеивает 19 мВт на мА. Rthja составляет 50 C / W для корпуса TO220, поэтому вы получите ОКОЛО 1 ° C повышения на один мА тока.
Таким образом, при рассеянии, скажем, 1 Вт в окружающем воздухе 20 C температура корпуса будет около 65 ° C (и может быть больше, в зависимости от того, как корпус ориентирован и расположен).65 ° C несколько выше нижнего предела температуры «сжечь палец».
При 19 мВт / мА для рассеивания 1 Вт потребуется 50 мА. Фактическая нагрузка в приведенном примере неизвестна — он показывает светодиодный индикатор около 8 или 9 мА (если красный) плюс нагрузка используемого внутреннего тока регулятора (менее 10 мА) + «PIC18FXXXX), несколько светодиодов … «Эта сумма может достигать или превышать 50 мА в зависимости от схемы PIC, или МОЖЕТ быть намного меньше. |
Общее данное семейство регуляторов, дифференциальное напряжение, фактическая неопределенность охлаждения, неопределенность температуры окружающей среды, типичное значение C / W и многое другое, кажется, что явное рассеивание является разумной причиной того, что он видит в этом случае — и того, что многие люди, использующие линейные регуляторы, испытают в подобных случаях.Есть шанс, что это нестабильность по менее очевидным причинам, и от этого никогда не следует отказываться без уважительной причины, но я бы начал с диссипации.
В этом случае последовательный входной резистор (скажем, 5 Вт с воздушным охлаждением) переместит большую часть рассеиваемой энергии в компонент, более подходящий для этого.
И / или скромный радиатор должен творить чудеса.
DIY — Ghozt Lighting
Заявление об ограничении ответственности: я не несу ответственности за ущерб, причиненный отдельным лицам или компонентам в результате этой установки или неправильного использования этой информации.Если вы прочитали следующее руководство и вам все еще неудобно завершить установку, СВЯЖИТЕСЬ СО МНОЙ, и я помогу ответить на ваши вопросы или попытаюсь направить вас к опытному установщику, который сможет вам помочь.
Об этом руководстве: Автомобильная среда очень суровая, в частности, основной источник питания +12 В для большинства автомобилей на самом деле не соответствует +12 В. Оно может значительно колебаться при колебаниях оборотов двигателя и потребляемой мощности других систем. Это создает проблему, когда некоторые светодиоды и сами секвенсоры Ghozt могут быть повреждены чрезмерным напряжением.
Это руководство покажет вам, как построить очень простую схему регулятора, которая будет поддерживать стабильное напряжение питания, которое будет поддерживать ваши светодиоды и другие компоненты в хорошем состоянии и в безопасности. Этот усилитель сможет подавать до 3 ампер при напряжении +12 В на секвенсор Ghozt и любые подключенные светодиоды.
Сложность: Продвинутый
Пользователи руководства должны быть уверены в своих навыках пайки. Пользователи должны иметь возможность определять, какой ток требуется их светодиодам. Пользователи должны иметь возможность собрать схему, чтобы предотвратить сбои после установки.Пользователи должны знать, как управлять нагревом в своих электронных сборках, чтобы предотвратить перегрев и / или возгорание транспортных средств. Пользователи должны иметь опыт использования секвенсоров Ghozt в более простых сборках. Пользователи демонстрируют возможность определить, нужен ли стабилизатор напряжения для их светодиодов. Это руководство рекомендуется лицам, имеющим опыт создания пользовательских светодиодных матриц для задних фонарей.
Необходимые инструменты:
- Паяльник
- Кусачки
- Пушка тепловая (для термоусадочной трубки)
Необходимые материалы:
- Припой (по необходимости)
- Электропроводка (по необходимости)
- Термоусадочная трубка (по необходимости)
- Компоненты для вашей нестандартной светодиодной схемы (указывается пользователем)
- Макетная плата для электроники (при необходимости) Регулятор с малым падением напряжения
- Microchip Technology MIC29300-12WT (1 шт.)
