Состав раствора цементно известкового: Цементно-известковая штукатурка: самостоятельное приготовление и нанесение

Содержание

Строительные растворы. Подбор состава, приготовление и транспортирование растворов — ТехЛиб СПБ УВТ

Строительным раствором называют искусственный камен­ный материал, получаемый в результате твердения правильно подобранной смеси, состоящей из вяжущего, мелкого заполни­теля, воды и добавок. До начала затвердевания ее называют рас­творной смесью.

Строительные растворы классифицируют по плотности, виду вяжущего, составу и назначению.

По средней плотности различают растворы тяжелые плотностью более 1500 кг/м и легкие плотностью менее 1500 кг/м.

По виду вяжущего растворы бывают известковые, гипсо­вые, цементные и на основе смешанных вяжущих. В зависимо­сти от свойств вяжущего растворы подразделяют на воздушные, твердеющие в воздушно-сухих условиях (например, известко­вые, гипсовые), и гидравлические, начинающие твердеть на воз­духе и продолжающие твердеть в воде или во влажных условиях.

По степени готовности растворы делят на: сухие смеси и растворные смеси, готовые к применению.

По составу растворы делят на простые и сложные (смешан­ные). Растворы, приготовленные на одном вяжущем, заполните­ле и воде, называют простыми. Составы простых растворов обозначают двумя числами. Например, известковый раствор со­става 1 : 4 означает, что в растворе на одну часть извести прихо­дится четыре части заполнителя (песка). Растворы, приготовленные на нескольких вяжущих, заполнителе и воде, называют сложными или смешанными. Составы сложных растворов обо­значают тремя числами. Например, состав известково-цементного раствора 1:1:9 обозначает, что на одну часть извести в растворе приходится одна часть цемента и девять частей за­полнителя.

По назначению строительные растворы различают:

 

 кладоч­ные — для каменной кладки фундаментов, стен, столбов, сводов и др. ,

Рис.1.Кирпичная кладка

 

отделочные — для оштукатуривания стен, потолков,

Рис.2. Штукатурка стен и потолка

 

 за­щитно-декоративные — для отделки наружных поверхностей зданий и сооружений,

Рис.3. Фасадная штукатурка

 

декоративные — для отделки внутри по­мещений;

 

Рис.4. Фактурная штукатурка

 

 

 монтажные — для заполнения и заделки швов между крупными элементами при монтаже зданий и сооружений из го­товых сборных конструкций и деталей;

специальные — водоне­проницаемые, кислотостойкие, жаростойкие, акустические, теплоизоляционные, инъекционные, рентгенозащитные и перекачи­ваемые по трубопроводам.

 

В составе растворов нет крупного заполнителя, поэтому в сущности они представляют собой мелкозернистые бетоны. Общие закономерности, характеризующие свойства бетона в принципе применимы и к растворам. Однако при использовании растворов надо учитывать две особенности. Во-первых, их укла­дывают тонкими слоями (1…2 см), не применяя механического уплотнения. Во-вторых, растворы часто наносят на пористые основания (кирпич, бетон, легкие камни и блоки из пористых горных пород), способные сильно отсасывать воду. В результате этого изменяются свойства раствора, что необходимо учитывать при определении его состава.

Подбор состава, приготовление и транспортирование растворов

Составы растворных смесей выбирают или подбирают в за­висимости от назначения раствора, требуемой марки и подвиж­ности и условий производства работ. Подобранный состав рас­творных смесей должен иметь необходимую подвижность (без расслоения и водоотделения при укладке) при минимальном расходе вяжущего вещества и обеспечить получение требуемой прочности в затвердевшем состоянии.

Составы строительных растворов подбирают по таблицам и расчетным путем, в обоих случаях они уточняются эксперимен­тально применительно к конкретным материалам.

Расчетно-экспериментальный метод подбора состава раство­ра основан на выполнении предварительного расчета расхода составляющих (вяжущего, заполнителей, воды и добавок) на основе научно обоснованных и экспериментально проверенных зависимостей, приведенных ниже. Он применяется для подбора состава тяжелых кладочных и монтажных растворов.

Состав растворов марок 25…200 подбирают следующим об­разом.  Для получения заданной марки раствора в случае применения вяжущих, отличающихся маркой Мвф от приведенных в 5.8 (таблица 4) СП 82-101-98 Приготовление и применение растворов строительных, расход вяжущего на 1 м

3 песка определяется по формуле


где Qв — расход вяжущего с активностью по таблице 4 на 1 м3 песка, кг;

Qвф — расход вяжущего с иной активностью;

RвQв — принимается по таблице 4 для данной марки раствора.

Количество неорганических пластификаторов (известкового или глиняного теста) Vд на 1 м3 песка определяется по формуле

Vд = 0,17(1 — 0,002Qв),

где Vд — неорганическая добавка на 1 м3 песка, м.

Расчету состава раствора должно предшествовать определе­ние активности (марки) и средней насыпной плотности цемента, зернового состава и модуля крупности песка, средней плотности неорганического пластификатора (извести или глины).

Приготовление растворов. Растворы выпускаются в виде готовых к применению или сухих смесей, затворяемых перед использованием водой.

Процесс приготовления растворной смеси состоит из дозиро­вания исходных материалов, загрузки их в барабан растворосмесителя и перемешивания до получения однородной массы в растворосмесителях периодического действия с принудительным перемешиванием. По конструкции различают растворосмесители с горизонтальным или вертикальным ло­пастным валом. Последние называются турбулентными смеси­телями.

Растворосмесители с горизонтальным лопастным валом вы­пускают вместимостью по готовому замесу 30; 65; 80; 250 и 900 л. Все эти смесители, за исключением последнего, — пере­движные. Вместимость по готовому замесу турбулентных сме­сителей, рабочим органом которых служат быстровращающиеся роторы — 65; 500 и 800 л.

Чтобы раствор обладал требуемыми свойствами, необходимо добиться однородности его состава. Для этого ограничивают минимальное время перемешивания. Средняя продолжитель­ность цикла перемешивания для тяжелых растворов должна быть не менее 3 мин. Легкие растворы перемешивают дольше. Для облегчения данного процесса известь и глину вводят в рас­твор в виде известкового или глиняного молока. Известковое тесто и комовую глину для смешанных растворов использовать нельзя, так как в этом случае практически невозможно добиться однородности растворной смеси.

Для приготовления цементных растворов с неорганическими пластификаторами в растворосмеситель заливают известковое (глиняное) молоко такой консистенции, чтобы не нужно было дополнительно заливать воду, а затем засыпают заполнитель и цемент. Органические пластификаторы сначала перемешивают в растворосмесителе с водой в течение 30…45 с, а затем загружа­ют остальные компоненты. Растворы, как правило, приготовляют на централизованных бетонорастворных заводах или растворных узлах, что обеспечи­вает получение продукции высокого качества.

Зимой для получения растворов с положительной температу­рой составляющие раствора — песок и воду — подогревают до температуры не более 60 °С. Вяжущее подогревать нельзя.

Транспортирование. Растворные смеси с заводов перевозят автосамосвалами или специально оборудованным транспортом, исключающим потери цементного молока, загрязнение окру­жающей среды, увлажнение атмосферными осадками, снижение температуры. Дальность перевозки зависит от вида раствора, состояния дороги и температуры воздуха. Чтобы предохранить раствор от переохлаждения и замерзания зимой, кузова автома­шин утепляют или обогревают отработанными газами дви­гателя.

На стройках растворную смесь подают к месту использова­ния по трубам с помощью растворонасосов.

Сроки хранения растворных смесей зависят от вида вяжуще­го и ограничиваются сроками его схватывания. Известковые растворы сохраняют свои свойства долго (пока из них не испа­рится вода), а в высохший известковый раствор можно добавить воду и вторично его перемешать. Цементные растворы необхо­димо использовать в течение 2…4 ч; разбавление водой и по­вторное перемешивание схватившихся цементных растворов не допускается, так как это приводит к резкому снижению его ка­чества, т. е. падению марки раствора.

 

Растворы для кладки фундаментов и цоколей ниже гидроизоляционного слоя

Марка цементаТип грунта
МаловлажныйВлажныйНасыщенный водой
Цементно-известковый раствор М10 (цемент: известковое тесто: песок)Цементно-глиняный раствор М25 (цемент: глиняное тесто: песок)Цементно-известковый и цементно-глиняный раствор М25 (цемент: известь или глина: песок)Цементный раствор М50 (цемент: песок)
501:0,1:2,51:0,1:2,5
1001:0,5:51:0,5:51:0,1:2
1501:1,2:91:1,71:03:3,5
2001:1,7:121:1:81:0,5:51:2,5
2501:1,7:121:1:91:0,7:51:3
3001:2,1:151:1:111:0,7:81:6

Примечание: Составы растворов даны в объемных соотношениях. Песок принят средней крупности влажностью 2% и более. При употреблении сухого песка его дозировка уменьшается на 10%.

Цементный раствор готовится таким образом: сначала готовят сухую смесь, которую затем затворяют водой, и перемешивают. Сухие цементные растворы затворяют водой, перемешивают и используют в течение 1-1,5 часов. Воду тоже тщательно дозируют. От избытка воды получится более жидкий раствор, после высыхания он становится менее прочным, чем густой раствор такого же состава.

Цементно-известковый раствор готовят в пропорциях. Это так называемые сложные растворы, рассчитанные на работу в нормальных условиях. Поэтому для каменной кладки, располагающейся ниже уровня грунтовых вод, такие растворы применять не следует. Цементно-известковые растворы чаще всего применяют для внутренней кладки или для штукатурки подвальных помещений. Готовят его в такой последовательности.

Известковое тесто разводят до густоты молока и процеживают на чистом сите. Из цемента и песка готовят сухую смесь, затворяют ее известковым молоком и тщательно перемешивают до получения однородной массы. Добавление известкового молока повышает пластичность раствора и делает его более «теплым» (табл. 2, 3).

Состав раствора для надземной кладки с влажностью помещений менее 60%

Марка цементаМарка раствора
100755025
Цементно-известковые растворы
6001:0,4:4,51:0,7:6
5001:0,3:41:0,5:51:1:8
4001:0,2:31:0,3:4 1:1,7:1,2
3001:0,2:31:0,4:4,51:1,2:9
Цементно-глиняные растворы
6001:0,4:4,51:0,7:6
5001:0,4:4,51:0,7:61:1:3
4001:0,2:31:0,3:41:0,7:61:1:11
3001:0,2:31:0,4:4,51:1:9

Таблица 3. Состав раствора для надземной кладки с влажностью помещений более 60%

Марка цементаМарка раствора
100755025
Цементно-известковые растворы
6001:0,4:4,51:0,7:6
5001:0,3:41:0,5:51:0,7:8
4001:0,2:31:0.3:41:0,7:6
3001:0,2:31:0,4:4,51:0,7:9
Цементно-глиняные растворы
6001:0. 4:4,51:0,7:6
5001:0,3:41:0,5:51:0,7:61:0,7:8,5
4001:0,2:31:0,3:41:0,7:61:0,7:8,5
3001:0,2:31:0,4:5
Цементные растворы
6001:4,51:6
5001:41:5
4001:31:41:6
3001:31:4,5

 Известковый раствор получают затворением известковым молоком чистого песка без включения цемента. Обычно это растворы низких марок и большей частью используются для внутренней штукатурки жилых помещений. Такие растворы отличаются удобоукладываемостью, хорошим сцеплением с кладочным материалом. Известковые растворы твердеют медленно и для ускорения этого процесса в раствор часто добавляют гипс. Особенно возрастает необходимость введения гипса при штукатурке потолков и откосов, где к скорости твердения раствора предъявляются повышенные требования.

Для получения глиняно-известкового раствора глину и известь смешивают, а затем заливают водой. Полученной смесью затворяют песок в необходимой пропорции. Такие растворы применяют в летних условиях для надземной кладки преимущественно в сухом климате при нормальной влажности воздуха помещений.

Составы цементноизвестковых, цементноглиняных и цементных растворов
Марка
раствора

Составы в объемной дозировке растворов при марке вяжущего

500

400

300

200

150

Составы цементноизвестковых и цементноглиняных растворов для надземных конструкций при относительной влажности воздуха помещений до 60% и для фундаментов в маловлажных грунтах
300

1 : 0,15 : 2,1

1 : 0,07 : 1,8

200

1 : 0,2 : 3

1 : 0,1 : 2,5

150

1 : 0,3 : 4

1 : 0,2 : 3

1 : 0,1 : 2,5

100

1 : 0,5 : 5,5

1 : 0,4 : 4,5

1 : 0,2 : 3,5

75

1 : 0,8 : 7

1 : 0,5 : 5,5

1 : 0,3 : 4

1 : 0,1 : 2,5

50

1 : 0,9 : 8

1 : 0,6 : 6

1 : 0,3 : 4

25

1 : 1,4 : 10,5

1 : 0,8 : 7

1 : 0,3 : 4

10

1 : 1,2 : 9,5

Составы цементноизвестковых и цементноглиняных растворов для надземных конструкций при относительной влажности воздуха помещений свыше 60% и для фундаментов во влажных грунтах
300

1 : 0,15 : 2,1

1 : 0,07 : 1,8

200

1 : 0,2 : 3

1 : 0,1 : 2,5

150

1 : 0,3 : 4

1 : 0,2 : 3

1 : 0,1 : 2,5

100

1 : 0,5 : 5,5

1 : 0,4 : 4,5

1 : 0,2 : 3,5

75

1 : 0,8 : 7

1 : 0,5 : 5,5

1 : 0,3 : 4

1 : 0,1 : 2,5

50

1 : 0,9 : 8

1 : 0,6 : 6

1 : 0,3 : 4

25

1 : 1 : 10,5 / 1 : 1 : 9*

1 : 0,8 : 7

1 : 0,3 : 4

10

1 : 1 : 9 / 1 : 0,8 : 7*

Составы цементных растворов для фундаментов и других конструкций, расположенных в насыщенных водой грунтах и ниже уровня грунтовых вод
300

1 : 0 : 2,1

1 : 0 : 1,8

200

1 : 0 : 3

1 : 0 : 2,5

150

1 : 0 : 4

1 : 0 : 3

1 : 0 : 2,5

100

1 : 0 : 5,5

1 : 0 : 4,5

1 : 0 : 3,0

75

1 : 0 : 6

1 : 0 : 5,5

1 : 0 : 4

1 : 0 : 2,5

50

1 : 0 : 6

1 : 0 : 4

* Над чертой — составы цементноизвестковых растворов, под чертой — цементноглиняных.
Цемент : Известь (Глина) : Песок.     Песок принят по ГОСТ 8736 с естественной влажностью 3–7%
Выбор вяжущих при приготовлении растворов для каменных кладок
Условия эксплуатации конструкций

Вид вяжущего

1 Для надземных конструкций при относительной влажности воздуха помещений до 60% и для фундаментов, возводимых в маловлажных грунтах

Портландцемент, пластифицированный и гидрофобный портландцементы, шлакопортландцемент, пуццолановый портландцемент, цемент для растворов, известковошлаковое вяжущее

2 Для надземных конструкций при относительной влажности воздуха помещений свыше 60% и для фундаментов, возводимых во влажных грунтах

Пуццолановый портландцемент, пластифицированный и гидрофобный портландцементы, шлакопортландцемент, портландцемент, цемент для растворов, известковошлаковые вяжущее

3 Для фундаментов при агрессивных сульфатных водах

Сульфатостойкие портландцементы, пуццолановый портландцемент

Ориентировочные расходы вяжущего на 1 м³ песка или на 1 м³ раствора
Вяжущие

Марка раствора Mр

Марка вяжущего Мв

Расход вяжущего, кг

на 1 м³ песка

на 1 м³ раствора

ГОСТ 10178
ГОСТ 25328
ГОСТ 22266

300

500

460

510

400

575

600

200

500

360

410

400

450

490

150

500

280

330

400

350

400

300

470

510

100

500

205

250

400

255

300

300

340

390

75

500

160

195

400

200

240

300

270

310

200

405

пропорции для штукатурки стен, для фундамента :: SYL. ru

Отделочные технологии уверенно развиваются. Поэтому следует опасаться допустить ошибку при замешивании смеси. Существуют определенные правила, позволяющие должным образом соединить все компоненты, входящие в цементный раствор. Пропорции, которые должны неукоснительно выполняться, помогут оштукатурить самые различные виды стен наилучшим образом.

Цементный раствор

Для приготовления правильного раствора для штукатурки к вяжущему веществу в определенных пропорциях добавляют специальные заполнители. Без них смесь не будет обладать достаточной прочностью и вязкой. При высыхании такая штукатурка будет растрескиваться и осыпаться. Поэтому цементные растворы для штукатурки стен, фундамента всегда комбинируют с другими веществами в определенных пропорциях. Их тщательно перемешивают.

В роли вяжущего компонента в подобных разновидностях смесей присутствует цемент, к которому могут добавлять глину или известь. Выбор дополнительных составляющих зависит от типа производимых работ.

Цементный раствор, пропорции которого определяют в зависимости от его состава, в качестве заполнителя содержит песок. Именно этот компонент придает смеси прочность.

Виды цементных растворов для штукатурки

В зависимости от типа вяжущего компонента выбирают и пропорции цементного раствора для штукатурки. На основе этого материала существуют цементные, цементно-известковые и глиняно-цементные разновидности смесей.

Цементный раствор в определенной пропорции используют для сырых помещений, для обработки нижней части фундамента, наружных стен и цоколей. Если в такую смесь добавить водонепроницаемые добавки, то штукатурка будет играть роль изоляции. Цементный раствор, пропорции для штукатурки которого являются довольно несложными, позволяет наносить его на довольно большие площади.

Цементно-известковый раствор применяют для наружных стен влажных помещений. Его укладывают тонким слоем. Он пластичнее, чем цементная смесь.

Глиняно-цементный раствор вполне пригоден для оштукатуривания стен внутри помещения с нормальным уровнем влажности. Наружные работы из такого материала производят только в сухом климате.

Пропорции для цементного раствора

Цементный раствор известен строителям уже давно. Это довольно жесткая смесь, которую не так просто нанести ровно на поверхность. Смесь может храниться около часа до начала работы.

Чтобы приготовить такой цементный раствор, применяют следующие пропорции. На одну часть основы приходится от 1 до 6 частей песка. Чем больше заполнителя, тем более жесткий продукт получится в итоге. Пластичнее должен быть цементный раствор для штукатурки стен. Пропорции такой смеси должны быть не больше 1:3. Затем к сухой смеси добавляется вода. Ее потребуется столько, чтобы раствор получился хорошей консистенции, при которой его удобно будет наносить на поверхность.

Расход цемента при повышении пластичности материала увеличивается. Зато его можно легко наносить на стену, а затем правильно выравнивать.

Пропорции для цементно-известкового раствора

Состав цементно-известкового раствора позволяет ему быть более пластичным, по сравнению с цементными смесями. Это очень хороший цементный раствор для фундамента. Пропорции его компонентов могут быть самыми разнообразными. Чаще всего строители применяют такое соотношение частей цемента-извести-песка: 1х2х8, 1х2х9, 1х3х12, 1х3х15.

Марку такого цементно-известкового раствора определяют по марке цемента. Приготовить такие соотношения компонентов возможно разными способами. Например, сначала можно смешать сухие цемент и песок, а затем добавить к ним известковое молоко. Его готовят путем смешивания известкового теста с водой.

Можно также применять этот компонент в неразведенном водой состоянии. Его смешивают с песком, а затем добавляют воду. В полученную смесь цемент добавляют в последнюю очередь и тщательно все перемешивают.

Полимерные добавки

В современных строительно-ремонтных работах применяют цементные смеси, приготовленные на основе обогащенных полимерами материалов. Они значительно повышают пластичность, которой обязательно должен обладать цементный раствор для штукатурки стен. Пропорции таких добавок характеризуются высокой точностью, так как их рассчитывают в лабораторных условиях. Это готовые для использования смеси.

Цементный раствор, обогащенный подобным образом, обладает рядом преимуществ. Его расход значительно меньше, а применение штукатурной сетки вообще не потребуется. Повышенная эластичность сделает покрытие стойким к переменам температуры и влажности. Оштукатуренные поверхности будут пропускать воздух, что будет препятствовать образованию на поверхности грибков и микроорганизмов.

Для обычного рядового потребителя применение подобных смесей очень удобно. Ведь потребуется всего лишь добавить воды в цементный раствор. Пропорции компонентов уже были высчитаны технологами предприятия, выпустившего такой продукт.

Качественный раствор

Для тех, кто готовит раствор самостоятельно, следует придерживаться технологии создания смеси. Для этого исходные материалы первоначально просеивают через сито. Это поможет добиться однородной консистенции.

Далее следует придать раствору необходимую жирность. Смесь может быть повышенной, нормальной жирности или тощей. Жирный раствор содержит большое количество вяжущего компонента. Он будет быстро растекаться и оседать. Нормальный уровень жирности должно обеспечить приготовление цементного раствора. Пропорции компонентов в этом случае соблюдены наиболее гармоничным образом. Тощие растворы обладают высоким содержанием заполнителя. Они жесткие и при высыхании будут растрескиваться.

Консистенция раствора должна быть удобной для работы, а все его компоненты в обязательном порядке тщательно перемешиваются до однородной массы.

Ознакомившись с основными разновидностями смесей на основе цемента можно правильно подобрать их разновидность для определенного типа работ. Для каждого типа основания следует применять соответствующую смесь для оштукатуривания. Четкое выполнение технологии поможет приготовить правильный цементный раствор. Пропорции его компонентов, выдержанные в соответствии с нормами и требованиями проведения строительных работ, станут гарантией долговечности и функциональности материала.

Как смешать цемент и известь?

В строительстве очень важно подсчитать число материалов и их соотношение. Если сделать все верно, то строительство будет осуществляться гораздо быстрее. Многие люди не знают, сколько добавить цемента в известковый раствор. На самом деле узнать эти цифры не так сложно.

В известковый раствор добавляется такое количество цемента, чтобы было соотношение 1:3 по отношению к известковому раствору. Тогда материал получится нужной консистенции. Он будет пластичным и прочным.

Однако стоит сказать, что в известковый раствор и цемент добавляются в разном количестве, так как многое завит от марки самого цемента. Также на пропорции веществ может повлиять вид отделочной работы. Для кирпичных стен соотношение должно быть 1:2. Но если стены часто подвержены попаданию влаги, то пропорции другие — 1:7.

Более точное соотношение материалов можно увидеть в таблице, здесь есть и марки цемента. Эта таблица поможет узнать, сколько надо добавить цемента в известковый раствор, тем самым облегчит процесс строительства.

Марка цемента Марка известкового раствора
20015010075
5001:31:41:5,51:7
4001:2,51:31:4,51:5,5
3001:2,51:3,51:4

Консистенция раствора

Если нужен раствор из цемента и известняка, то нужно добавить все именно в таком количестве, в каком это указано в таблице. Если в пропорциях допустить ошибку, то полученная смесь может получиться слишком жирной.

Это грозит тем, что после высыхания материал потрескается. Также смесь может получиться жидкой. С таким раствором сделать что–либо просто не получится. Это доказывает то, что пропорции должны быть соблюдены с максимальной точностью.

С помощью лопаты можно быстро понять, каким получился материал. Для этого необходимо опустить лопату в емкость с материалом и слегка приподнять. В случае если смеси на лопате много, то это жирный раствор.

Но если все наоборот – к лопате практически не прилипла смесь, то материл жидкий. Его еще называют тощим. Узнать идеальную консистенцию тоже можно с помощью лопаты.

Раствор должен прилипнуть, но не в большом количестве. Тогда можно говорить о том, что раствор абсолютно готов к применению. Он послужит идеальным материалом.

Улучшить качество раствора поможет и своеобразное сито. Оно не пропустит в раствор мелкие камни, следовательно, материал получится максимально чистым.

Состав и применение извести и строительного раствора

>

Состав и применение извести и строительных растворов.

Хороший раствор имеет жизненно важное значение для всех кирпичных или блочных стен, потому что он связывает элементы вместе, таким образом, он помогает выдерживать вес, приходящийся на стену, и герметизирует стыки, обеспечивая защиту от атмосферных воздействий. Строительный раствор определяется как паста, полученная путем добавления воды к смеси мелких заполнителей и связующего материала, например глина, гипс, известь или цемент или комбинация более чем одного из них.Сформированный таким образом материал способен схватываться и затвердевать. Для достижения наилучших результатов при изготовлении раствора необходимо соблюдать несколько простых правил. Эти правила:

· Использование хороших материалов.

· Выбор соотношения компонентов смеси, обеспечивающий наилучший результат в любой конкретной ситуации.

МАТЕРИАЛЫ.

Чтобы сделать хороший раствор, нужно использовать материалы хорошего качества. Материалы для раствора следующие:

Цемент.

Цемент, используемый для приготовления раствора, должен быть хорошего качества, чему способствуют способ хранения цемента и срок его хранения. Цемент следует хранить над землей в сухом помещении без влаги. Влага окружающей среды влияет на срок хранения цемента. Цемент имеет ограниченный срок хранения — не используйте, если он стал комковатым.

Известь гидратированная

Известь добавлена, чтобы сделать раствор более кремообразным или более работоспособным и долговечным. Он состоит из оксида или гидроксидов кальция.Это помогает минимизировать растрескивание по мере высыхания смеси.

Совокупный

Песок — мелкозернистый заполнитель раствора. В зависимости от связующей среды или использования используются различные типы песка, от крупного или острого до мелкого. Песок, используемый для приготовления раствора, не должен содержать примесей, которые ухудшают его функциональность.

Вода

Вода для приготовления строительных растворов должна быть чистой, свежей и без примесей. Как

общее правило, если вода пригодна для питья (питьевая), то ее можно использовать для приготовления раствора.

Примесь

Добавка — это химическое вещество, добавляемое в строительный раствор для улучшения или улучшения того или иного свойства, необходимого для строительного раствора. Их следует использовать только в строгом соответствии с инструкциями производителя и не использовать вместо извести.

Пигменты, добавляемые для окрашивания строительного раствора, не должны превышать 10 процентов от веса цемента в смеси и должны быть тщательно перемешаны с другими материалами перед добавлением воды. Рекомендуется приготовить образец окрашенного раствора и дать ему полностью высохнуть перед началом работы, чтобы гарантировать получение желаемого цвета.

СМЕСЬ.

Смесь относится к соотношению компонентов раствора и способу их смешивания для достижения однородного результата.

В таблицах ниже приведены пропорции компонентов любого строительного раствора в зависимости от связующего.

СМЕСЬ ПРОПОРТИНОВ ДЛЯ ЦЕМЕНТНОГО РАСТВОРА.

ВИД РАБОТЫ

ЦЕМЕНТ

ПЕСОК

Каменная кладка

1

4-5

Штукатурка (а) внутренняя

(б) внешний

1

1

4

5-6

Указывая

1

1-3

Кирпичная кладка железобетонная

1

3

Фонд

1

3-4

ПРОПОРТИНЫ СМЕСИ ДЛЯ ИЗВЕСТНЫХ РАСТВОРОВ.

ТИП ИЗВЕСТНОГО РАСТВОРА

LIME

ПЕСОК

ИЗЫСКАННЫЙ МОДУЛЬ ПЕСКА

ВИД РАБОТЫ

Жирный лайм *

1-2

1,5

2-3

2-3

2-3

2-3

Штукатурка

указывающий

Гидравлическая известь **

2-3

1.5-2,5

1,5–2,5

Каменная кладка

* жирная известь имеет высокое содержание оксида кальция, который может быть гидратированным или негидратированным.

** Гидравлическая известь содержит в небольших количествах кремнезем, глинозем и оксид железа.

СПОСОБ СМЕШИВАНИЯ.

Строительный раствор

При смешивании на месте важно тщательно отмерить материал по объему в подходящей емкости

.

контейнер (т.е. ведро) или коробку не лопатой. Используются подголовники, но не рекомендуется их использование, особенно старые с неровными кончиками или краями.

Механическое смешивание

Обычно это делается в бетономешалке. В

наливается небольшое количество воды для смешивания. Миксер

, затем песок, цемент и известь. Затем медленно добавляют еще воды, чтобы получился густой кремообразный раствор. Каждую партию следует тщательно перемешать в течение трех минут для получения однородной консистенции.

Ручное смешивание

Смешивание следует производить в чистой тачке или на смесительной доске, чтобы избежать загрязнения.

Сырье следует объединить и перемешать до получения однородного цвета. Затем медленно добавляют воду при непрерывном переворачивании смеси до образования густого кремообразного раствора

.

получено. Важно, чтобы раствор использовался в течение часа после смешивания и не должен быть

.

повторно темперируется добавлением воды.

ВИДЫ РАСТВОРОВ.

Известковый раствор

Известковый раствор — это смесь извести, песка и воды. Известь, используемая для строительного раствора, может быть жирной или гидравлической известью (см. Сноску к таблице выше для описания). Жирная известь затвердевает, теряя воду или поглощая углекислый газ из атмосферы.

Гидравлическая известь содержит в небольших количествах кремнезем, глинозем и оксид железа. При смешивании с водой образует замазку, которая затвердевает под водой. Песок в известковом растворе действует как примесь и уменьшает его усадку.

ИСПОЛЬЗУЕТ.

· Гашеная известь используется для приготовления штукатурных растворов.

· Гидравлическая известь. Применяется для кладки дымоходов и легких надстроек зданий. Вообще, известковый раствор не подходит для заболоченных территорий и влажных условий.

Цементный раствор

Обычная смесь состоит из 1 части цемента и 3 частей песка по объему. Он используется там, где требуется очень высокая прочность, например, в опорах или стенах, несущих большие нагрузки; также там, где требуется высокая степень непроницаемости, например, в опорах и стенах ниже уровня влажного грунта.Его сложнее смешивать, чем известковый раствор, он более жесткий в работе и менее пластичный. Цементный раствор более склонен к усадке, чем известково-цементный раствор.

Известково-цементный раствор

Известково-цементный раствор также известен как составной или «композитный» раствор, охраняемый или мерный раствор. Смесь содержит известь, цемент и песок в пропорциях в зависимости от требований работы. Удовлетворительная смесь для большинства работ — 1 часть

.

Известь гидратированная, 1 часть цемента и 6 частей песка по объему.Для улучшения удобоукладываемости увеличьте количество извести и уменьшите количество цемента, подходящей смесью является 1 часть цемента, 2 части извести и 9 частей песка. Известково-цементный раствор является наиболее подходящим, поскольку он сочетает в себе преимущества хорошей удобоукладываемости с ранней прочностью. Его следует использовать в течение часа после перемешивания, однако он не подходит для работ ниже уровня влажности.

Затирка.

Затирка — это жидкий цементный раствор, который используется для заполнения швов и пустот при кладке, а также для ремонта трещин.Он также используется для увеличения несущей способности почвы путем инъекции. Он используется для заполнения трещин, образовавшихся после схватывания и затвердевания бетона при строительстве плотины.

Затирка отличается от раствора своей текучестью, ее заливают, а не растирают шпателем, как обычный раствор. Он состоит из цемента, мелкого или крупного песка, воды. При желании можно добавить добавку для затирки. Водоцементное соотношение должно быть низким, чтобы увеличить прочность и уменьшить усадку.

Guniting.

Нанесение раствора или бетона под пневматическим давлением через цементный пистолет.

Gunite можно определить как раствор, содержащий цемент и песок, который подается через оборудование, известное как пистолет. Материал пневматически нагнетается на опорную поверхность через сопло, куда с высокой скоростью добавляется вода. Смесь покидает сопло с очень высокой скоростью и ударяется о поверхность, которую нужно обработать. При этом более крупные частицы отскакивают от поверхности, образуя прекрасное связующее покрытие из мелкого цементного раствора на поверхности основы.

ХАРАКТЕРИСТИКИ ХОРОШЕГО РАСТВОРА.

Ключевые свойства строительного раствора:

· сила,

· хорошая связь со строительными элементами,

· устойчивость к атмосферным воздействиям.

Ключевыми свойствами строительных смесей являются:

· мобильность,

· возможность размещения и

· задержка воды.

Нравится:

Нравится Загрузка…

Связанные

Восстановление швов из строительного раствора в исторических зданиях из каменной кладки

КРАТКИЕ СВЕДЕНИЯ

Мягкий раствор для перетяжки. Фото: Джон П. Спевик.

Роберт К. Мак, FAIA, и Джон П. Спевик

Каменная кладка — кирпич, камень, терракота и бетонные блоки — встречается почти в каждом историческом здании .Сразу приходят на ум конструкции с цельнокаменными фасадами, но большинство других построек, по крайней мере, имеют каменный фундамент или дымоходы. Хотя обычно кладка считается «постоянной», она подвержена износу, особенно в местах стыков раствора. Повторное наведение, также известное как «наведение» или — что несколько неточно — «наложение» *, — это процесс удаления испорченного раствора из стыков каменной стены и его замены новым раствором. Правильно выполненная перетяжка восстанавливает визуальную и физическую целостность кладки.Неправильно выполненная переориентация не только ухудшает внешний вид здания, но также может нанести физический ущерб самим каменным элементам.

Целью данного информационного бюллетеня является предоставление общего руководства по подходящим материалам и методам для переориентации исторических каменных зданий, и он предназначен для владельцев зданий, архитекторов и подрядчиков. Краткое изложение должно служить руководством для подготовки спецификаций для переориентации исторических каменных зданий. Это также должно помочь развить чувствительность к особым потребностям исторической каменной кладки и помочь владельцам исторических зданий в сотрудничестве с архитекторами, реставраторами архитектуры, консультантами по сохранению исторических памятников и подрядчиками.Хотя данное руководство специально предназначено для исторических зданий, оно также подходит и для других каменных построек. Эта публикация обновляет сводку Preservation Briefs 2: Повторное определение швов из строительного раствора в исторических кирпичных зданиях , чтобы включить все типы исторической каменной кладки. Объем более раннего Краткого обзора также был расширен, чтобы признать, что многие здания, построенные в первой половине 20-го века, теперь являются историческими и могут быть внесены в Национальный реестр исторических мест, и что они, возможно, изначально были построены с использованием портленда. цементный раствор.

* Tuckpointing технически описывает преимущественно декоративное нанесение приподнятого шва из раствора или известкового замазочного шва поверх швов заподлицо.

Строительный раствор, состоящий в основном из извести и песка, использовался как неотъемлемая часть каменных конструкций на протяжении тысячелетий. Примерно до середины XIX века известь или негашеная известь (иногда называемая кусковой известью) доставлялась на строительные площадки, где ее нужно было гашить или смешивать с водой.При смешивании с водой он закипал, и в результате образовалась влажная известковая замазка, которую оставляли для созревания в яме или деревянном ящике на несколько недель, вплоть до года. Традиционный строительный раствор готовился из известковой замазки или гашеной извести в сочетании с местным песком, обычно в соотношении 1 часть известковой замазки к 3 частям песка по объему. Часто в раствор также добавлялись другие ингредиенты, такие как измельченные морские раковины (еще один источник извести), кирпичная пыль, глина, природные цементы, пигменты и даже шерсть животных, но базовый состав известковой замазки и песчаного раствора оставался неизменным на протяжении веков. до появления портландцемента или его предшественника, римского цемента, природного гидравлического цемента.