- Конденсаторы 15 мкФ (x2), рассчитанные на 25 В или более.Пример: Nichicon UB2D150MPL1TD.
- Резистор 1000 Ом (x1), 1/4 Вт.
- Радиатор для компонентов TO-220 (дополнительно, рекомендуется), например: Aavid Thermalloy 6398BG
Шаг 1 — Идентификация контактов регулятора: На приведенной ниже схеме показана диаграмма корпуса регулятора Microchip, который вы будете использовать. Обратите внимание на расположение трех контактов на обеих схемах и убедитесь, что вы можете идентифицировать контакты на самой детали. Для справки эти контакты имеют следующие названия:
- Вин
- Земля
- Vout
Шаг 2 — Принципиальная схема: Ниже представлена схема контура, который вы будете строить.Имейте в виду, что конденсаторы будут полярными, то есть у них есть положительный вывод и отрицательный вывод. Убедитесь, что отрицательные штыри подходят к штырю заземления регулятора. Вход регулятора должен поступать на питание +12 В автомобиля через блок предохранителей. Вы можете подключить к выходу нагрузку до 3 ампер. Если вы используете более 1 ампер, рекомендуется использовать теплообменник.
Шаг 3 — Построение: Этот шаг зависит от вас, если вы построите схему, показанную выше.Вместо того, чтобы подробно описывать шаги, я предлагаю список предложений, которые следует учитывать при использовании такого усилителя:
- Делайте ваши металлические соединения очень короткими и прочными, чтобы избежать короткого замыкания или разъединения, когда вещи перемещаются во время транспортировки и в автомобиле. Я бы порекомендовал собрать его на макетной плате для электроники, чтобы все было на месте.
- По возможности заизолируйте металлические соединения. Если что-то изменится, вы не хотите, чтобы это вызвало короткое замыкание.Это может привести к возгоранию, повреждению цепи или неправильной работе.
- Знайте, сколько тепла будет выделяться в вашей сборке, и убедитесь, что вы знаете, как с этим справиться. При такой мощности некоторые компоненты будут нагреваться, включая регулятор и светодиоды. Помните об общем количестве тепла и любых горячих точках. Убедитесь, что есть место для циркуляции воздуха за счет конвекции, чтобы все компоненты получали необходимое охлаждение. Используйте стяжки и другие способы укладки проводов, чтобы держать провода подальше от горячих компонентов, которые могут расплавить изоляцию.Используйте только огнестойкие материалы.
- Рассмотрите возможность заливки этой части сборки. Это поможет со всеми тремя из вышеперечисленных предложений и, при необходимости, обеспечит водонепроницаемость.
- Используйте проволоку большего сечения, чем обычно. Обычно мы рекомендуем везде использовать многожильный провод №22 или более толстый. При сборке мощной сборки мы рекомендуем рассмотреть возможность использования еще более толстых соединений +12 и заземления, а также любых внутренних соединений, которые будут пропускать большой ток.
Когда закончите, проверьте все соединения и внимательно проверьте перед установкой.Наслаждаться!
Как сделать схему переменного источника питания с помощью цифрового управления
Источник питания — это аппаратный компонент, который подает питание на электрическое устройство. Источник питания может подаваться от батареи или от аппаратной схемы, которая преобразует источник переменного тока в источник постоянного тока или понижающий переменный ток в повышающий переменный ток и наоборот. Источник переменного тока — это источник, который позволяет пользователю изменять и регулировать желаемое выходное напряжение и выходной ток. Обычно для регулировки напряжения используется потенциометр.
Схема регулируемого источника питания
Схема регулируемого источника питания оснащена регулируемым регулятором напряжения для регулировки выходной мощности в соответствии с выходной мощностью. Регулируемый регулятор напряжения имеет линейное регулирование и регулировку нагрузки.