Портландцемент был запатентован в Великобритании в 1824 году. Он был назван в честь камня из Портленда в Дорсете, на который он походил в твердом состоянии. Это быстротвердеющий гидравлический цемент, затвердевающий под водой. Портландцемент был впервые произведен в Соединенных Штатах в 1871 году, хотя он был импортирован до этой даты. Но до начала 20 века он не использовался по всей стране. Вплоть до начала века портландцемент считался в первую очередь добавкой или «второстепенным ингредиентом», который помогал ускорить время схватывания раствора.Однако к 1930-м годам большинство каменщиков использовали смесь портландцемента и известковой замазки в равных частях. Таким образом, раствор, используемый в кирпичных конструкциях, построенных между 1871 и 1930 годами, может варьироваться от чистой извести и песчаных смесей до самых разных комбинаций извести, портландцемента и песка.

В 1930-х годах в США появилось больше новых строительных растворов, предназначенных для ускорения и упрощения работы каменщиков. К ним относятся кладочный цемент , предварительно смешанный раствор в мешках, который представляет собой комбинацию портландцемента и измельченного известняка, и гашеную известь , машинная гашеная известь, что исключило необходимость гашения негашеной извести в замазку на объекте.

Решение о переналадке чаще всего связано с некоторыми очевидными признаками износа, такими как рассыпающийся раствор, трещины в швах раствора, рыхлые кирпичи или камни, влажные стены или поврежденная штукатурка. Однако ошибочно полагать, что одно только повторное указание устранит недостатки, возникшие в результате других проблем. Первую причину ухудшения состояния — протекающую крышу или водосточные желоба, неравномерную осадку здания, капиллярное действие, вызывающее повышение влажности, или экстремальное погодное воздействие — всегда следует устранять до начала работ.

Каменщики практикуют использование известковой замазки для ремонта исторического мрамора. Фото: файлы NPS.

Без надлежащего ремонта, чтобы устранить источник проблемы, износ строительного раствора будет продолжаться, и любое перенаправление будет пустой тратой времени и денег.

Использование консультантов

Поскольку существует множество возможных причин ухудшения состояния исторических зданий, может оказаться желательным нанять консультанта, например, исторического архитектора или реставратора архитектуры, для анализа здания.В дополнение к определению наиболее подходящих решений проблем, консультант может подготовить спецификации, которые отражают конкретные требования каждой работы и могут обеспечить контроль над незавершенной работой. Направления к консультантам по сохранению часто можно получить в государственных учреждениях по сохранению исторических памятников, Американском институте сохранения исторических и художественных произведений (AIC), Ассоциации технологий сохранения (APT) и в местных отделениях Американского института архитекторов (AIA).

Необходимо предварительное исследование, чтобы убедиться, что предлагаемые работы по переналадке физически и визуально соответствуют строению. Анализ частей исторического раствора, не подвергшихся атмосферным воздействиям, с которыми будет соответствовать новый раствор, может предложить соответствующие смеси для нового раствора, чтобы он не повредил здание из-за его чрезмерной прочности или непроницаемости для пара.

Этот гранит конца 19 века был недавно изменен, при этом профиль шва и цвет раствора тщательно подобраны к оригиналу.Фото: файлы NPS.

Осмотр и анализ блоков кладки — кирпичной, каменной или терракотовой — и методов, использованных при первоначальном строительстве, помогут сохранить исторический облик здания. Простая, нетехническая оценка блоков кладки и раствора может предоставить информацию об относительной прочности и проницаемости каждого — критических факторах при выборе раствора для повторного нанесения раствора — в то время как визуальный анализ исторического раствора может предоставить информацию, необходимую для разработки новые строительные смеси и методы нанесения.

Хотя это и не критично для успешного проекта по переориентации, для проектов, связанных с объектами особой исторической значимости, анализ раствора квалифицированной лабораторией может быть полезен, поскольку он дает информацию об исходных ингредиентах. Однако у такого анализа есть ограничения, и спецификации заменяющего раствора не должны основываться исключительно на лабораторных анализах. Анализ требует интерпретации, и существуют важные факторы, влияющие на состояние и характеристики строительного раствора, которые нельзя установить с помощью лабораторного анализа.К ним могут относиться: исходное содержание воды, скорость отверждения, погодные условия во время первоначального строительства, метод смешивания и укладки раствора, а также чистота и состояние песка. Самая полезная информация, которую можно получить в результате лабораторного анализа, — это определение песка по градации и цвету. Это позволяет с некоторой точностью подобрать цвет и текстуру раствора, поскольку песок является самым большим ингредиентом по объему.

При создании нового раствора, совместимого с каменными блоками, цель состоит в том, чтобы добиться того, чтобы он максимально соответствовал историческому раствору, чтобы новый материал мог сосуществовать со старым в симпатии, поддержке и, при необходимости, жертвенная способность.Точные физические и химические свойства исторического раствора не имеют большого значения, если новый раствор соответствует следующим критериям:

  • Новый раствор должен соответствовать историческому раствору по цвету, текстуре и инструментам. (Если будет проведен лабораторный анализ, можно будет сопоставить компоненты связующего и их пропорции с историческим строительным раствором, если эти материалы доступны.)
  • Песок должен соответствовать песку в историческом растворе.(Цвет и текстура нового раствора обычно становятся на свои места, если песок удачно совмещен.)
  • Новый раствор должен иметь на большую паропроницаемость и быть на мягче (измеряется по прочности на сжатие), чем блоки каменной кладки.
  • Новый раствор должен быть паропроницаемым, и более мягким или более мягким (измеряется по прочности на сжатие), чем исторический раствор. (Мягкость или твердость не обязательно являются показателем проницаемости; старые твердые известковые растворы могут сохранять высокую проницаемость.)

Этот раствор является подходящей консистенцией для перетяжки исторического кирпича. Фото: Джон П. Спевик.

Методы анализа строительных растворов можно разделить на две большие категории: мокрый химический и инструментальный . Многие лаборатории, которые анализируют исторические растворы, используют простой метод влажной химии , называемый кислотным разложением, при котором образец строительного раствора измельчается, а затем смешивается с разбавленной кислотой.Кислота растворяет все карбонатсодержащие минералы не только в связующем, но и в совокупности (например, раковинах устриц, коралловых песках или других материалах на основе карбонатов), а также в любых других растворимых в кислоте материалах. Остается песок и мелкозернистый нерастворимый в кислоте материал. Существует несколько вариантов простого теста на переваривание кислоты. Один включает сбор углекислого газа, выделяемого при переваривании карбоната кислотой; на основе объема газа можно точно определить содержание карбната в строительном растворе (Jedrzejewska, 1960).Простые методы кислотного разложения являются быстрыми, недорогими и простыми в применении, но информация, которую они предоставляют об исходном составе строительного раствора, ограничивается цветом и текстурой песка. Метод сбора газа дает больше информации о связующем, чем простой тест на кислотное разложение.

Инструментальные методы анализа , которые использовались для оценки строительных растворов, включают микроскопию в поляризованном свете или микроскопию тонких срезов, сканирующую электронную микроскопию, атомно-абсорбционную спектроскопию, дифракцию рентгеновских лучей и дифференциальный термический анализ.Все инструментальные методы требуют не только дорогостоящего специализированного оборудования, но и высококвалифицированных опытных аналитиков. Однако инструментальные методы могут дать гораздо больше информации о миномете. Микроскопия тонких срезов, вероятно, является наиболее часто используемым инструментальным методом. Исследование тонких срезов строительного раствора в проходящем свете часто используется в дополнение к методам кислотного разложения, особенно для поиска заполнителей на карбонатной основе. Например, новый метод испытаний ASTM, ASTM C 1324-96 «Метод испытаний для исследования и анализа затвердевших строительных растворов», который был разработан специально для анализа современных известково-цементных и кладочных цементных растворов, сочетает в себе комплексную серию влажных химических анализов. с помощью микроскопии тонких срезов.

Недостатком большинства методов анализа строительных растворов является то, что образцы строительных растворов известного состава не анализировались для оценки метода. Исторические минометы не были приготовлены в соответствии с узкими спецификациями из материалов одинакового качества; они содержат широкий спектр материалов местного производства, объединенных по усмотрению каменщика. В то время как конкретный метод может быть в состоянии точно определить исходные пропорции известково-цементно-песчаного раствора, приготовленного из современных материалов, полезность этого метода для оценки исторических строительных растворов сомнительна, если только он не был протестирован на растворах, приготовленных из более широко используемых материалов. в прошлом.

Растворы для повторного наложения должны быть мягче или более проницаемыми, чем блоки кладки, и не более твердыми или непроницаемыми, чем исторический раствор, чтобы предотвратить повреждение блоков кладки. Распространенной ошибкой является предположение, что твердость или высокая прочность являются показателем пригодности, особенно для исторических строительных растворов на основе извести. Напряжения в стене, вызванные расширением, сжатием, миграцией влаги или оседанием, необходимо каким-либо образом учитывать; В кирпичной стене эти напряжения должны сниматься раствором, а не каменными элементами.Раствор с более высокой прочностью на сжатие, чем блоки каменной кладки, не будет «давать», таким образом вызывая снятие напряжений через блоки каменной кладки, что приводит к необратимым повреждениям кладки, таким как растрескивание и скалывание, которые нельзя легко отремонтировать.

Это здание начала 19 века ремонтируется известковым раствором. Фото: Трэвис Макдональд.

Хотя напряжения могут также нарушить связь между строительным раствором и каменными блоками, позволяя воде проникать в образовавшиеся микротрещины, это легче исправить в стыке путем перенаправления, чем если бы разрыв произошел в каменных блоках.

Проницаемость или скорость паропроницаемости также имеет решающее значение. Растворы с высоким содержанием извести более проницаемы, чем более плотные цементные растворы. Исторически сложилось так, что строительный раствор выступал в качестве подстилки — в отличие от компенсатора — а не «клея» для блоков кладки, и влага могла мигрировать через швы раствора, а не блоки кладки. Когда влага испаряется из кирпичной кладки, она откладывает любые растворимые соли либо на поверхности в виде высолов , либо под поверхностью в виде субфлоресценций . В то время как соли, осевшие на поверхности кирпичной кладки, обычно относительно безвредны, кристаллизация соли внутри каменной кладки создает давление, которое может вызвать скалывание или расслоение частей внешней поверхности. Если раствор не позволяет влаге или водяным парам выходить из стены и испаряться, это приведет к повреждению блоков кладки.

Песок

Песок — самый крупный компонент раствора и материал, придающий раствору его характерный цвет, текстуру и сцепляемость.Песок не должен содержать примесей, таких как соли или глина. Три ключевые характеристики песка: форма частиц, градация и соотношение пустот.

При просмотре под увеличительным стеклом или микроскопом с малым увеличением частицы песка обычно имеют либо закругленные края, как в пляжном и речном песке, либо острые угловатые края, как в измельченном или искусственном песке. Для повторного нанесения раствора предпочтительнее окатанный песок или натуральный песок по двум причинам. Обычно он похож на песок в исторической ступке и обеспечивает лучшее визуальное совпадение.Он также обладает лучшими рабочими качествами или пластичностью и, таким образом, может легче вдавливаться в шов, обеспечивая хороший контакт с оставшимся историческим раствором и поверхностью смежных блоков кладки. Хотя промышленный песок часто более доступен, обычно можно найти запас окатанного песка.

Градация песка (гранулометрический состав) играет очень важную роль в прочности и когезионных свойствах раствора. Строительный раствор должен иметь определенный процент от крупных до мелких частиц для обеспечения оптимальных характеристик.Приемлемые рекомендации по гранулометрическому составу можно найти в ASTM C 144 (Американское общество по испытаниям и материалам). Однако в действительности, поскольку ни исторические, ни современные пески не всегда соответствуют стандарту ASTM C 144, сопоставление одного и того же внешнего вида и градации частиц обычно требует просеивания песка.

Совок песка содержит множество мелких пустот между отдельными зернами. Хорошо работающий раствор заполняет все эти небольшие пустоты вяжущим (комбинация цемент / известь или смесь) сбалансированным образом.Песок с хорошей сортировкой обычно имеет коэффициент пустотности 30% по объему. Таким образом, обычно следует использовать 30% связующего по объему, если в историческом растворе не было другого соотношения связующее: заполнитель. Это представляет собой соотношение вяжущего к песку 1: 3, которое часто встречается в технических характеристиках строительных растворов.

Для переориентации песок обычно должен соответствовать ASTM C 144, чтобы гарантировать надлежащую градацию и отсутствие примесей; могут потребоваться некоторые изменения для соответствия исходному размеру и градации. Цвет и текстура песка также должны максимально соответствовать оригиналу, чтобы обеспечить надлежащее соответствие цвета без других добавок.

лайм

В составах строительных растворов до конца 19 века в качестве основного связующего материала использовалась известь. Известь получают при нагревании известняка при высоких температурах, который сжигает углекислый газ и превращает известняк в негашеную известь. Существует три типа известняка — кальций, магний и доломит, которые различаются по содержанию карбоната магния, который придает строительному раствору особые свойства. Исторически кальциевая известь использовалась для строительных растворов, а не доломитовая известь (карбонат кальция-магния), наиболее часто используемая сегодня.Но также важно иметь в виду тот факт, что историческая известь и другие компоненты строительного раствора сильно различались, потому что они были натуральными, в отличие от современной извести, которая производится и, следовательно, стандартизирована. Поскольку некоторые виды извести, а также другие компоненты строительного раствора, которые использовались исторически, больше недоступны, даже если предпринимаются сознательные усилия для воспроизведения «исторической» смеси, это может быть недостижимо из-за различий между современными и историческими материалами.

Конопатка была использована не по назначению вместо раствора на верхней части стены. В результате он не был долговечным. Фото: файлы NPS.

Сам лайм при смешивании с водой в пасту очень пластичный и кремообразный. Он останется работоспособным и мягким на неопределенный срок, если хранить его в закрытой таре. Известь (гидроксид кальция) затвердевает в результате карбонизации, поглощая углекислый газ в основном из воздуха, превращаясь в карбонат кальция.После того, как известковый и песчаный раствор смешан и помещен в стену, начинается процесс газирования. Если известковый раствор высохнуть слишком быстро, карбонизация раствора уменьшится, что приведет к плохой адгезии и плохой стойкости. Кроме того, известковый раствор слабо растворяется в воде и, таким образом, может повторно закрыть любые микротрещины, которые могут образоваться в течение срока службы раствора. Известковый раствор мягкий, пористый и мало меняется в объеме при колебаниях температуры, что делает его хорошим выбором для исторических зданий. Благодаря этим качествам известковый раствор с высоким содержанием кальция может быть рассмотрен для многих новых проектов, а не только тех, которые связаны с историческими зданиями.

Для переориентации известь должна соответствовать ASTM C 207, тип S или тип SA, гидратированная известь для каменных целей. Эта гашеная известь предназначена для обеспечения высокой пластичности и водоудержания. Использование негашеной извести, которую необходимо гашить и замачивать вручную, может иметь преимущества перед гашеной известью в некоторых проектах восстановления, если позволяют время и деньги.

Известковая замазка

Известковая замазка — это гашеная известь, имеющая консистенцию замазки или пасты. Он должен соответствовать ASTM C 5. Строительный раствор можно смешивать с использованием известковой замазки в соответствии с характеристиками или пропорциями ASTM C 270.

Портлендский цемент

В качестве основного связующего материала в растворах 20-го века использовался портландцемент. Прямой раствор из портландцемента и песка чрезвычайно твердый, противостоит движению воды, дает усадку при схватывании и подвергается относительно большим тепловым движениям.При смешивании с водой портландцемент образует жесткую густую пасту, которая не поддается обработке и очень быстро затвердевает. (В отличие от извести, портландцемент затвердевает независимо от погодных условий и не требует циклов смачивания и сушки.) Некоторые портландцементы улучшают удобоукладываемость и пластичность раствора, не влияя отрицательно на готовый проект; он также обеспечивает раннюю прочность строительного раствора и ускоряет схватывание. Таким образом, может оказаться целесообразным добавить немного портландцемента в строительный раствор на основе извести даже при повторной укладке относительно мягкого кирпича 18-го или 19-го века при некоторых обстоятельствах, когда требуется немного более твердый раствор.Чем больше портландцемента добавлено в состав раствора, тем тверже он становится и тем быстрее начинается первоначальное схватывание.

Для повторного нанесения портландцемент должен соответствовать ASTM C 150. Белый, не оставляющий пятен портландцемент может обеспечить лучшее соответствие цвета некоторым историческим растворам, чем более широко доступный серый портландцемент. Однако не следует полагать, что белый портландцемент всегда подходит для всех исторических зданий, поскольку исходный раствор мог быть смешан с серым цементом.Цемент не должен содержать более 0,60% щелочи, чтобы избежать высолов.

Кладочный цемент

Кладочный цемент — это предварительно замешанный раствор, который обычно можно найти в строительных магазинах и магазинах домашнего ремонта. Он разработан для производства строительных растворов с прочностью на сжатие 750 фунтов на квадратный дюйм или выше при смешивании с песком и водой на строительной площадке. Он может содержать гашеную известь, но всегда содержит большое количество портландцемента, а также измельченный известняк и другие агенты, улучшающие удобоукладываемость, включая воздухововлекающие агенты.Поскольку кладочные цементы не обязательно должны содержать гашеную известь и, как правило, не содержат извести, они производят высокопрочные растворы, которые могут повредить историческую кладку. По этой причине их обычно не рекомендуется использовать на исторических каменных зданиях.

Известковый раствор (предварительно смешанный)

Растворы из гашеной извести и предварительно замешанные растворы для замазки извести с соответствующим песком или без него имеются в продаже. Также доступны нестандартные растворы в цвете.В большинстве случаев предварительно замешанные известковые растворы, содержащие песок, могут не обеспечить точного соответствия; однако, если проект требует полного изменения покрытия, можно рассмотреть возможность использования предварительно смешанного известкового раствора, если раствор совместим по прочности с кладкой. Если проект включает в себя только отобранное, «точечное» повторное наведение, то может быть лучше провести анализ раствора, который может предоставить заказной предварительно смешанный известковый раствор с подходящим песком. В любом случае, если будет использоваться предварительно смешанный известковый раствор, он должен содержать гашеную известь типа S или SA в соответствии с ASTM C 207.