Блок-схема цепи переменного источника питания
Эта блок-схема показывает, как в цепи регулируется напряжение переменного тока. Блок-схема источника питания
Принципиальная схемаСхема регулируемого источника питания
Эта принципиальная схема приведена ниже.Основное питание 220 В подается непосредственно на центральный ответвительный трансформатор. Эта ступень трансформатора снижает напряжение 220 В до 24 В, которое затем выпрямляется через мостовой выпрямитель.
Цепь источника питанияМостовой выпрямитель выдает непрерывный пульсирующий сигнал постоянного тока. Затем конденсаторы используются для фильтрации пульсирующего сигнала в плавный непульсирующий постоянный ток. Наконец, напряжение регулируется с помощью регулятора IC.
Рабочий
Напряжение от понижающего трансформатора затем подается на мостовой выпрямитель, который генерирует непрерывный пульсирующий сигнал постоянного тока.
Пульсирующий сигнал выходного напряжения постоянного токаПолярность выхода не может быть изменена, и на нем наблюдаются большие колебания. Этот пульсирующий постоянный ток также имеет некоторый нежелательный ток (пульсации), что делает невозможным его использование в системах электропитания.
Сглаживающий конденсатор, который действует как фильтр, используется для удаления нежелательного тока (пульсации). Теперь выходной сигнал с емкостью будет таким, как показано на рисунке ниже, и подвергнут дальнейшей фильтрации, чтобы получить чистый постоянный ток.
Выход после сглаживающего конденсатораПлавный непульсирующий сигнал постоянного тока подается на регулятор напряжения.LM317 используется как регулятор напряжения. Конденсаторы C2 и C4 используются для устранения пульсаций, если процесс фильтрации выполняется вне регулятора. Конденсатор C4 также предотвращает работу регулятора напряжения LM317 в качестве генератора.
Конденсатор C3 шунтирует вывод ADJUST регулятора напряжения на землю, чтобы улучшить способность подавления пульсаций. Диоды используются для защиты регулятора от избыточного протекания, если какой-либо источник напряжения подключен к выходным клеммам регулятора.Переменное сопротивление подключено к выводу ADJ регулятора.
LM317 Регулятор положительного напряжения
Регулятор напряжения представляет собой интегральную схему, которая обеспечивает постоянное регулируемое выходное напряжение независимо от изменения входного напряжения. LM317 — это стабилизатор переменного напряжения с 3-контактной монолитной интегральной схемой, показанной ниже.
LM317Он способен обеспечить 1,5 А при напряжении от 1,25 В до 30 В. Соотношение двух сопротивлений, подключенных к регулятору напряжения LM317, можно использовать для установки желаемого уровня напряжения.
LM317 СхемаВыводы
- INPUT — Нерегулируемый вход
- OUTPUT — Регулируемый выход
- ADJUST — Переменный резистор, подключенный к этому выводу, регулирует выходное напряжение
Характеристики
- Это положительное напряжение регулятор
- Имеет внутреннее ограничение тока
- Тепловое отключение
- Компенсация безопасной зоны
Применения
Регулятор напряжения LM317 имеет множество электрических применений.Вот несколько приложений
- Сбор энергии
- Холодильник
- Измеритель качества электроэнергии
- Управление подстанцией
- HVAC (Отопление, вентиляция, кондиционер)
- Генерация сигналов и волн
- Коммутатор Ethernet
Переменный источник питания с цифровым управлением
Схема регулируемого источника питания состоит из регулируемого регулятора положительного напряжения LM317, декадного счетчика КМОП IC CD4017, микросхемы таймера NE555 и стабилизатора отрицательного напряжения LM7912.
Источник переменного тока подается на трансформатор, который понижен до 12 В переменного тока. Выходной сигнал трансформатора выпрямляется с помощью двухполупериодного выпрямителя для обхода нежелательных всплесков и обеспечения плавной подачи мощности без колебаний.
Конденсаторы используются для фильтрации пульсаций. Как положительные, так и отрицательные полупериоды используются для получения положительного и отрицательного выходного сигнала постоянного тока. Светодиод используется для индикации включения.