Вода

Вода должна быть питьевой — чистой и не содержать кислот, щелочей или других растворенных органических веществ.

Прочие компоненты

Исторические компоненты

Помимо цвета песка, текстура раствора имеет решающее значение при воспроизведении исторического раствора. Большинство строительных растворов середины XIX века, за некоторыми исключениями, имеют довольно однородную текстуру и цвет. Некоторые более ранние строительные растворы не имеют такой однородной текстуры и могут содержать комки частично обожженной извести или «грязной извести», ракушку (которая часто служила источником извести, особенно в прибрежных районах), природные цементы, кусочки глины, сажи или другие пигменты. или даже шерсть животных.Визуальные характеристики этих минометов могут быть воспроизведены за счет использования аналогичных материалов в строительном растворе.

Тиражирование таких уникальных или индивидуальных минометов потребует написания новых спецификаций для каждого проекта. Если возможно, должны быть включены предлагаемые источники специальных материалов. Например, измельченные раковины устриц различных размеров можно приобрести у дилеров по поставкам домашней птицы.

Пигменты

Некоторые исторические растворы, особенно в конце 19 века, были окрашены, чтобы соответствовать или контрастировать с кирпичом или камнем.Обычно использовались красные пигменты, иногда в виде кирпичной крошки, а также коричневые и черные пигменты. Существуют современные пигменты, которые можно добавлять в строительный раствор на стройплощадке, но они не должны превышать 10 процентов по весу портландцемента в смеси, а содержание технического углерода должно быть ограничено до 2 процентов. Для предотвращения обесцвечивания и выцветания следует использовать только синтетические минеральные оксиды, устойчивые к воздействию щелочей и солнечных лучей.

Современные компоненты

Добавки используются для создания особых характеристик строительного раствора, и то, следует ли их использовать, будет зависеть от конкретного проекта. Воздухововлекающие вещества , например, помогают раствору противостоять замораживанию-оттаиванию в северном климате. Ускорители используются для уменьшения замерзания раствора перед схватыванием, а замедлители схватывания помогают продлить срок службы раствора в жарком климате. Выбор добавок должен производиться архитектором или реставратором архитектуры как часть спецификаций, а не что-то, что обычно добавляют каменщики.

Как правило, современные химические добавки не нужны и могут, фактически, иметь пагубные последствия для исторических проектов каменной кладки.Не рекомендуется использование антифризов. Они не очень эффективны с растворами с высоким содержанием извести и могут содержать соли, которые позже могут вызвать высолы. Лучше всего нагреть песок и воду и защитить выполненную работу от замерзания. Никакие окончательные исследования не определили, следует ли использовать воздухововлекающие добавки для защиты от воздействия мороза и повышения пластичности, но в зонах экстремального воздействия, требующих высокопрочных растворов с более низкой проницаемостью, может быть желательным воздухововлечение 10-16 процентов (см. для «суровых погодных условий» в растворах типа и смеси).Связующие вещества не заменяют надлежащую подготовку швов, и их обычно следует избегать. Если шов подготовлен должным образом, между новым раствором и прилегающими поверхностями будет хорошее сцепление. Кроме того, связующий агент трудно удалить, если он размазан по поверхности кладки.

Растворы для перепланировки проектов, особенно тех, которые связаны с историческими зданиями, обычно смешиваются на заказ для обеспечения надлежащих физических и визуальных качеств.Эти материалы можно комбинировать в различных пропорциях для создания раствора с желаемыми характеристиками и долговечностью. Фактическая спецификация конкретного типа раствора должна учитывать все факторы, влияющие на срок службы здания, включая: текущие условия площадки, текущее состояние кладки, функцию нового раствора, степень воздействия погодных условий и навыки каменщика. .

Здесь правильно используются молоток и долото для подготовки стыка к перетяжке.Фото: Джон П. Спевик.

Таким образом, не может быть двух абсолютно одинаковых проектов перераспределения. Современные материалы, предназначенные для повторного нанесения раствора, должны соответствовать спецификациям Американского общества испытаний и материалов (ASTM) или сопоставимым федеральным спецификациям, а полученный раствор должен соответствовать ASTM C 270, Строительный раствор для каменной кладки.

Указать пропорции перетяжки ступки под конкретную работу не так сложно, как может показаться.Пять типов строительных растворов, каждый с соответствующей рекомендуемой смесью, были установлены ASTM, чтобы отличать высокопрочный строительный раствор от мягкого эластичного раствора. ASTM обозначил их в порядке убывания приблизительной общей прочности как Тип M (2500 фунтов на квадратный дюйм), Тип S (1800 фунтов на квадратный дюйм), Тип N (750 фунтов на квадратный дюйм), Тип O (350 фунтов на квадратный дюйм) и Тип K (75 фунтов на квадратный дюйм). (Буквы, обозначающие типы, взяты из слов MASON WORK с использованием каждой второй буквы.) Тип K имеет самое высокое содержание извести среди смесей, содержащих портландцемент, хотя сегодня он редко используется, за исключением некоторых проектов по сохранению исторических памятников.Обозначение «L» в прилагаемой таблице обозначает прямую смесь извести и песка. Указание соответствующего строительного раствора ASTM по пропорции ингредиентов обеспечит желаемые физические свойства. Если не указано иное, размеры или пропорции строительных смесей всегда указываются в следующем порядке: цемент-известь-песок. Таким образом, смесь типа K, например, будет обозначаться как 1-3-10, или 1 часть цемента на 3 части извести на 10 частей песка. Другие требования для создания желаемых визуальных качеств должны быть включены в спецификации.

Прочность миномета может быть разной. При смешивании с большим количеством портландцемента получается более твердый раствор. Чем больше добавлено извести, тем мягче и пластичнее становится раствор, повышая его удобоукладываемость. Раствор, обладающий высокой прочностью на сжатие, может быть желателен для пирса из твердого камня (например, гранита), поддерживающего настил моста, тогда как более мягкий, более проницаемый известковый раствор будет предпочтительнее для исторической стены из мягкого кирпича. Ухудшение кладки, вызванное отложением солей, происходит, когда раствор менее проницаем, чем кладка.Крепкий раствор все же более проницаем, чем твердый плотный камень. Однако в стене, построенной из мягкого кирпича, где сама кладка имеет относительно высокую проницаемость или скорость паропропускания, для сохранения достаточной проницаемости необходим мягкий раствор с высоким содержанием извести.

Перенастройка дорог и требует много времени из-за большого объема ручной работы и специальных материалов. Желательно переназначить только те области, которые требуют работы, а не всю стену, как часто указывается.Но, если необходимо изменить точку на 25–50 или более процентов стены, изменение точки всей стены может быть более экономически эффективным, чем изменение точки.

При ремонте этой каменной стены каменщик соответствовал рельефному профилю оригинального крепления. Фото: файлы NPS.

Полная перестановка также может быть более разумной, когда доступ затруднен, требуя возведения дорогих строительных лесов (если только большая часть раствора не прочная и вряд ли потребует замены в обозримом будущем).Каждый проект требует суждения, основанного на множестве факторов. Признание этого с самого начала поможет предотвратить чрезмерное повышение стоимости многих рабочих мест.

При планировании в первую очередь необходимо учитывать сезонные аспекты. Вообще говоря, температура стен от 40 до 95 градусов F (от 8 до 38 градусов C) предотвратит замерзание или чрезмерное испарение воды в растворе. В идеале перенаправление следует проводить в тени, вдали от сильного солнечного света, чтобы замедлить процесс высыхания, особенно в жаркую погоду.При необходимости для масштабных проектов может быть предоставлена ​​тень с соответствующими изменениями строительных лесов.

Также должна быть признана взаимосвязь переноса на другие работы, предлагаемые в здании. Например, если ожидается снятие краски или очистка, и если швы раствора в основном прочны и требуют только выборочной переналадки, обычно лучше отложить перенаправление до завершения этих работ. Однако, если раствор сильно разрушился, позволив влаге глубоко проникнуть в стену, перед очисткой следует выполнить повторную расстановку.Сопутствующие работы, такие как структурный ремонт или ремонт крыши, следует планировать так, чтобы они не мешали переналадке и чтобы во всех работах можно было максимально использовать преимущества возведенных лесов.

Механический шлифовальный станок, неправильно использованный для вырезания горизонтального шва и несовместимая переточка, серьезно повредил кирпич XIX века. Фото: файлы NPS.

Руководители зданий также должны осознавать трудности, которые может создать проект переориентации.Процесс занимает много времени, и строительные леса, возможно, придется оставить на месте в течение длительного периода времени. Процесс совместной подготовки может быть довольно шумным и может генерировать большое количество пыли, которую необходимо контролировать, особенно в воздухозаборниках, чтобы защитить здоровье человека, а также там, где это может повредить работающее оборудование. Время от времени входы могут быть заблокированы, что затрудняет доступ как арендаторам здания, так и посетителям. Ясно, что управляющим зданиями необходимо будет координировать работу по переналадке с другими событиями на объекте.

Выбор подрядчика Идеальный способ выбрать подрядчика — это спросить рекомендаций у знающих владельцев недавно отремонтированных исторических зданий. Квалифицированные подрядчики затем могут предоставить списки других проектов переназначения для проверки. Однако чаще подрядчик для проекта переориентации выбирается на основе конкурентных торгов, контроль над которыми у клиента или консультанта ограничен. В этой ситуации важно обеспечить, чтобы в спецификациях оговаривалось, что каменщики должны иметь как минимум пятилетний опыт работы с реконструкцией исторических каменных зданий, чтобы иметь право участвовать в торгах по проекту.Контракты присуждаются участнику, предложившему самую низкую ответственную цену, и участники торгов, которые плохо справились с другими проектами, обычно могут быть исключены из рассмотрения на этой основе, даже если у них самые низкие цены.

В контрактных документах должна быть указана цена за единицу, а также базовое предложение. Ценообразование за единицу продукции вынуждает подрядчика заранее определить, какое увеличение или уменьшение затрат будет на работу, которая отличается от объема базового предложения. Если, например, у подрядчика будет на пятьдесят погонных футов меньше перетяжки камня, чем указано в контрактных документах, но на тридцать погонных футов больше у кирпича, будет легко определить окончательную цену за работы.Обратите внимание, что каждый тип работы — изменение точки кирпича, изменение точки камня или аналогичные элементы — будет иметь свою цену за единицу. Цена за единицу также должна отражать количество; один погонный фут указателя в пяти разных точках будет дороже, чем пять смежных погонных футов.

Тестовые панели

Эти панели готовятся подрядчиком с использованием тех же методов, которые будут использоваться в оставшейся части проекта. Несколько местоположений панелей — желательно не на фасаде или в другом хорошо видимом месте здания — могут потребоваться для включения всех типов кладки, стилей швов, цветов раствора и других проблем, которые могут возникнуть при работе.

Неквалифицированная переналадка негативно повлияла на облик этого здания конца 19 века. Фото: файлы NPS.

Если, например, также должны быть проведены испытания на очистку, их следует проводить в том же месте. Обычно для кирпичной кладки достаточно площади 3 на 3 фута, в то время как для каменной кладки может потребоваться несколько большая площадь. Эти панели устанавливают приемлемый стандарт работы и служат ориентиром для оценки и принятия последующих работ над зданием.

Подготовка швов

Старый раствор следует удалить на глубину минимум в 2–2-1 / 2 раза больше ширины шва, чтобы обеспечить адекватное сцепление и предотвратить «выскакивание» раствора. Для большинства кирпичных швов это потребует удаления раствора на глубину примерно от Ω до 1 дюйма; для каменной кладки с широкими швами может потребоваться удаление раствора на глубину до нескольких дюймов. Любой рыхлый или распавшийся раствор сверх этой минимальной глубины также должен быть удален.

Хотя некоторые повреждения могут быть неизбежны, тщательная подготовка швов может помочь ограничить повреждение блоков кладки.Традиционный способ удаления старого раствора — использование ручных долот и молотков. Несмотря на то, что этот метод трудоемок, в большинстве случаев этот метод представляет наименьшую опасность повреждения исторических блоков каменной кладки и дает наилучший конечный продукт.

Однако наиболее распространенный метод удаления строительного раствора — использование пилы или шлифовального станка. Использование электроинструмента неквалифицированными каменщиками может иметь катастрофические последствия для исторической кладки, особенно для мягкого кирпича. Использование бензопилы на стенах с тонкими стыками, таких как большинство кирпичных стен, почти всегда приводит к повреждению блоков кладки из-за разламывания краев и перерезания на головке или вертикальных стыков.

Однако небольшие долота с пневматическим приводом, как правило, можно безопасно и эффективно использовать для удаления строительного раствора с исторических зданий, если каменщики сохраняют надлежащий контроль над оборудованием. При определенных обстоятельствах тонкие шлифовальные машины с алмазным лезвием можно использовать для вырезания горизонтальных швов только на твердом портландцементном растворе, обычном для большинства каменных зданий начала 20 века. Обычно автоматические инструменты наиболее успешно удаляют старый раствор, не повреждая кирпичную кладку, когда они используются в сочетании с ручными инструментами при подготовке к перетяжке.Если горизонтальные швы являются однородными и довольно широкими, можно использовать механическую пилу по камню, чтобы облегчить удаление раствора, например, разрезая по середине шва; Окончательное удаление раствора с боковых сторон швов по-прежнему следует производить ручным зубилом и молотком. Фрезы для уплотнения с алмазными лезвиями иногда можно успешно использовать для вырезания швов без повреждения кирпичной кладки. Фрезы для конопатки работают медленно; они не вращаются, а вибрируют с очень высокой скоростью, что сводит к минимуму возможность повреждения каменных блоков.Хотя механические инструменты можно безопасно использовать в ограниченных обстоятельствах для вырезания горизонтальных швов при подготовке к повторной нарезке, их никогда не следует использовать для вертикальных швов из-за опасности поскользнуться и врезаться в кирпич выше или ниже вертикального шва. Использование электроинструментов для удаления раствора без повреждения окружающих блоков каменной кладки также требует высококвалифицированных каменщиков, имеющих опыт работы с историческими каменными зданиями. Подрядчики должны продемонстрировать навыки обращения с электроинструментами до утверждения их использования.

Использование любого из этих электроинструментов также может быть более приемлемым для твердого камня, такого как кварцит или гранит, чем для терракоты с его стекловидной глазурью, или для мягкого кирпича или камня. Испытательная панель должна определить приемлемость электроинструментов. Если разрешается использование электроинструментов, подрядчик должен разработать программу контроля качества для учета утомляемости рабочих и аналогичных переменных.

Раствор должен быть аккуратно удален с блоков кладки, оставляя квадратные углы позади разреза.Перед заливкой стыки следует промыть струей воды, чтобы удалить все рыхлые частицы и пыль. Во время заливки швы должны быть влажными, но без стоячей воды. Для кирпичной кладки стен из известняка, песчаника и обычного кирпича, которые обладают высокой впитывающей способностью, рекомендуется наносить непрерывный водяной туман в течение нескольких часов до начала повторной наложения.

Приготовление раствора

Компоненты строительного раствора следует отмерить и тщательно перемешать, чтобы обеспечить единообразие визуальных и физических характеристик.Сухие ингредиенты измеряются по объему и тщательно перемешиваются перед добавлением воды. Песок необходимо добавлять во влажном рыхлом состоянии, чтобы избежать чрезмерного шлифования. Строительный раствор для повторного нанесения обычно предварительно гидратируется путем добавления воды, чтобы он просто держался вместе, таким образом, позволяя ему постоять в течение определенного периода времени до добавления последней воды. Следует добавить половину воды и перемешать примерно 5 минут. Затем следует добавлять оставшуюся воду небольшими порциями до получения строительного раствора желаемой консистенции.Общий необходимый объем воды может варьироваться от партии к партии в зависимости от погодных условий. Важно свести количество воды к минимуму по двум причинам: во-первых, более сухой раствор чище для работы и его можно плотно уплотнить в швы; во-вторых, без испарения лишней воды, раствор затвердевает без усадочных трещин. Раствор следует использовать в течение примерно 30 минут после окончательного перемешивания, и нельзя допускать повторного темперирования или добавления воды.

Использование известковой замазки для приготовления раствора

Раствор, изготовленный из известковой замазки и песка, иногда называемый грубым или грубым веществом, должен измеряться по объему, и для него могут потребоваться несколько иные пропорции, чем для гашеной извести.Для достижения консистенции нанесения обычно не требуется никакой дополнительной воды, поскольку в замазке уже содержится достаточно воды. Сначала дозируется песок, затем известковая замазка, затем перемешивание в течение пяти минут или до тех пор, пока весь песок не будет полностью покрыт известковой замазкой. Но перемешивания, в привычном понимании переворачивания мотыгой, иногда может быть недостаточно, если необходимо добиться наилучших характеристик известкового замазочного раствора. Хотя старая практика рубки, взбивания и утрамбовки строительного раствора была в значительной степени забыта, недавние полевые работы подтвердили, что известковая замазка и песок, утрамбованные и взбитые деревянным молотком или рукоятью топора, с вкраплениями измельчения мотыгой, могут значительно улучшить обрабатываемость и производительность.Интенсивность этого действия увеличивает общий контакт извести и песка и удаляет излишки воды путем уплотнения других ингредиентов. Для более крупных проектов также может быть выгодно использовать для смешивания тарельчатую мельницу. Мельницы для производства цементных растворов, которые имеют давние традиции в Европе, производят замазочный раствор высшего качества, недостижимый с помощью современных лопастных и барабанных смесителей.

Для более крупных проектов по перетяжке известковую замазку и песок можно заранее смешать и хранить неограниченное время, на строительной площадке или за ее пределами, что устраняет необходимость в грудах песка на строительной площадке.Эта смесь, напоминающая влажный коричневый сахар, должна быть защищена от воздуха в герметичных контейнерах, накрыв сверху влажным куском мешковины, или запечатана в большом пластиковом пакете, чтобы предотвратить испарение и преждевременную карбонизацию. Через несколько месяцев известково-песчаная смесь может быть преобразована в пластичное состояние без дополнительной воды.

Если портландцемент указан в известковой замазке и песчаном растворе типа O (1: 2: 9) или типа K (1: 3: 11), то портландцемент следует сначала смешать с суспензионной пастой, прежде чем добавлять ее в раствор. известковая замазка и песок.Это не только гарантирует, что портландцемент равномерно распределяется по всей смеси, но и при добавлении сухого портландцемента к влажным ингредиентам он имеет тенденцию «комковаться», создавая угрозу диспергированию. (Обычно после введения портландцемента в известковую замазку необходимо добавить воду и отшлифовать ее.) На этом этапе следует добавить любые цветные пигменты и перемешивать в течение полных пяти минут. Раствор следует использовать в течение 30 минут — 1 час, повторный темперирование не допускается. После добавления портландцемента раствор больше нельзя хранить.

Заполнение шва

Если существующий раствор был удален на глубину более 1 дюйма, эти более глубокие участки должны быть сначала заполнены, уплотняя новый раствор в несколько слоев. Задняя часть всего стыка должна быть заполнена последовательно, нанося примерно 1/4 дюйма раствора, хорошо утрамбовывая его в задние углы. Это приложение может вытягиваться вдоль стены на несколько футов. Как только раствор достигнет твердости отпечатка пальца, можно нанести еще один слой раствора толщиной 1/4 дюйма — примерно такой же толщины.Потребуется несколько слоев, чтобы заполнить шов заподлицо с внешней поверхностью кладки. Важно дать каждому слою время застыть перед нанесением следующего слоя; Большая часть усадки раствора происходит в процессе отверждения, и, таким образом, укладка слоев сводит к минимуму общую усадку.

Когда последний слой строительного раствора остается твердым, следует обработать шов, чтобы он соответствовал историческому шву. Правильный выбор инструмента важен для получения однородного цвета и внешнего вида. При слишком мягкой обработке цвет будет светлее, чем ожидалось, и могут появиться микротрещины; при слишком сильном оштукатуривании могут появиться темные полосы, называемые «прожиганием инструмента», и хорошее сцепление раствора с каменными блоками не будет достигнуто.

Если старые кирпичи или камни имеют изношенные, закругленные края, лучше всего слегка углубить окончательный раствор от лицевой стороны кладки. Это лечение поможет избежать сустава, который визуально шире, чем сам сустав; это также позволит избежать образования большого и тонкого выступа, который легко повредить и впустить воду. После обработки излишки раствора можно удалить с края шва, нанеся щетку из натуральной щетины или нейлоновой щеткой. Щетки с металлической щетиной никогда не следует использовать для обработки исторической кирпичной кладки.

Условия отверждения

Предварительное отверждение растворов с высоким содержанием извести — тех растворов, которые содержат больше извести по объему, чем портландцемент, то есть типа O (1: 2: 9), типа K (1: 3: 11) и прямой извести / песка. , Тип «L» (0: 1: 3) — происходит довольно быстро, так как вода из смеси теряется на пористой поверхности кладки и из-за испарения. Слишком быстрое высыхание раствора с высоким содержанием извести (особенно типа «L») может привести к мелению, плохой адгезии и плохой стойкости.Периодическое смачивание повторно заостренной области после того, как швы раствора затвердели и были обработаны финишной обработкой, может значительно ускорить процесс карбонизации. По возможности, распыление с помощью ручного опрыскивателя с тонкой насадкой может быть простым делом в течение дня или двух после повторного прицеливания. Частота намокания будет зависеть от местных условий, но сначала она может быть каждый час, а затем постепенно снижена до трех или четырех часов. Стены должны быть покрыты мешковиной в течение первых трех дней после перетяжки.(Можно использовать пластик, но его следует накрывать навесом, а не ставить прямо у стены.) Это помогает сохранять стены влажными и защищает их от прямых солнечных лучей. После того, как карбонизация извести началась, она будет продолжаться в течение многих лет, и известь наберет прочность, поскольку она снова превратится в карбонат кальция внутри стены.

Фронтон 18 века и окружающая стена имеют совершенно разные стыки из раствора. Фото: файлы NPS.

Старение строительного раствора

Даже при максимальных усилиях по подбору цвета, текстуры и материалов существующего раствора обычно будет заметная разница между старой и новой работой, отчасти потому, что новый раствор был подобран к неответренным частям исторического раствора.Другая причина небольшого несоответствия может заключаться в том, что песок более обнажен в старом растворе из-за небольшой эрозии извести или цемента. Хотя точечное повторное наведение обычно предпочтительнее и должна быть допустима некоторая разница в цвете, если разница между старым и новым строительным раствором слишком велика, в некоторых случаях может быть целесообразно переназначить целую область стены или целую конструкцию, например залив , чтобы минимизировать разницу между старым и новым раствором. Если раствор был правильно подобран, обычно лучший способ справиться с различиями в цвете поверхности — дать раствору стареть естественным образом.Перед применением необходимо тщательно протестировать другие способы устранения этих различий, в том числе очистку участков без повторных точек или окрашивание нового строительного раствора.

Окрашивание нового строительного раствора для достижения лучшего соответствия цвета обычно не рекомендуется, но в некоторых случаях может быть целесообразным. Хотя окрашивание может обеспечить первоначальное совпадение, старый и новый минометы могут выветриваться с разной скоростью, что приводит к визуальным различиям через несколько сезонов. Кроме того, смеси, используемые для окрашивания раствора, могут нанести вред кладке; например, они могут вводить соли в кладку, что может привести к высолу.

Очистка восстановленной кладки

Если работа по перенацеливанию выполняется аккуратно, то в очистке не будет необходимости, кроме удаления небольшого количества раствора с края стыка после обработки инструмента. Это можно сделать с помощью жесткой натуральной щетины или нейлоновой кисти после высыхания раствора, но до его первоначального схватывания (1-2 часа). Затвердевший раствор обычно можно удалить деревянной лопаткой или, при необходимости, долотом.

Дальнейшую очистку лучше всего производить простой водой и щетками из натуральной щетины или нейлона.Если необходимо использовать химические вещества, их следует выбирать с особой осторожностью. Неправильная очистка может привести к порче блоков кладки, порче раствора, появлению пятен раствора и высолов. Швы нового раствора особенно подвержены повреждениям, потому что они не затвердевают полностью в течение нескольких месяцев. Химические чистящие средства, особенно кислоты, никогда не следует использовать для сухой кладки. Перед нанесением химикатов кладку следует полностью пропитать водой. После очистки стены следует еще раз промыть простой водой, чтобы удалить все следы химикатов.

Следует предпринять несколько мер предосторожности, если нужно очистить свежую каменную стену. Во-первых, перед очисткой раствор должен полностью затвердеть. Обычно достаточно тридцати дней, в зависимости от погоды и воздействия; как упоминалось ранее, раствор продолжит отверждаться даже после того, как затвердеет. Необходимо подготовить испытательные панели для оценки воздействия различных методов очистки. Как правило, на новых каменных стенах следует использовать только промывку водой под очень низким давлением (100 фунтов на квадратный дюйм) с добавлением жесткой натуральной щетины или нейлоновых щеток, за исключением глазурованных или полированных поверхностей, где следует использовать только мягкие ткани.**

Новое строение «налет» или «выцвет» иногда появляется в течение первых нескольких месяцев после переориентации и обычно исчезает в результате обычного процесса выветривания. Если высолы не удаляются естественным путем, самый безопасный способ их удаления — сухая чистка щеткой с жесткой натуральной или нейлоновой щетиной с последующей влажной щеткой. Соляная (соляная) кислота обычно неэффективна, и ее не следует использовать для удаления высолов. Это может высвободить дополнительные соли, которые, в свою очередь, могут привести к увеличению количества высолов.

Заливка швов иногда предлагается в качестве альтернативы, в частности, повторной заливки кирпичных зданий. Этот процесс включает нанесение тонкого слоя раствора на цементной основе на стыки раствора и границу раздела раствор / кирпич. Чтобы раствор был эффективным, он должен слегка выходить на поверхность каменных блоков, таким образом визуально расширяя шов. Изменение внешнего вида стыка может до неприемлемой степени изменить исторический характер сооружения.Кроме того, хотя маскировка кирпичей предназначена для того, чтобы не допускать попадания раствора на остальную поверхность кирпича, неизбежно останется некоторый уровень остатков, называемый «вуалированием». Затирка поверхности не может заменить более обширную работу по перетяжке и не рекомендуется для обработки исторической кладки.

** Дополнительная информация по очистке кладки представлена ​​в Записках по консервации 1: Оценка очистки и водоотталкивающих обработок для исторических зданий с каменной кладкой, Роберт С.Мак, FAIA, и Энн Э. Гриммер, Вашингтон, округ Колумбия: Служба технической сохранности, Служба национальных парков, Министерство внутренних дел США, 2000; и поддержание чистоты: удаление внешней грязи, краски, пятен и граффити из исторических каменных зданий, Энн Э. Гриммер, Вашингтон, округ Колумбия: Служба технической консервации, Служба национальных парков, Министерство внутренних дел США, 1988 .

Простое сравнение на месте с поможет определить твердость и состояние строительного раствора и блоков кладки.Начните со соскабливания раствора отверткой и постепенно постукивайте сильнее холодным зубилом и каменщиком. Таким же образом можно испытать кирпичную кладку, начиная с более осторожной процедуры, соскоблив ее ногтем. Этот относительный анализ, производный от 10-балльной шкалы твердости, используемой для описания минералов, обеспечивает хорошую отправную точку для выбора подходящего раствора. Более подробно она описана в «Описание системы Russack для кирпича и строительного раствора», ссылка на которую имеется в списке для чтения в конце этого краткого обзора.

Образцы строительного раствора следует отбирать тщательно и брать из различных мест в здании, чтобы, по возможности, найти не выветренный строительный раствор. Некоторые части здания могли быть изменены в прошлом, в то время как другие части могут находиться в условиях, вызывающих необычный износ. Может быть несколько цветов раствора, относящегося к разным периодам строительства, или песок, использованный из разных источников во время первоначального строительства. Любая из этих ситуаций может дать ложные показания визуальных или физических характеристик, необходимых для нового строительного раствора.Следует отметить вариации, которые могут потребовать разработки более чем одной смеси.

  1. Удалите долотом и молотком три или четыре образца раствора без выветривания, которые необходимо сопоставить, из нескольких мест в здании. (Отложите самый большой образец — он будет использован позже для сравнения с перетяжкой раствора). Удаление полного представления образцов позволит выбрать «средний» или средний образец раствора.
  2. Разомните оставшиеся образцы деревянным молотком или молотком, если необходимо, до тех пор, пока они не разделятся на составные части.Материала должно быть пригоршня.
  3. Осмотрите измельченную часть раствора — известковую и / или цементную матрицу раствора. Особенно обратите внимание на цвет. Существует тенденция думать, что исторические растворы имеют белые вяжущие, но серый портландцемент стал доступен к последней четверти 19 века, и традиционные известки также иногда были серыми. Таким образом, в некоторых случаях естественный цвет исторической папки может быть серым, а не белым. Раствор также мог быть окрашен для получения цветного раствора, и этот цвет следует определить на данном этапе.
  4. Тщательно сдуйте порошкообразный материал (известковую и / или цементную матрицу, скрепляющую раствор).
  5. С помощью лупы малой мощности (10 крат) исследуйте оставшийся песок и другие материалы, такие как куски извести или скорлупа.
  6. Обратите внимание и запишите широкий диапазон цветов, а также различные размеры отдельных песчинок, примесей или других материалов.

Другие факторы, которые следует учитывать

Цвет

Независимо от цвета связующего или цветных добавок, песок является основным материалом, придающим растворам цвет.В одном образце исторического раствора можно обнаружить удивительное разнообразие цветов песка, а различные размеры песчинок или других материалов, таких как не полностью измельченная известь или цемент, играют важную роль в текстуре раствора для повторного нанесения. . Следовательно, при указании песка для повторного нанесения раствора может потребоваться получить песок из нескольких источников и объединить или просеять их, чтобы приблизиться к диапазону цветов песка и размерам зерен в историческом образце раствора.

Указывающий стиль

Тщательный осмотр исторической каменной стены и методов, использованных при первоначальном строительстве, поможет сохранить визуальные качества здания. Следует изучить стили указания и методы их создания. Важно смотреть как на горизонтальные, так и на вертикальные стыки, чтобы определить порядок, в котором они были обработаны, и были ли они одним стилем. Например, в некоторых зданиях конца 19-го и начала 20-го веков горизонтальные стыки были загнуты назад, а вертикальные стыки были обработаны заподлицо и окрашены в тон кирпича, что создает иллюзию горизонтальных полос.Стили наведения также могут отличаться от одного фасада к другому; Передние стены часто получали большее внимание к деталям из раствора, чем боковые и задние стены. Tuckpointing — это не истинное изменение точки, а нанесение приподнятого шва или известкового замазочного шва поверх швов заподлицо. Карандаш — это чисто декоративная обработка окрашенной поверхности на стыке раствора, часто контрастного цвета.

Каменная кладка

Каменные блоки также должны быть проверены, чтобы любые заменяемые блоки соответствовали исторической кладке.Внутри стены может быть широкий диапазон цветов, текстур и размеров, особенно из кирпича ручной работы или грубого камня, добытого в местных карьерах. Заменяемые блоки должны сливаться со всем набором каменных блоков, а не с отдельным кирпичом или камнем.

Соответствие цвета и текстуры переоборудованного раствора

Новый раствор должен соответствовать неответренным внутренним частям исторического раствора. Самый простой способ проверить соответствие — сделать небольшой образец предлагаемой смеси и дать ему отвердеть при температуре примерно 70 градусов по Фаренгейту в течение недели, или его можно запечь в духовке, чтобы ускорить отверждение; затем этот образец взламывают, и его поверхность сравнивают с поверхностью самого большого «сохранившегося» образца исторического раствора.

Если невозможно добиться надлежащего соответствия цвета с помощью натурального песка или цветных заполнителей, таких как крошка мрамора или кирпичной крошки, возможно, потребуется использовать современный пигмент для строительных растворов.

На ранних стадиях проекта следует определить, насколько новый миномет должен соответствовать историческому. Достаточно ли «довольно близко» или «точно»? В спецификациях это должно быть четко указано, чтобы подрядчик имел разумное представление о том, сколько времени и затрат потребуется для разработки приемлемого соответствия.

Такое же решение будет необходимо при подборе замены терракоты, камня или кирпича. Если есть известный источник замены, он должен быть включен в спецификации. Если источник не может быть определен до процесса торгов, спецификации должны включать ориентировочную цену на заменяющие материалы с окончательной ценой, основанной на фактических затратах для подрядчика.

Типы минометов (по объему)
Обозначение Цемент Известь гидратированная или известковая замазка Песок
M 1 1/4 3 — 3 3/4
S 1 1/2 4–4 1/2
N 1 1 5–6
O 1 2 8–9
К 1 3 10–12
«L» 0 1 2 1 / 4–3
Предлагаемые типы минометов для различных воздействий
Экспозиция
Кладочный материал Защищенный Умеренный Сильный
Очень прочный: гранит, полнотелый кирпич и др. O N S
Умеренно прочный: известняк, прочный камень, формованный кирпич K O N
Минимально долговечный: мягкий кирпич ручной работы «L» K O

Владельцу / администратору

Владелец или администратор исторического здания должен помнить, что перенаправление может быть длительным и дорогостоящим процессом.Во-первых, должно быть достаточно времени для оценки здания и расследования причин проблем. Затем будет время, необходимое для подготовки контрактной документации. Сама работа точная, трудоемкая и шумная, а строительные леса могут на какое-то время закрывать фасад здания. Поэтому хозяину необходимо тщательно спланировать работу, чтобы избежать проблем. Таким образом, графики переназначения и других действий потребуют тщательной координации во избежание непредвиденных конфликтов. Владелец должен избегать тенденции спешить с работой или срезать углы, если историческое здание должно сохранить свою визуальную целостность, а работа должна быть долговечной.

Архитектору / консультанту

Поскольку основная роль консультанта заключается в обеспечении срока службы здания, важно знать исторические методы строительства и особые проблемы, возникающие в старых зданиях. Консультант должен помочь владельцу в планировании логистических проблем, связанных с исследованиями и строительством. Консультант обязан определить причину разрушения раствора и убедиться, что она устранена до повторной заделки кладки.Консультант также должен быть готов тратить больше времени на проверку проекта, чем это принято в современном строительстве.

Для масонов

Успешное перенаправление зависит от самих масонов. Опытные каменщики понимают особые требования к работе с историческими зданиями, а также дополнительные затраты времени и средств. Вся бригада каменщиков должна быть готова и способна выполнять работы в соответствии со спецификациями, даже если спецификации могут не соответствовать стандартной практике.В то же время каменщики не должны бояться сомневаться в технических характеристиках, если окажется, что указанные работы могут повредить здание.

Заключение

Хорошая работа по перепрофилированию должна длиться не менее 30 лет, а лучше 50-100 лет. Быстрые пути и плохое мастерство приводят не только к уменьшению исторического характера здания, но и к работе, которая выглядит плохо и потребует в будущем переориентации раньше, чем если бы работа была сделана правильно.Раствор из раствора в историческом каменном здании часто называют «первой линией защиты» стены. Надлежащие методы перетяжки гарантируют долгий срок службы шва, стены и исторической конструкции. Хотя тщательный уход поможет сохранить свежеуложенные швы раствора, важно помнить, что швы строительного раствора предназначены для жертвоприношения и, вероятно, в будущем потребуют повторной заделки. Тем не менее, если исторические швы из строительного раствора доказали свою долговечность в течение многих лет, то осторожное повторное нанесение должно иметь такой же долгий срок службы, что в конечном итоге будет способствовать сохранению всего здания.