Микросхема таймера NE555 подключена как нестабильный мультивибратор для генерации тактовых импульсов. Выход микросхемы таймера соединен с микросхемой счетчика CD4017.IC CD4017 — это счетчик декадных колец. Каждый из его выходов переходит в высокий уровень один за другим, когда принимается тактовый импульс.
Выходы микросхемы CD4017 подключены к базе транзистора T1 — T10. LED3 — LED11 используются здесь для индикации уровней напряжения. Регулируемый стабилизатор напряжения IC LM317 развивается 1.25V опорного напряжения. Предварительные настройки VR1 — VR9 настраиваются для получения желаемого выходного напряжения.
Регулируемый источник питания с цифровым управлениемРабочий
При нажатии переключателя S2 выход IC1 становится ВЫСОКИМ, а затем выходы IC2 становятся ВЫСОКИМИ один за другим, как счетчик звонков.
Поскольку предустановки VR1 – VR9 подключены к коллекторам транзисторов T2 – T10, между регулируемым выводом и выводом заземления IC4 появляются разные выходные сопротивления, что вызывает разные выходные напряжения.
Микросхема LM7912 обеспечивает фиксированное отрицательное напряжение постоянного тока 12 В. Таким образом, блок питания можно использовать в цепях, требующих как отрицательного, так и положительного напряжения.
Светодиод 2 используется для индикации отрицательного напряжения 12 В постоянного тока. Когда CD4017 сбрасывается нажатием переключателя S3, выходное напряжение изменяется на 1.2 В и, таким образом, светодиоды индикации напряжения погаснут.
Регулятор отрицательного напряжения
Регулятор напряжения представляет собой интегральную схему, которая обеспечивает постоянное регулируемое выходное напряжение независимо от изменения входного напряжения. LM7912 обычно используется в электронных схемах с 3-х полюсным стабилизатором отрицательного напряжения.
LM7912 ICЭта микросхема обеспечивает постоянное отрицательное выходное напряжение, несмотря на изменения входного напряжения. Число 79 указывает на то, что ИС является регулятором отрицательного напряжения, а число 12 указывает на выходное напряжение.
Распиновка
- Контакт 1 — Клемма заземления (0 В)
- Контакт 2 — Входная клемма (от 5 В до 24 В)
- Контакт 3 — Выходная клемма
Характеристики
- Подавление высокой пульсации
- 1,5 Выходной ток
- Допуск 4% по заданному выходному напряжению
- Тепловая защита и защита от короткого замыкания
- Внутренняя защита с ограничением тока в безопасной зоне
Универсальный источник питания
Универсальный источник питания чаще всего используется в электронных лабораториях.Он обеспечивает разнообразный и свободный от колебаний выходной сигнал.
Универсальный источник питанияВышеупомянутая универсальная схема источника питания обеспечивает переменное напряжение от 3 до 30 В, максимальный ток 1,5 А, а добавление модулей может обеспечить более высокий ток. Регулируемый стабилизатор напряжения LM317 (U1) обеспечивает короткое замыкание.
Универсальный источник питания должен работать от сети переменного тока напряжением от 90 до 264 В, 50 или 60 Гц. Выпрямленное входное напряжение с конденсатора фильтра диодного моста заряжается до 120 В.Эта схема работает в паре с мощным аудиоусилителем 1500 Вт.
Схема разработана для зарядного устройства ноутбука с выходом 20 В и использует TOP 246Y за счет интеграции питания. TOP 246Y устраняет половину дискретных компонентов по сравнению с UC3842.
Цифровой мультиметр
Цифровой мультиметр — это устройство, используемое для измерения электрических величин, таких как напряжение, ток и сопротивление. Цифровой мультиметр пришел на смену аналоговым из-за своей высокой точности, надежности и повышенного сопротивления.
Это все о цепи переменного тока. Мы надеемся, что вы лучше поняли концепцию этой темы. Кроме того, любые вопросы по этой теме или проектам электроники, пожалуйста, оставьте свой отзыв, комментируя в разделе комментариев ниже. Вот вам вопрос, каковы применения LM317? Схема автоматического стабилизатора напряжения
Стабилизатор напряжения — это устройство, которое стабилизирует напряжение переменного тока и поддерживает его в диапазоне от 200 В до 255 В переменного тока.Иногда в линии переменного тока появляются колебания напряжения или всплески, если мы используем стабилизатор напряжения, то сверхвысокие или низкие напряжения не могут вызвать проблем для приборов. Он защищает любое подключенное к нему электронное устройство от повреждения. Автоматический стабилизатор напряжения очень хороший пример силовой электроники проекта .
На рынке представлены различные разновидности стабилизаторов напряжения. Но мы также можем изготовить их дома в соответствии с нашими потребностями и требованиями.
стабилизатор напряжения важные моментыПеред созданием этого устройства необходимо иметь в виду следующие моменты и характеристики, чтобы устройство, которое мы создали, могло работать должным образом и давать желаемые результаты:
- Диапазон входного напряжения должен быть от 150 до 260 В.
- Диапазон выходного напряжения должен составлять от 200 до 240 В.
- Форма волны или частота входных / выходных напряжений не должны изменяться.
- Материал, используемый в нем, не должен быть слишком дорогим, иначе не было бы смысла делать его дома, переживая все проблемы, вместо этого можно просто купить дешевый на рынке.Следовательно, это не должно быть дорогим.
- В готовом изделии не должно быть варисторов или переменных резисторов.
- Всего в цепи используется 4 реле.
- Используемый автотрансформатор имеет 4 дополнительных вывода, установленных на 165 В, 190 В, 215 В и 240 В, все с разницей примерно в 25 В.
- Используемый микроконтроллер r — PIC 16F873A.
Микроконтроллер генерирует управляющие сигналы, и четыре реле используются с автотрансформатором для управления и преобразования напряжения.Входное напряжение воспринимается микроконтроллером, и он пытается удерживать выходное напряжение между заданными диапазонами, переключая реле. Из четырех реле два из них переключают соединение между выводами 165 В, 190 В и 240 В, одно переключает выходное соединение между выводами 215 и 240, а последнее является главным реле включения / выключения, которое отключает выход в случае режимы low и high cut. Связь реле с микроконтроллером очень проста.
стабилизатор напряжения ДАТЧИК ВХОДНЫХ НАПРЯЖЕНИЙПрежде всего, мост выпрямитель используется для преобразования входного переменного напряжения в постоянное напряжение, а затем большой конденсатор, который сглаживает постоянное напряжение.И, используя схему делителя напряжения, мы понижаем напряжение постоянного тока, чтобы микроконтроллер мог его принять. После долгих размышлений и экспериментов было выбрано соотношение резисторов схемы делителя напряжения (47 кОм * 6): 3,3 кОм. схема с таким соотношением работает лучше, а рассеиваемая мощность также снижается.
На выходе схемы делителя напряжения была подключена фиксирующая схема, образованная двумя диодами. Напряжение будет ограничено одним из диодов, когда он начнет работать в прямом смещенном состоянии после получения высокого напряжения.Это будет примерно 5,7 В. Если на выходе делителя напряжения появляется низкое напряжение, то другой диод начинает работать в режиме прямого смещения и ограничивает напряжение на -0,7. Затем эти напряжения могут безопасно поступать на ADC микроконтроллера. Диоды Шоттки можно использовать для улучшения фиксации напряжений.
Входное сопротивление АЦП и входные конденсаторы — это две вещи, которые могут повлиять на правильную работу схемы:
- Если входной конденсатор очень большой, его разряд будет медленнее, и мы не сможем получить быструю или быструю реакцию.После использования различных конденсаторов мы обнаружили, что лучше всего подходит конденсатор емкостью 22 мкФ, так как его реакция эффективна в случае постоянного напряжения, а также пульсаций.