Полезные адреса

Американский институт кирпича
11490 Коммерс Парк Драйв,
Рестон, VA 22091

Национальная ассоциация извести
200 Н. Глеб-роуд, офис 800
Арлингтон, Вирджиния 22203

Портлендская цементная ассоциация
5420 Old Orchard Road,
Скоки, Иллинойс 60077

Благодарности

Роберт К.Мак, FAIA , является руководителем архитектурной фирмы MacDonald & Mack, Architects, Ltd., специализирующейся на исторических зданиях в Миннеаполисе, штат Миннесота. Джон П. Спевик, CSI , Толедо, Огайо, каменщик в 5-м поколении и руководитель компании U.S. Heritage Group, Inc., Чикаго, Иллинойс, которая занимается индивидуальным подбором исторического раствора. Энн Э. Гриммер, , старший историк архитектуры, Служба национальных парков, отвечала за разработку и координацию пересмотра этого краткого обзора, включая профессиональные комментарии, и техническое редактирование.

Авторы и редактор выражают благодарность за предоставленный профессиональный и технический обзор: Марк Макферсон и Рон Петерсон, подрядчики по восстановлению каменной кладки, Macpherson-Towne Company, Миннеаполис, Миннесота; Лоррейн Шнабель, архитектурный консультант, John Milner Associates, Inc., Филадельфия, Пенсильвания; Лорен Б. Сикелс-Тейвс, доктор философии, архитектурный консерватор, Biohistory International, Хантингтон-Вудс, Мичиган; и следующие профессиональные сотрудники Службы национальных парков, в том числе: Э.Блейн Кливер, руководитель отдела исследования исторических зданий Америки / журнала «Исторический американский инженерно-технический отчет»; Дуглас К. Хикс, заместитель суперинтенданта, Учебный центр по охране памятников старины, Фредерик, Мэриленд; Крис Макгиган, специалист по надзору за выставками, Учебный центр по сохранению исторических памятников, Фредерик, Мэриленд; Чарльз Э. Фишер, Шарон С. Парк, FAIA, Джон Сандор, Отдел технических служб сохранения, Службы сохранения наследия, и Кей Д. Уикс, Службы сохранения наследия.

Первоначальная версия этой записки, Повторное определение стыков минометов в исторических кирпичных зданиях , была написана Робертом К.Маком в 1976 году, а в 1980 году он был переработан и обновлен Робертом К. Маком, де Тил Паттерсон Тиллер и Джеймс С. Аскинс.

Настоящая публикация подготовлена ​​в соответствии с Законом о национальном историческом сохранении 1966 года с внесенными в него поправками, который предписывает министру внутренних дел разрабатывать и предоставлять информацию об исторических объектах. Служба технической защиты (TPS), Служба национальных парков, готовит стандарты, руководства и другие учебные материалы по ответственным методам сохранения исторических памятников для широкой общественности.

Октябрь 1998 г.

Ашерст, Джон и Никола. Практическая консервация зданий. Vol. 3: Растворы, штукатурки и штукатурки. Нью-Йорк: Halsted Press, подразделение John Wiley & Sons, Inc., 1988.

Кливер, Э. Блейн. «Испытания для анализа образцов строительных растворов». Бюллетень Ассоциации Сохранения Технологий. об. 6, № 1 (1974), стр. 68-73.

Кони, Уильям Б., AIA. Восстановление каменной кладки зданий двадцатого века. Серия по сохранению штата Иллинойс. Номер 10. Спрингфилд, штат Иллинойс: Отдел служб сохранения, Агентство по сохранению исторических памятников Иллинойса, 1989 г.

Дэвидсон, Дж. «Кладочный раствор». Канадский строительный дайджест. CBD 163. Оттава, ONT: Отдел строительных исследований, Национальный исследовательский совет Канады, 1974.

Ферро, Максимилиан Л., AIA, RIBA. «Система Russack для кирпича и строительного раствора Описание: Полевой метод оценки твердости кладки.» Technology and Conservation. Vol. 5, No. 2 (Summer 1980), pp. 32-35.

Хукер, Кеннет А. «Полевые заметки о переориентации». Журнал масонства Абердина Строительство. об. 4, № 8 (август 1991 г.), стр. 326-328.

Енжеевска, Х. «Старые минометы в Польше: новый метод исследования». Исследования в области сохранения . Vol. 5, No. 4 (1960), pp. 132-138.

«Роль Лайма в ступке». Журнал каменного строительства Абердина .Vol. 9, No. 8 (август 1996 г.), стр. 364-368.

Филлипс, Морган В. «Краткие заметки по предметам анализа красок и строительных растворов и записи профилей формования: проблемы с анализом красок и строительных растворов». Бюллетень ассоциации по сохранению технологий. об. 10, No. 2 (1978), pp. 77-89.

Приготовление и использование известковых растворов: Введение в принципы использования известковых растворов. Шотландский центр извести в исторической Шотландии.Эдинбург: Историческая Шотландия, 1995.

Ширхорн, Кэролайн. «Обеспечение постоянства цвета раствора». Абердинский журнал каменного строительства. об. 9, No. 1 (январь 1996 г.), стр. 33-35.

«Следует ли использовать минометы с воздухововлекающими добавками?» Абердинский журнал каменного строительства. об. 7, No. 9 (сентябрь 1994 г.), стр. 419-422.

Sickels-Taves, Лорен Б. «Ползучесть, усадка и минометы в исторической сохранности». Журнал тестирования и оценки, JTEVA. об. 23, № 6 (ноябрь 1995 г.), стр. 447-452.

Спевейк, Джон П. История каменного раствора в Америке , 1720–1995. Арлингтон, Вирджиния: Национальная ассоциация извести, 1995.

Спуэйк, Джон П. «Переосмысление правильно: почему использование современного строительного раствора может повредить исторический дом». Журнал Old-House. об. XXV, № 4 (июль-август 1997 г.), стр. 46-51.

Технические примечания к кирпичному строительству. Американский институт кирпича, Рестон, Вирджиния.

«Влагостойкость кирпичной кладки: техническое обслуживание». 7F. Февраль 1986 г.

«Растворы для кирпичной кладки». 8 Пересмотрено II. Ноябрь 1989 г.

«Стандартные технические условия на портландцементно-известковый раствор для кирпичной кладки». 8A Пересмотрено. Сентябрь 1988 г.

«Раствор для кирпичной кладки — выбор и контроль». 8B переиздан. Сентябрь 1988 г. (июль / август 1976 г.).

«Руководство по техническим условиям для кирпичной кладки, часть V строительного раствора и затирки.»11E Revised. Сентябрь 1991 г.»

«Связи и узоры в кирпичной кладке». 30 переиздан. Сентябрь 1988 г.

Миномет | Что такое миномет?

Раствор представляет собой однородную смесь, произведенную из песка, воды и неорганического конгломерата , который может быть извести, гипса или цемента.

Эта изменчивость конгломерата является причиной классификации минометов по их составу, и мы обсудим это более подробно позже.

Состав раствора

В базовой схеме состав строительного раствора представляет собой , определяемый тремя элементами , хотя важно подчеркнуть возможность добавления добавок, которые придают строительный раствор определенные характеристики, тем самым расширяя его типы.

Ниже мы объясним основы каждого компонента:

Конгломерат

Это ключевой компонент , поскольку он отвечает за создание полного союза между песком и водой , производя однородное и стабильное вещество.

Обычно его структура состоит из очень мелких частиц, таких как порошок, или он может иметь структуру пастообразной консистенции.

Наиболее часто используемым конгломератом является цемент , за которым следуют известь и гипс. Любой из этих элементов при реакции с водой (гидратация) приводит к образованию растворной смеси в пластичном состоянии.

Он впоследствии станет жестким из-за того, что паста застряла в промежутках между песком.

Статистически количество конгломерата прямо пропорционально втягиванию раствора.

Песок

В отличие от предыдущего, этот компонент, кварцевый песок , является компонентом с наибольшей долей в смеси; от 40% до 80% .

Это минеральный и гранулированный материал, который может быть известняком или кремнеземом, максимальный размер которого не должен превышать 4 мм.

Этот компонент является краеугольным камнем строительных растворов, основой, на которой осуществляется гидратация агглютинанта, так как это инертный материал, неспособный химически реагировать с другими соединениями.

Песок регулирует усадку и способствует повышению механической прочности .

Вода

Этот элемент обеспечивает химические условия, подходящие для гидратации конгломерата, поэтому является основным фактором, определяющим пластичность строительного раствора .

Количество воды в смеси меняется на в зависимости от тепловых условий, конгломерата, количества песка и ожидаемой консистенции.

Кроме того, это количество обратно пропорционально механическому сопротивлению строительного раствора, но прямо пропорционально его усадке и пористости.

Вода для смешивания должна иметь минимальный pH 5 , а также низкие концентрации ионов сульфата и хлора, углеводов и органических соединений.

Добавки

Добавки могут быть органическими или неорганическими по природе , и они вносят изменения в величину характеристик пластичного состояния строительного раствора. Это могут быть жидкие соединения (эмульсии) или порошковые соединения .

Большинство из них являются реологическими модификаторами или модификаторами схватывания.А их пропорция в растворной смеси зависит от количества цемента; по их весу.

Кроме того, существуют некоторые соединения, называемые добавками, которые определяют характеристики затвердевшего состояния смеси.

Существуют даже пигменты и волокна, которые изменяют другие характеристики традиционного раствора.

Виды минометов

Самая известная классификация минометов определяется типом конгломерата.

Основные минометов :

Цементные растворы

Цементные растворы — это растворы с типичным составом песка и воды, где цемент действует как связующее. характеризуется высокой прочностью на сжатие .

Его удобоукладываемость зависит, следовательно, от количества цемента и песка, по этой причине обычно используются пески со следами ила и глин для улучшения этого свойства смеси, хотя это влияет на ее стойкость.

Растворы извести

Известковый раствор — это традиционный строительный раствор , состоящий из песка, воды и извести, который может быть воздушным или гидравлическим.Чаще всего используется воздушная известь с использованием белой или серой (доломитовой) извести.

Песок в этих смесях играет очень важную роль , так как он должен регулировать образование трещин за счет сжатия смеси во время реакции карбонизации.

Полуторные минометы

Они названы так потому, что они возникают из комбинации 2 конгломератов . Наиболее часто используется комбинация, которая связывает извести с цементом .

Вероятно, это наиболее эффективный тип строительного раствора, поскольку он приобретает подходящую консистенцию для удобоукладываемости.Кроме того, он хорошо удерживает воду и обладает высоким значением сопротивления.

Однако величины каждой характеристики зависят от числовых зависимостей компонентов.

Применение строительного раствора

Раствор используется разнообразно. С общей точки зрения миномет может выполнять конструктивную функцию . Они могут использоваться при строительстве элементов конструкции или выполнять кладочные функции , выступая в качестве клея или наполнителя.

Кроме того, растворы могут действовать как покрытия , использоваться как ткани, штукатурки или штукатурки.

Принимая во внимание вышесказанное, у нас есть дальнейшая классификация минометов, на этот раз по назначению:

  • Клеевые растворы: из-за особых условий строительной системы, частью которой он является, он должен обладать особыми свойствами, такими как значительная устойчивость к поглощению напряжений.
  • Растворы для заливки: подходят для кирпичной кладки, например, эти растворы обычно заполняют полости в стенах.

Одно из требований состоит в том, что они должны обладать хорошей стойкостью, сравнительно аналогичной предыдущим строительным растворам.

  • Штукатурные или штукатурные растворы: их функции являются чисто эстетическими, обеспечивая однородность и регулярность на поверхности рассматриваемого элемента.

Сопротивление приобретает почти нулевое влияние; самый важный фактор — последовательность.

Статьи по теме

видов минометов. Миномет.Определение минометов. Технические характеристики пропорций. Спецификация цементного раствора. : смесь цемента и извести

1 ASTM C9, ASTM C44, ASTM C270, ASTM C780, ASTM C329, ASTM C586, Спецификация строительного раствора для каменной кладки, спецификация заполнителя для каменной кладки, спецификация раствора для строительного раствора, метод предварительного строительства и оценка строительных растворов для простой и усиленной каменной кладки, спецификация для строительного раствора Обеспечение качества строительных растворов M a S o N w O r K самые сильные самые слабые Типичные применения: Тип: Внешний вид ниже уровня Тип: Внешний вид выше уровня земли и внутренний Тип: Tuckpointing Виды растворов: комбинация цемента и извести и мелочь, такая как молотый известняк, плюс добавки, такие как воздухововлекающие и водоотталкивающие агенты.Относительно простое дозирование и рыхлость за счет захваченного воздуха обеспечивают хорошую производительность. Коды ограничивают использование в зонах с высокой сейсмичностью. — Запатентованный продукт, похожий на кладочный цемент, но с более строгими ограничениями по количеству воздуха и указанной прочности сцепления по сравнению со стандартной единицей измерения. Обладает преимуществами каменной кладки, но имеет повышенную прочность сцепления на растяжение и признан кодексами как эквивалент портландцементно-известкового раствора. Строительные растворы, растворы и строительные растворы Строительные растворы, растворы и строительные практики 2 Спецификация пропорций строительного раствора Спецификация для изготовления строительного раствора Спецификация пропорции руководит, если ни одна из них не указана. Спецификация Спецификация свойств предназначена для готового раствора, а не строительного раствора Рецепт разработан на основе лабораторного раствора полевой раствор Тип раствора Пропорция по объему (содержание материалов) Пропорциональное соотношение (измерено в портландской кладке или гидратированном растворе влажной, рыхлой извести или извести MSN) Шпатлевка Портланд-М / 4 2/4 — 3 раза S / 4 — / 2 от суммы извести N / 2 — / отдельные 4 тома цементных материалов Masonry M O / 4-2 / ​​2 или Mortar MS / 2 Строительные растворы, растворы и строительные методы 3 Растворы, растворы и строительные методы 4

2 Спецификации недвижимости Тип раствора Средняя прочность на сжатие через 28 дней (фунт / кв.дюйм) Суммарный коэффициент (измеренный во влажных, рыхлых условиях) от 2/4 до 3-х кратной суммы отдельных объемы цементных материалов Portland — M / от 4 до 3 раз больше суммы отдельной известковой кладки или строительного раствора MSNOM 2500 S 800 N 750 O 350 Пропорции определяются в лаборатории, чтобы соответствовать этим критериям, а затем эти пропорции p используются в полевых условиях. .Полевые минометы не должны соответствовать этим требованиям. Тестирование полевого раствора на сжатие просто для проверки консистенции. Свойства пластикового раствора: (важнейшее свойство пластикового раствора). легко с помощью шпателя в зазоры и щели 2. вес блоков кладки при размещении 3. к вертикальным поверхностям 4. Легко выйти из швов раствора, когда каменщик прикладывает давление, чтобы выровнять блок 5. Необходим для хорошего с каменными блоками 6. Измерение удобоукладываемости A. лучше всего судить по реакции раствора на шпатель B.: процентное увеличение диаметра основания усеченного конуса при размещении на потоковом столе и механическом подъеме / 2 дюйма и опускании 25 раз за 5 секунд. Типичный расход строительных растворов составляет от 30 до 50%. Растворы, растворы и строительная практика 5 Растворы, растворы и строительная практика 6 Свойства пластикового раствора, продолжение Вода:. Мера способности раствора удерживать воду для затворения. 2. Дает каменщику время установить и отрегулировать блок без раствора. 3. Увеличивается за счет более высокого содержания или добавления мелочи песка в допустимых пределах градации.4. Определяется путем проведения теста потока после удаления некоторого количества воды с помощью определенного количества вакуума. A. Удерживающая способность воды — это отношение первоначального расхода к расходу после всасывания, выраженное в процентах. Б. Обычно требуется водоудерживающая способность 75%. Свойства затвердевшего раствора: (наиболее важное свойство). Прочность: A. Увеличивается с увеличением содержания B. Из-за удобоукладываемости, раствор Type _ обычно обеспечивает максимальное сцепление, которое может быть достигнуто C. Связку можно измерить только в единицах; таким образом, это свойство не только строительного раствора 2.: количество приклеенной поверхности A. Отсутствие протяженности приводит к проблемам, включая проникновение влаги, повышенный поток воздуха и повышенную передачу звука. 3. Повышенное содержание увеличивает сцепление, но снижает сцепление из-за потери удобоукладываемости и повышенной усадки. 4. Больше проблем с эксплуатацией минометов типа и типа. Растворы, растворы и строительная практика 7 Растворы, растворы и строительная практика 8

3 Свойства затвердевшего раствора, продолжение:.Увеличение содержания воздуха увеличивает прочность. 2. Превышение песка, чрезмерный темперирование или использование кирпичных блоков с высокой впитывающей способностью снижает долговечность: максимальную деформацию растяжения при разрыве. Растворы с низкой прочностью и низким модулем демонстрируют более высокие пластические деформации при растяжении, чем высокопрочные растворы с высоким модулем. 2. Не следует использовать растворы, содержащие больше, чем необходимо. Свойства затвердевшего раствора, длительная прочность :. Важность прочности на сжатие. 2. сила и протяженность, и вода вообще более важны. 3. Увеличивается с увеличением содержания 4.Уменьшается с увеличением содержания извести, песка или воздуха 5. Измеряется с использованием 2-дюймовых кубов 6. Раствор на практике ограничивается узлами и находится в состоянии напряжения 7. Прочность раствора оказывает лишь небольшое влияние на призму или прочность стены A Испытания призм из глиняной плитки показали увеличение на порядок величины прочности раствора на сжатие, только удвоение прочности призмы B. Эмпирическое соотношение предполагает, что прочность призмы пропорциональна корню четвертой степени прочности раствора на сжатие. 2-дюймовый кубический строительный раствор Растворы, растворы и строительные методы 9 Растворы, растворы и строительные методы 0 Ингредиенты строительного раствора:.Способствует прочности и долговечности раствора. 2. Обеспечивает начальную прочность раствора, что важно для скорости строительства. 3. Прямые растворы из поликарбоната не используются, поскольку они не обладают пластичностью, низкой водоудерживающей способностью и жесткостью. 4. Минометы из ПК дадут прочную стену, но стена будет уязвима для трещин и проникновения дождя. :. Обеспечивает удобоукладываемость, водоудерживающую способность и эластичность 2. Прямой известковый строительный раствор будет иметь низкую прочность на сжатие и более высокую водоудерживающую способность i. 3. Известковые растворы будут иметь меньшую прочность, но большую стойкость к растрескиванию и проникновению дождя.Ингредиенты раствора, продолжение:. Может использоваться природный или искусственный песок. 2. Степень пустотности песка примерно. Входящие материалы заполняют пустоты в песке; растворная смесь представляет собой примерно объем песка. 3. Измерено во влажном рыхлом состоянии. Сухой песок в разы плотнее влажного рыхлого песка. 4. Песок с хорошей сортировкой снижает расслоение материалов в пластичном растворе, что улучшает удобоукладываемость. A. Из песка, не содержащего мелочи, образуются жесткие растворы. B. Излишки мелочи из песка образуют слабый раствор; в крайних случаях раствор может не схватываться.C. Можно использовать пески, которые не соответствуют требованиям градации C44, при условии, что полученный раствор будет соответствовать техническим характеристикам. Растворы, растворы и строительные методы Растворы, растворы и строительные практики 2

Пределы по ASTM с более мелким песком 4% Диаметр зерна (мм) Прочность на сжатие из 5 наборов (3-4 куба каждый) для цементного раствора типа N Среднее значение: 930 фунтов на квадратный дюйм Минимум: 240 фунтов на кв. Дюйм. COV: 25%. Состав раствора, продолжение:. : вообще не нужен. Кладочный цемент обычно содержит воздухововлекающие вещества.Обычно используется портландцемент типа А с воздухововлекающими добавками. 2.: требуется тщательное измерение и перемешивание. 3.: полимерные добавки (пример DRY BLOCK от W.R. Grace). Одна часть смешивается с бетоном во время изготовления кирпичной кладки. Другая часть добавляется в раствор при перемешивании. Полимеры сшиваются во время отверждения, образуя сопротивление проникновению воды. Гранулометрический состав натурального речного песка в строительных растворах, растворах и строительной практике Ноксвилля 3 Растворы, растворы и строительная практика 4 Замешивание строительного раствора Минуты в механическом смесителе периодического действия.Технологичность поддерживается. Слегка снижает прочность на сжатие th Увеличивает прочность сцепления. Наилучшие результаты обычно достигаются, если раствор сохраняет рабочую консистенцию. Отменить раствор, если он начинает затвердевать или через 2,5 часа. Размещение миномета и юнитов (3.3.B):. Толщина: дюйм 2. Начальный слой: от 4 до 3 4 дюйма 3. Более толстые швы слоя уменьшают прочность на сжатие 4. Сплошные блоки: швы фундамента 5. Пустотные блоки: подстилка, за исключением начального слоя, в колоннах и пилястрах, а также рядом с залитыми раствором ячейки.:. Цельные блоки: головные соединения 2. Полые блоки: ширина толщины Дополнительные требования :. Замки замков с круглым фуганком для создания устойчивой к атмосферным воздействиям поверхности. 2. Не трогайте блоки после их первоначального размещения; приведет к снижению прочности сцепления. 3. Удалите выступы больше чем на 1/2 дюйма, которые будут мешать заливке швов. Растворы, растворы и строительные методы 5 Растворы, растворы и строительные методы 6

5 Руководство по спецификациям ASTM для строительных растворов Стандартное руководство ASTM C 586 по обеспечению качества строительных растворов перед строительством: ASTM C 270 Выберите или спецификации Если свойство, сделайте раствор образцы Испытательный раствор при расходе от 05% до 5%. Характерное содержание влаги после укладки раствора в стену. Единицы впитают немного воды. Высыхание раствора из окружающей среды. Используйте рецепт, определенный на основе лабораторных испытаний свойств. Во время строительства: ASTM C 780 Прочность раствора будет составлять примерно% от лабораторных испытаний Полевой раствор имеет текучесть от 30% до 50%. Для размещения блоков требуется больше воды. Лучшее испытание — соотношение заполнителя раствора. Для замедления гидратации используется спирт. Выполняется ситовой анализ. Строительные растворы, растворы и строительные методы 7 ASTM C476 Спецификация ASTM C09 по затирке для затирки для отбора проб и испытаний цементного раствора. бетон с оседанием h (8 дюймов) выполнен с мелким заполнителем. Он выполняет три функции: соединяются вместе в композитной кладке 2. Связь с кладкой 3. Повышает несущую способность и огнестойкость кладки. Заливка может быть определена одним из следующих способов: как строительный раствор, пропорции установлены Растворы, растворы и строительные методы 8 Технические характеристики пропорций затирки Тип Портландская гидратированная известь Отношение содержания ( измеряется во влажных, рыхлых условиях) или известковая замазка Мелкая грубая мелкая 0 — / 0 2/4 — 3-кратная сумма объемов цементирующих материалов Крупная 0 — / 0 2/4 — 3-кратная сумма объемов цементных материалов до 2-х кратной суммы объемов цементных материалов. Крупный заполнитель: 85% проходит через сито 3/8; 00% проход 1/2 сита Свойства раствора Прочность на сжатие: psi, или прочность на сжатие.Средняя сила составляет около 4000 фунтов на квадратный дюйм. Давление жидкости: Раствор оказывает эквивалентное давление жидкости около pcf. Таким образом, давление в основании 5-футовой заливки составляет фунт-сила-фут. Прочность соединения: содержание влаги в блоках (30-90%) не влияет на прочность на сжатие раствора или прочность связи между раствором и блоком. Средняя прочность сцепления — psi. Растворы, растворы и строительные методы 9 Растворы, растворы и строительные методы 20

6 Высота заливки и подъема раствора Высота: Общая высота кладки, которая должна быть залит перед возведением дополнительной кладки.Заливка может состоять из нескольких подъемов. Высота: Высота раствора, нанесенного за одну операцию. Ограничено 5 футами (2,67 фута, если кладка затвердела в течение 4 часов, осадка находится между 0 и дюймами, и между верхом и низом высоты заливки отсутствуют промежуточные балки) Консолидация: высота заливки <2 дюймов: высота заливки лужи > 2 дюйма: Механическая вибрация Повторное уплотнение после первоначальной потери воды По высоте Требования к пространству для затирки См. Табл.9. для требований к месту затирки. Допускается высота заливки до 24 футов.Для мелкодисперсного раствора требуется только 3 дюйма на 3 дюйма для заливки 24 футов. Для крупнозернистого раствора для заливки на 24 фута требуется пространство размером 3 дюйма на 4 дюйма. Размещение арматуры: установите и закрепите арматуру перед заливкой раствора. Обычно закрепляйте арматуру через каждые 200 диаметров стержня (около 8 футов для стержня №4). t Очистка на высоте подъема: требуется при заливке раствора на большой высоте. Растворы, растворы и строительные методы 2 Растворы, растворы и строительные методы 22 Требования к пространству для раствора Площадь вертикального армирования не должна превышать 6% пространства для раствора (Таблица.9.). UBC допускает 2% площади на стыках. Расчет прочности ограничивает площадь до 4% от площади ячейки (3.3.3.). IBC допускает 8% на стыках. Требуемая толщина раствора между стержнями и кладкой составляет / 4 дюйма для мелкого раствора и / 2 для крупнозернистого раствора (.5.3.5). 20 допускает, что поперечные перемычки полых элементов служат опорой для горизонтального армирования. Прочие требования к цементному раствору Очистка (3.2.F) Требуется, когда высота заливки раствора превышает 5 футов. Постройте t так, чтобы пространство для заливки можно было очистить и осмотреть. В кирпичной кладке с твердым раствором пространство очищается по горизонтали максимум на 32 дюйма по центру.Минимальный размер отверстия составляет 3 дюйма. После очистки закройте очистные отверстия заглушками, чтобы противостоять давлению раствора. Шпонки для затирки (3.5.F) Между заливками сформируйте шпонки для затирки. Сформируйте шпонки для затирки между подъемниками, если разрешено устанавливать первый подъемник до размещения последующих подъемников. Сформируйте шпонку для затирки, завершив затирку минимум на ½ дюйма ниже шва. Не создавайте шпонки для затирки внутри балок. Растворы, растворы и строительные методы 23 Строительные нормы и правила 24

7 Строительные методы Подготовка перед кладкой кладки (Спецификация 3., 3.2). Очистите укладываемые поверхности непосредственно перед укладкой для хорошего сцепления 2. Проверьте выравнивание дюбелей 3. Проверьте допуски фундамента в соответствии с ACI 7. Выравнивание опор по уровню: ± ½ дюйма. Относительное выравнивание: уклон не более дюйма на 0 футов Защита кладки во время Конструкция Верхний слой незавершенного кирпича (.8.B): часто возникает из-за испарения воды в ячейках через поверхность стены. Избегайте преждевременной загрузки (.8.A): например. Укрепление конструкции (3.3.E): Ветровые нагрузки на стены более сильны во время строительства из-за:Недостаток развития 2. Отсутствие (консольной или простой опоры) 3. Усиленный ветер из-за отсутствия уклона: 6 разрешенных для дюбелей (3.4.B.8.d) Растворы, растворы и строительные методы 25 Растворы, растворы , и строительная практика 26 Цели строительства в холодную погоду :. Разрешить достаточный прирост прочности за счет гидратации цемента в растворе 2. Разрешить достаточное снижение влажности раствора до того, как он замерзнет. Проблемы:. Агрегаты с замерзшей влагой поглощают меньше воды, что приводит к ухудшению сцепления и более низкому качеству строительного раствора из-за более высокого содержания оставшейся влаги h 2.Холодильные агрегаты отводят тепло от раствора, что может привести к его замерзанию до того, как будет впитано достаточное количество влаги. 3. Замерзшая вода может расширить и разорвать раствор. Холодная погода Строительство, строительство Требование к температуре окружающей среды 40 ° F до 32 ° F. Нагрейте песок или воду для замешивания, чтобы получить раствор от 40 ° F до 20 ° F. Нагрейте материалы раствора до температуры выше 32 ° F, от 32 ° F до 25 ° F. Получите раствор при температуре от 40 ° F до 20 ° F; выдерживайте раствор выше точки замерзания до использования. Производите раствор при температуре от 70 ° F до 20 ° F; поддерживать раствор выше 70 ° F во время размещения.От 25 o F до 20 o F Нагрейте строящуюся кладку до 40 o F Нагрейте кладку до 40 o F перед заливкой швов Используйте ветрозащитные экраны, когда скорость ветра превышает 5 миль в час 20 o F и менее Обеспечьте ограждение и поддерживайте температуру воздуха выше 32 o F в Растворы, растворы и строительные практики корпуса 27 Растворы, растворы и строительные методы 28

8 Строительство в холодную погоду, защита Среднесуточная потребность Температура от 40 до 25 ° F o Покрытие атмосферостойкой мембраной на 24 часа от 25 до 20 o F Накрыть атмосферостойкими изолирующими одеялами на 24 часа Увеличить период времени до часов для залитых строительным раствором, если только тип цемента в растворе не является типом III 20 o F и менее Поддерживать кладку при температуре выше 32 o F в течение 24 часов с использованием обогреваемых шкафов, обогревающих одеял , или другие методы Увеличьте период времени до часов для залитой цементным раствором конструкции, если только тип цемента в растворе не относится к Типу III. Минимальная дневная температура для залитой цементным раствором кирпичной кладки. Структура Цель: Предотвратить высыхание раствора и раствора и обеспечить надлежащее отверждение.Температура окружающей среды> 00 ° F или 90 ° F и ветер Температура окружающей среды> 5 ° F или 05 ° F и скорость более 8 миль в час. скорость ветра более 8 миль в час. Поддерживать песок во влажном и рыхлом состоянии. Изготовить раствор при температуре ниже 20 ° F. Поддерживать раствор и раствор при температуре ниже 20 ° F. Промыть миксер, транспортные контейнеры и плиты для раствора прохладной водой. Повторно темперировать раствор прохладной водой. Использовать раствор в течение 2 часов. Используйте прохладную воду для замешивания. Лед разрешается смешивать с водой перед использованием. При добавлении льда в воду нельзя.Защита: Туман распыляет недавно построенные стены три раза в день в течение трех дней, когда средняя дневная температура превышает 00 ° F или 90 ° F, а скорость ветра превышает 8 миль в час. Растворы, растворы и строительные методы 29 Растворы, растворы и строительные методы 30 Программа обеспечения качества Код 8, 8 Спецификация 6 Обеспечение качества каменного сооружения Эмпирическая оценка, стекло, облицовка Несущественное Уровень A Основной Уровень B Вся остальная кладка Несущественная Уровень e B Основной уровень C Уровень A Минимальные тесты обеспечения качества Нет Минимальные проверки Проверить соответствие утвержденным документам Минимальные тесты обеспечения качества уровня B: Проверять fm до начала строительства, за исключением случаев, когда специально исключены задачи проверки Непрерывная периодичность.Проверьте соответствие утвержденным документам 2. В начале строительства кладки убедитесь, что соблюдаются следующие условия: a. Пропорции раствора, приготовленного на месте b. Устройство швов раствора d. Расположение арматуры и соединителей 3. Перед заливкой швов убедитесь, что соблюдаются следующие условия: a. Место для раствора b. Марка, тип и размер арматуры и анкерных болтов c. Размещение арматуры и соединителей d. Пропорции затирки, приготовленной на месте e. Строительство швов из раствора Растворы, растворы и строительные методы 3 Растворы, растворы и строительные методы 32

9 Обеспечение качества уровня B Минимальные испытания обеспечения качества уровня C: проверка f ‘m перед строительством и для каждых 5000 кв.футов (464,5 м 2) во время строительства. Задача проверки 4. Во время строительства проверьте: a. Размер и расположение элементов конструкции b. Тип, размер и расположение анкеров, включая другие детали крепления кладки к конструктивным элементам, каркасам или другим конструкциям c. Сварка арматуры d. Подготовка, строительство и защита кладки в холодную погоду (температура ниже 40 F) или жаркую погоду (температура выше 90 F) 5. Наблюдайте за подготовкой образцов раствора, растворов и / или призм Частота Непрерывная Периодическая проверка Задача Частота Непрерывная Периодическая.Проверка соответствия утвержденным документам 2. Убедитесь, что соблюдаются следующие условия: a. Пропорции раствора, приготовленного на месте b. Марка, тип и размер арматуры и анкерных болтов c. Размещение кирпичных блоков и устройство швов раствора d. Размещение арматуры и соединителей e. Заливка раствора перед заливкой g. Размер и расположение элементов конструкции h. Тип, размер и расположение якорей i. Сварка арматуры j. Подготовка, строительство и защита кладки в холодную погоду (ниже 40 F) или жаркую погоду (выше 90 F) Растворы, растворы и строительные методы Соблюдайте подготовку образцов цементного раствора, образцов раствора и / или призм Растворы, растворы и строительство Практика 34 Демонстрационная панель затирки (.6E) Демонстрационная панель затирки: (.6E) Если предложенные процедуры затирки, методы строительства и геометрия места затирки не соответствуют спецификациям MSJC, постройте демонстрационную панель затирки. Пример: самоуплотняющиеся растворы. Самоукрепляющиеся растворы содержат более высокое, чем обычно, цементирующее содержание, высокое соотношение песок / заполнитель, высокодисперсную водоредуцирующую добавку на основе поликарбоксилата и необязательную модифицирующую вязкость добавку для получения смеси с измеренным разбросом осадка от 24 до 30. дюймы (Spec 22A) 2.2 А). Растворы, растворы и строительная практика 35

цемент | Определение, состав, производство, история и факты

Цемент , в общем, клейкие вещества всех видов, но в более узком смысле связующие материалы, используемые в строительстве и гражданском строительстве. Цементы этого типа представляют собой мелкоизмельченные порошки, которые при смешивании с водой становятся твердой массой. Отверждение и затвердевание являются результатом гидратации, которая представляет собой химическую комбинацию цементных смесей с водой, которая дает субмикроскопические кристаллы или гелеобразный материал с большой площадью поверхности.Из-за их гидратирующих свойств строительные цементы, которые схватываются и затвердевают даже под водой, часто называют гидравлическими цементами. Самый важный из них — портландцемент.

процесс производства цемента

Процесс производства цемента, от дробления и измельчения сырья, обжига измельченных и смешанных ингредиентов до окончательного охлаждения и хранения готового продукта.

Encyclopædia Britannica, Inc.

В этой статье рассматривается историческое развитие цемента, его производство из сырья, его состав и свойства, а также проверка этих свойств.Основное внимание уделяется портландцементу, но также уделяется внимание другим типам, таким как шлакосодержащий цемент и высокоглиноземистый цемент. Строительный цемент имеет общие химические составляющие и технологии обработки с керамическими изделиями, такими как кирпич и плитка, абразивные материалы и огнеупоры. Подробное описание одного из основных применений цемента см. В статье «Строительство зданий».

Применение цемента

Цемент может использоваться отдельно (т.е. «в чистом виде» в качестве затирочного материала), но обычно используется в растворе и бетоне, в которых цемент смешан с инертным материалом, известным как заполнитель.Строительный раствор представляет собой цемент, смешанный с песком или щебнем, размер которого должен быть менее примерно 5 мм (0,2 дюйма). Бетон представляет собой смесь цемента, песка или другого мелкого заполнителя и крупного заполнителя, который для большинства целей имеет размер от 19 до 25 мм (от 0,75 до 1 дюйма), но крупный заполнитель может также достигать 150 мм ( 6 дюймов) при укладке бетона в большие массивы, такие как дамбы. Растворы используются для связывания кирпичей, блоков и камня в стенах или для визуализации поверхностей. Бетон используется для самых разных строительных целей.Смеси грунта и портландцемента используются в качестве основы для дорог. Портландцемент также используется при производстве кирпича, черепицы, черепицы, труб, балок, шпал и различных экструдированных изделий. Продукция собирается на заводах и поставляется готовой к установке.