- Для правильного измерения уровня постоянного тока АЦП ПОС мы подключаем конденсатор на выходе делителя напряжения. Это обеспечит параллельную емкость внутреннему конденсатору АЦП. Время выборки АЦП также было скорректировано, чтобы мы могли получить точные результаты.
Для калибровки мы поместили в цепь переключатель.Когда этот переключатель активируется и мы сбрасываем микроконтроллер, тогда контроллер переходит в режим калибровки. Это будет единственный переменный резистор, который мы использовали в схеме, и он необходим, потому что может быть много расхождений в различных компонентах и их выходах в схеме. На выходы могут влиять допуск резисторов и вариации прямого падения напряжения диодов, а также многие другие факторы. Мы подключим переменный резистор в нашу схему делителя напряжения и, изменив значения сопротивления, мы сможем получить требуемый выход.
Переменный резистор в этой схеме ненадежен, и в условиях переменного высокого и низкого напряжения нам нужна последовательность в работе этой схемы в течение более длительных периодов времени, поэтому мы решили не использовать переменный резистор в конечном продукте.
автоматический стабилизатор напряжения с микроконтроллеромКогда микроконтроллер входит в режим калибровки, измененное входное напряжение отображается контроллером. Мы можем измерить реальное напряжение с помощью вольтметра.Меняем переменное сопротивление и микроконтроллер показывает другое напряжение. Кодирование АЦП микроконтроллера выполнено таким образом, что результат АЦП преобразуется в уровень переменного напряжения. Также вводится константа, которая умножается на все выражение, и когда мы меняем значение переменного резистора, то постоянное значение также изменяется, что можно увидеть на семисегментном дисплее. Микроконтроллер сохраняет это значение в своей EEPROM .
При запуске контроллер проверяет калибровку.Постоянное значение было сохранено в EEPROM, контроллер извлекает данные, и теперь это значение будет использоваться во всех дальнейших расчетах напряжения. При первом запуске микроконтроллер ожидает калибровки, если переключатель нажат и калибровка выполнена, переключатель размыкается, константа сохраняется в EEPROM, и выполняются дальнейшие операции.
После успешной калибровки мы можем удалить переключатель и переменный резистор из схемы.Переключатель и переменный резистор могут понадобиться только сейчас, если мы хотим перекалибровать схему, в противном случае они больше не требуются в схеме.
Стабилизатор напряжения Реле и ответвления трансформатораПриведенная выше конфигурация показывает различные ответвления трансформатора с реле. Переключение входа осуществляется между 165 В, 190 В и 240 В, а для вывода — 240 В и 215 В. В этой схеме мы использовали простой автотрансформатор.Вспомогательная обмотка используется для питания схемы, также показано соотношение витков:
Схема автоматического стабилизатора напряженияОбе части принципиальной схемы автоматического стабилизатора напряжения показаны ниже. Вы можете использовать эти схемы.
принципиальная схема автоматического стабилизатора напряжения 2 электрическая схема автоматического стабилизатора напряжения стабилизатор напряжения ЦЕПНАЯ работаДля схемы микроконтроллера мы используем внешний кристалл на 4 МГц.Это необходимо, потому что в PIC 16F873A нет внутреннего кристалла. Вход 5 В постоянного тока используется для питания микроконтроллера. Вспомогательная обмотка автотрансформатора 12,5В. Это напряжение не будет сильно изменяться, потому что цепь и реле также будут работать, чтобы регулировать это напряжение. Этот переменный ток преобразуется в постоянный с помощью выпрямителя, а затем конденсатор фильтрует его. Также используется регулятор 7805 напряжения, который принимает отфильтрованный постоянный ток. Также используется развязывающий конденсатор, который размещается рядом с микроконтроллером.
Напряжение постоянного тока, которое подается на 7805 , также используется для питания реле. Но не напрямую, так как напряжение все же немного выше номинального напряжения реле. Таким образом, мы пропускаем это напряжение через четыре последовательно соединенных диода, что снизит напряжение на 2,8 В. Микроконтроллер управляет переключением реле, но он не может обеспечить ток, необходимый для работы реле, поэтому мы используем транзисторы для увеличения значения тока.
Переходя к семисегментному дисплею, три семисегментных дисплея, используемые в схеме, переключаются один за другим, что минимизирует количество выводов, необходимых для их управления.Но это происходит так быстро, что мы не можем понять это, просто глядя на них. Частота обновления составляет 167 Гц, то есть дисплей обновляется 167 раз за секунду. Для достижения необходимой яркости мы подключили семь транзисторов к семисегментным дисплеям.
Мы использовали три светодиода в схеме, которые также показывают задержку, отсечку низких или высоких частот или просто нормальный режим контроллера. Это был весь процесс создания автоматического стабилизатора напряжения в домашних условиях. Мы надеемся, что, выполнив все действия правильно, вы сможете сделать его и дома, а также можете изменить его в соответствии с вашими требованиями.
Регуляторы напряжения— Основы схемотехники
Стабилизатор напряжения — это устройство, используемое для изменения колеблющегося напряжения на его входе до определенного и стабильного на его выходе. Регуляторы напряжения могут быть механическими, переменного, постоянного и электронного. В этой статье мы рассмотрим электронные линейные регуляторы постоянного тока.
Применение регуляторов
Для большинства схем требуется постоянное напряжение питания, не зависящее от потребляемого тока. Даже небольшое перенапряжение может оказаться разрушительным, поэтому следует использовать регуляторы.Но регуляторы также очень помогают в устранении сетевого гула в аудиоусилителях. В генераторах сигналов или генераторах выходная частота будет изменяться в зависимости от напряжения питания и также должна хорошо регулироваться, чтобы поддерживать это значение постоянной.
Типы регуляторов
Существует три основных класса или типа регуляторов: положительные регуляторы, , где входящее напряжение положительное, отрицательные регуляторы, , где входящее напряжение отрицательное, двойные регуляторы напряжения, , которые представляют собой наборы обоих, e.g., схему операционного усилителя и, наконец, регулируемые регуляторы , в которых может присутствовать любое из вышеперечисленных, но с ручкой управления для изменения выходного напряжения по запросу.
Простой стабилитрон rСтабилитрон — это тип диода, который при подключении в его конфигурации обратного смещения (см. Ниже) начинает «пробиваться» или проводить при определенном напряжении, называемом его напряжением Зенера. Как только он начинает проводить, ток не останавливается, поэтому резистор (R1, показанный ниже) должен ограничивать ток до безопасного значения.
В приведенном выше простом регуляторе Vin — 12 В, Vout — 5 В, а I — 10 мА. Без стабилитрона R1 было бы R = V / I = 12-5 / 0,01 = 700 Ом. Однако не было бы никакого регулирования, так как стабилитрон не проводил бы. Используя практическое правило, стабилитрон должен проводить ток нагрузки в два-пять раз больше, например, 50 мА. Учитывая это, должно быть I = 50 + 10 = 60 мА, поэтому R1 = 7 / 0,06 = 116 Ом.
Проблема, однако, в том, что рассеиваемая мощность в R1 и D1 для больших токов нагрузки будет чрезмерной.Но это вполне подходящая схема для преобразования уровней сигналов, скажем, с 5В в модули 3,3В.
Стабилитронв качестве эталона и транзистор Q1
Здесь мы использовали стабилитрон в качестве эталона и транзистор Q1 в качестве последовательного стабилизатора, выполняющего тяжелую работу. R2 обеспечивает смещение для включения Q1 и подачи гораздо меньшего тока через стабилитрон D2. Если Vout составляет 5 В, к этому будет добавлено падение напряжения база-эмиттер на 0,6 В, поэтому D2 должен быть 5,6 В (обычно доступен), а R2 теперь должен будет обеспечивать ток коллектора / hfe транзистора (скажем, 1000).Для источника питания 1 А, 1/1000 10 мА, R2 = 12-5,6 / 0,01 = 640 Ом плюс небольшой ток для стабилитрона, скажем, 560 Ом.
Но это все равно большой ток, потраченный на нагрев стабилитрона. Итак, теперь мы добавили Q5 и сеть обратной связи от Vout, чтобы обеспечить полезную схему. D4 больше не является критичным и может быть любым в диапазоне от 1 В до 4 В и регулироваться. Поскольку Vout пытается превысить напряжение базы / эмиттера Q5 +0,6 + D4, он начинает отбирать ток от базы Q4, стабилизируя напряжение. R6 теперь может иметь более важное значение и не критично, так как 1k вполне подойдет.R7 и R8 также дадут более легкую регулировку.
Давайте сделаем еще один шаг и добавим защиту от перегрузки по току.
Падение напряжения на D6 и D7 всегда будет 0,6 + 0,6 = 1,2 В, а Vbe Q6 также будет 0,6 В. Например, если мы тщательно выбираем R14, чтобы соответствовать точке, в которой мы хотим предотвратить перегрузку по току, скажем, 2A, как только V на R14 = 1,2 В, D6 и D7 будут отбирать ток от базы Q6, позволяя больше не ток питания более 2A .
Следовательно, R14 = 1.2/2 = 0,6 Ом. Но есть еще одно усовершенствование, которое мы можем сделать, чтобы предотвратить большие токи в диодах.
Заменили диоды на Q9. Все, что ему нужно, это 0,6, чтобы включить его и вызвать ограничение тока. Для 2А это будет R19 = 0,6 / 2 = 0,3 Ом.
Трехконтактный стабилизатор постоянного напряжения
Здесь перед нами простота трехполюсного стабилизатора с фиксированным напряжением. Они бывают разных напряжений: 7805 = 5 В, 7809 = 9 В и т. Д., Включая 7812, 7815, 7824 и отрицательные версии; 7905 7909 и др.C4 и C10 не следует путать со сглаживающими конденсаторами. Они предназначены для снижения шума и стабильности и должны иметь низкое последовательное сопротивление (ESR). C4 обычно составляет 10 мкФ, а C10 — 1 мкФ. Обратите внимание, что D9 должен разряжать любую большую емкость в нагрузке в обратном направлении, чтобы предотвратить обратное смещение регулятора, когда входной сигнал становится низким.
Регулируемый трехконтактный регулятор
И, наконец, мы подошли к концу эволюции с регулируемым трехполюсным регулятором — знаменитым LM317 и отрицательным аналогом LM337.C2 предназначен для шума и может составлять 1 мкФ. Соотношение R20 и R23 задает выходное напряжение. Это могут быть два фиксированных резистора или регулируемый потенциометр. R20 показан в справочнике как нестандартное 240 Ом, но если вы сделаете его стандартным 220 Ом, то для любого напряжения между V max и V min R7 = (176 * V out ) — 220.
Итак, если вы хотите 9 В, R23 может быть фиксированным значением, то есть 176 * 9 — 220 = 1k4. Следует отметить, что, как внутренняя ссылка 1.25V, как самый низкий регулятор может идти, она также должна по крайней мере 2V между входом и выходом и имеет максимальное напряжение 32В, так что может обеспечить регулировку от 1.От 2 до 30 В. Сделайте R23 10к.
Мощность, рассеиваемая в регуляторе, составляет (Vin-Vout) * Iout. Таким образом, для 12 В на входе и 5 В на выходе при 1 А мощность составляет (12-5) * 1 = 7 Вт. Это нелогично, но это означает, что регулятор рассеивает большую часть мощности, когда он установлен на самое низкое выходное напряжение.
Если вы возьмете регулятор на ток более 1 А или он будет слишком горячим, чтобы удерживать его пальцами, ему понадобится радиатор.