бетон

Заливка бетона на фундамент дома.

Karlien du Plessis / Shutterstock.com

Производство цемента чрезвычайно широко, так как бетон сегодня является наиболее широко используемым строительным материалом в мире.

Получите эксклюзивный доступ к контенту из нашего первого издания 1768 с вашей подпиской. Подпишитесь сегодня Цементные печи

: О цементе

Истоки портлендского цемента

Портландцемент — один из многих материалов, которые можно получить, приготовив тонкоизмельченную смесь известняка и глины и обжигая эту смесь при температуре выше 1000 ° C. Свойства получаемого продукта сильно различаются в зависимости от состава смеси и температуры горения.

Этот объект занимается производством портландцементного клинкера и изделий из него.Основные процессы цементного завода оставались неизменными на протяжении веков.

см. Схему расположения цементного завода

Первоначальное «изобретение» или «открытие» портландцемента устанавливает стандарт для всей последующей истории цементной промышленности, поскольку он окутан паутиной дезинформации, недопонимания и лжи. В данной работе термин портландцемент применяется только в современном понимании. «Портландцемент, каким мы его знаем» можно просто определить как известковый цемент, содержащий (намеренно!) Значительные количества алита («трехкальциевый силикат»). Этот минерал производится только в том случае, если сыпучий химический состав содержит достаточно оксида кальция для его образования, и когда используется достаточно высокая температура горения (> 1300 ° C). Ранее известковые цементы обжигались при более низких температурах, и их основными компонентами, придающими прочность, были белит («дикальцийсиликат») и различные алюминаты кальция. Многие различные цементы этой категории производились с конца восемнадцатого века, отвечая потребностям индустриально развивающихся стран.

Продукт под названием Портландцемент был запатентован Джозефом Аспдином в 1824 году (хотя есть и другие претенденты на первое использование этого термина). Джозеф Аспдин, как и его отец до него, родился в Лидсе и всю жизнь прожил в Йоркшире.

Для моей французской аудитории: Yorkshire est en Angleterre !! Joseph Aspdin N’ÉTAIT PAS ÉCOSSAIS !! Если серьезно, они это знают, так почему они продолжают говорить, что он был шотландцем? Могу только предположить, что для них очень важно, чтобы он не был англичанином.Здесь, как и везде, объективная правда имеет второстепенное значение.

По общему мнению, этот продукт не был «настоящим» портландцементом, и последний был впервые коммерчески произведен его сыном Уильямом в 1842 году. Похоже, Уильям Аспдин чувствовал, что если бы он запатентовал свой новый продукт под новое имя, патент был бы легко нарушен безнаказанно его конкурентами, и поэтому он решил сделать вид, что на его цемент распространяется патент его отца, и сохранил прежнее название продукта.В то же время он очень старался скрыть детали своего процесса от шпионажа и даже от своих сотрудников. Он придумал тщательно продуманный и вымышленный послужной список своего продукта.

Из-за «дыма и зеркал», окружающих ранний продукт, и отсутствия в те дни каких-либо юридических требований для правильного описания продукта часто бывает трудно определить, когда фирмы впервые начали производить «настоящий» портландцемент. Прежние участники отрасли были обмануты распространенной дезинформацией, полагая, что портландцемент должен быть довольно легким в изготовлении (и эта ошибка все еще совершается сегодня!), И в итоге они пришли к чрезмерно упрощенным процессам производства продуктов, которые были в лучшем случае маржинальными. качество, а зачастую и вовсе не соответствовало истинному определению продукта.Более ранние продукты, в том числе продукция Джозефа Аспдина, здесь не рассматриваются.

Согласно этим определениям, первым заводом, производившим этот продукт, был завод Уильяма Аспдина в Ротерхите с 1842 года. Появление продукта в районе Лондона произвело достаточную сенсацию — во многом благодаря гиперболической рекламе Аспдина — что главный римский производитель цемента (Дж. Б. Уайт) немедленно приступил к копированию, и он был произведен в Суонскомбе с 1845 года (см. описание этого процесса IC Johnson).Аспдин перенес производство в Нортфлит (то, что впоследствии стало называться Робинз Воркс) в 1846 году. Первые несколько основанных заводов, по-видимому, были:

Однако в то время даже в тяжелом промышленном строительстве все еще преобладала кирпичная кладка, и более ранние виды цемента уже были хорошо освоены на этом рынке. В частности, на рынке доминировал римский цемент (полученный путем кальцинирования септарных конкреций), и большинство производителей портландцемента также производили его в больших количествах. К портландцементу обычно относились с подозрением, отчасти потому, что вскоре стала очевидной экстравагантность ранних заявлений Аспдина, а отчасти потому, что из-за хитрых ловушек, поджидающих начинающего производителя, продукт должен был казаться ненадежным.

Во Франции еще в 1817 году Луи Вика разработал продукт, аналогичный тому, который позже сделал Джозеф Аспдин, но с гораздо более научным подходом. Он ввел термин «гидравлика» для цементов, застывающих под водой. На протяжении девятнадцатого века большая часть теории цемента разрабатывалась во Франции, а не в Великобритании, и сегодня термин «Портленд» там избегается. Поэтому парадоксально, что именно во Франции портландцемент впервые нашел свой настоящий рынок: портовые работы велись в 1840-1860 годах во многих местах французского побережья, особенно в Шербурге, Дьепе и Бресте, и широко использовался бетон, с использованием портландцемента, импортированного из Англии.Хотя его производство во Франции началось в 1853 году в Па-де-Кале, Англия оставалась основным источником в 1850-х и 1860-х годах.

Завод Дюпон и Демарль в Булони, как и многие ранние английские заводы, первоначально (1848 г.) производил «римский» цемент, используя септарии из местной Киммериджской глины. С 1853 года они производили так называемый «натуральный портландцемент», используя мелкий мергель, смешанный, высушенный, измельченный и брикетированный перед обжигом. Это было «материнское предприятие» Société des Ciment Français et des Ciment Portland de Boulogne-sur-Mer et de Devres и оставалось крупным предприятием, пока оно не было разрушено в 1941 году, после чего не возродилось.

Этот экспортный рынок позволил английским предприятиям расширять производство и совершенствовать свои технологии, а внутренний рынок продукции начал расти с 1860 года, быстро обогнав рынок более ранних продуктов. Экспорт по всему миру оставался основной частью бизнеса отрасли до 1890-х годов, когда внезапно стало очевидно, что иностранцы и колониалы также могут производить портландцемент.

В книге Лесли, стр. 42, цитируется американский импортер:

«В 1876 или 1877 годах начали появляться немецкие цементы, Dyckerhoff, Alsen и Star, и вскоре было обнаружено, что они были лучше по качеству, чем английские цементы, поскольку они шлифнее и имели большую прочность на разрыв.Последовала постепенная дискриминация в их пользу. Когда английские производители были проинформированы о превосходстве немецких цементов, они высмеяли это заявление и отказались принять предложение ввести аналогичные усовершенствования в собственное производство, заявив в характерной английской манере, что они следуют точно таким же методам, которые применялись в прошлом. тридцать лет, и они не видели причин для перемен. В результате английский цемент в конечном итоге был полностью вытеснен в этой стране немецкими и бельгийскими брендами: первые из-за высшего качества, вторые из-за низкой цены.”

Этот взгляд со стороны довольно точно резюмирует ситуацию на протяжении большей части последующей истории.

Процесс догонения с иностранными конкурентами преобладает в период времени (1895-2016), охватываемый этим сайтом.

Ранняя история портлендского цемента

Предшественники

Этот предмет представляет множество трудностей, прежде всего потому, что принятые значения терминологии значительно изменились с годами. Не в последнюю очередь среди неправильно понятых терминов — «цемент».Более века представители цементной промышленности сетовали на то, что в просторечии «цемент» означает «бетон». До недавнего времени в «Простом английском» версии Википедии в статье о цементе говорилось: «Чаще всего его называют бетоном»!

Однако происхождение этого термина — латинское caementum, что означало «каменная кладка»: caementarius был масоном, и в английском языке это значение использовалось до середины девятнадцатого века. Словарь Самуэля Джонсона говорит: «то, что объединяет; раствор », а патент Джозефа Аспдина на портландцемент был« моим методом изготовления цемента или искусственного камня ».Однако к 1850 году «официальная» терминология изменилась.

  • Раствор представляет собой смесь песка, цемента и воды, достаточную для образования густой пасты, которая затвердевает при стоянии.
  • Бетон представляет собой смесь мелких камней или гравия («заполнитель»), песка, цемента и воды, достаточной для растекания смеси в процессе ее формования, которая затвердевает при стоянии.
  • Цемент — это порошок, который используется в обоих перечисленных выше случаях: его химическая реакция с водой обеспечивает прочность, которая удерживает раствор или бетон вместе.

Поэтому раннюю историю цемента следует рассматривать с точки зрения истории строительного раствора и бетона. Очевидно, что строительные растворы использовались до тех пор, пока кладка возводилась из камня или кирпича, и параллельные инновации имели место в разных частях мира. Известь возникла как наиболее распространенный «вяжущий» материал в нескольких местах самостоятельно. Известь легко приготовить (хотя и неэкономично!) На примитивном оборудовании: какой-нибудь удобный источник карбоната кальция, такой как мел, известняк, мрамор или морские раковины, нагревают примерно до 900 ° C, превращая его в оксид кальция.Затем добавляют воду, и происходит бурная экзотермическая реакция, превращающая оксид в гидроксид кальция. Наиболее примитивное применение извести, вероятно, заключалось в промывке глиняных стен: она коагулирует мелкие глины, затвердевает и стабилизирует поверхность. Комбинация извести и навоза крупного рогатого скота, также с помощью процесса коагуляции, дает гибкий и водостойкий слой, подобный ПВХ, и это обычно было основой конструкции «плетень и мазня». Слабо растворимый в воде гидроксид, смешанный с водой до состояния густой пасты, использовался отдельно или в сочетании с песком для покрытия наружной части каменной конструкции (как «штукатурка»), чтобы сделать ее водонепроницаемой или получить более эстетически приятную гладкую поверхность. .Впоследствии раствор стал использоваться для образования швов между кирпичами или каменными блоками. Раствор сначала затвердевает за счет удаления воды из пасты, испарения и впитывания в кладку, что позволяет наращивать последовательные ряды без выдавливания раствора. Добавление песка действительно способствует этому процессу, увеличивая предел текучести раствора. Многие тексты предполагают, что последующее отверждение происходит в результате реакции гидроксида с атмосферным углекислым газом с повторным образованием карбоната кальция.Этот аргумент используют производители извести, чтобы предположить, что известь «углеродно-нейтральна»! Однако, это не так. Отверждение происходит за счет «каннибалистического» роста кристаллов гидроксида кальция. В смеси мелких и крупных кристаллов вещества, взвешенных в растворителе, насыщенном этим веществом, мелкие кристаллы имеют тенденцию растворяться, а более крупные — расти, в процессе, который сводит к минимуму энтальпию системы. Таким образом, более крупные кристаллы «съедают» более мелкие.

Гидроксид кальция (название минерала портландит) образует длинные игольчатые кристаллы, которые по мере роста образуют сложную взаимосвязанную сетку кристаллов увеличивающейся длины. Эта матрица обеспечивает прочность. Реакция с углекислым газом происходит только в том случае, если раствор достаточно плохо затвердевает и допускает проникновение воздуха. Сегодня существуют нормандские и даже римские структуры на основе извести, которые спустя много веков все еще лишь поверхностно карбонизированы.

Римский бетон .Из вышеприведенного описания будет ясно, что чистый известковый раствор может использоваться только в системах, где структурная прочность обеспечивается в первую очередь за счет укладки кирпича или камня: раствор просто «заполняет зазоры» и дает небольшую прочность. Кроме того, поверхность раствора под воздействием воды имеет тенденцию растворяться. Потребность в растворе, устойчивом к воде, возникла раньше, чем потребность в прочности, по крайней мере, в тех местах, где был доступен хороший строительный камень. В Древней Греции и Италии проблема решалась добавлением пуццолана в раствор.Пуццолан — это материал, состоящий из диоксида кремния и алюмосиликатов в таком физико-химическом состоянии, что он будет реагировать с гидроксидом кальция с образованием гидратированных силикатов кальция. Обычно материал находится в стеклообразной фазе, образованной вулканической деятельностью. Пуццоланы получили свое название от деревни Поццуоли, недалеко от Неаполя, и от различных мест в окрестностях горы. Везувий тысячелетиями поставлял выветрившийся вулканический пепел для строительства. «Земля Санторина» — это английское название аналогичного материала, используемого по всему Эгейскому морю и полученного с вулканического острова Санторини.Эти материалы довольно быстро вступают в реакцию с известью, образуя нерастворимую матрицу, стойкую к воде.

Еще одно преимущество добавления пуццолана стало очевидным для римлян: минометы, содержащие их, значительно прочнее. Это привело к развитию римского бетона, состоящего из щебня, песка, извести и пуццолана, смешанного до очень твердой консистенции с минимальным количеством воды и утрамбованного на месте со значительной силой. Хорошо известная обратная зависимость между влагосодержанием и прочностью бетона, а также важность полной консолидации были поняты с самого начала.Результат этой технологии оказал глубокое влияние на последующее понимание: во многих римских сооружениях, достаточно прочных, чтобы дожить до наших дней, использовался бетон, и европейцы, которые восхищались им в период пост-ренессанса, были вынуждены попытаться подражать этому римскому достижению. . Конечно, в Европе было принято говорить, что римляне изобрели бетон. Однако почти идентичные системы были независимо разработаны ранее как в Индии, так и в Китае и, вероятно, в других местах.

Знаковые сооружения, такие как Колизей и Пон-дю-Гар, основаны на бетоне из-за их долговечности, но структурой, которая больше всего впечатлила более поздние века, был Пантеон в Риме. Это строение 2 века имеет бетонный купол без опоры диаметром 43 м, размер которого равен только куполу Флорентийского собора 1436 года и не превосходит собор Святого Павла в Лондоне или собор Святого Петра в Риме. Только в девятнадцатом веке железные конструкции смогли превзойти его по размеру. Обладая очень изысканным дизайном, он остается почти идеальным по сей день.Даже в Британии в римский период использовался прочный бетон. Практически первая римская постройка Британии — ворота в порту Ричборо в 43 году нашей эры — была бетонной. Плохая транспортировка означала, что вулканические пуццоланы Средиземноморья нельзя было использовать, но искусственный пуццолан был доступен в виде молотых кирпичей и плиток. Хотя это и не обязательно стеклообразное, дегидроксилирование глинистых минералов при температуре около 1000 ° C делает их кремнеземистое содержание высокоактивным.

Часто говорят, что искусство бетона было потеряно в Европе после падения Римской империи. Конечно, количество амбициозных структур уменьшилось за 500 лет, но бетон продолжал использоваться на протяжении всего средневекового периода, по крайней мере, в качестве наполнителя в каменных конструкциях. Похоже, что строгая дисциплина римской практики была утеряна. Известь частично обгорела; кирпич и плитка, хотя и были в комплекте, не были мелко измельчены, и уплотнение было плохим. С этим постепенно исчезла идея бетона как инженерного материала, а к эпохе Возрождения она исчезла совсем.

Отчасти, возможно, из-за относительно высокой стоимости бетон до недавнего времени оставался исторической диковинкой. Инновации были продиктованы необходимостью водонепроницаемости. Были две различные области интереса: все более широкое использование лепнины в высококлассной домашней архитектуре, чтобы придать меньшим строительным материалам вид, напоминающий тесак; и растущее число промышленных предприятий. Для штукатурки требовался материал, который можно было обрабатывать и затирать, как жирный известковый раствор, но который достаточно быстро схватывался и становился водонепроницаемым.Это вызывало особую озабоченность во влажном климате Британии. Промышленное использование сосредоточено вокруг водного транспорта: каналы и доки для постоянно увеличивающихся размеров судоходства, где от строительных растворов и растворов требовались как прочность, так и водонепроницаемость. В то же время, в эпоху разума, научный подход применялся к разработке лучших материалов.

Джон Смитон

Джон Смитон Восстановленная верхняя часть бывшего маяка Эддистоун. Построен в 1759 году Джоном Смитоном и перестроен на Плимут-Хоу на новой базе в 1882 году.© Авторские права Rod Allday и лицензированы для повторного использования в соответствии с этой лицензией Creative Commons.

Среди ранних разработок выделялась работа Джона Смитона , инженера-строителя. У него была проблема со строительством третьего маяка Эддистон. Расположенный на крошечной скале, затопленной во время прилива, в 14 км от берега, первый (1698–1703) и второй (1709–1755) оба поддались стихии, и Смитону было поручено построить нерушимое сооружение. Его конструкция была из гранитных блоков с ласточкиными хвостами, и в качестве незначительной детали ему требовался водостойкий раствор, чтобы заделать стыки.Что характерно, он приступил к кропотливой исследовательской программе, чтобы найти лучший доступный материал. В то время (1756-1759) два аспекта конструкции минометов были уже хорошо известны. Во-первых, в Европе существовали различные источники пуццолана, добавление которого улучшало бы водонепроницаемость: к тому времени при строительстве каналов использовался трасса из Рейнской области. Во-вторых, известь из определенных источников имела явную тенденцию к застыванию (а не просто к застыванию) при отверждении и была водостойкой.Еще в 1570 году Палладио в своем трактате упоминает об использовании гидравлической извести, сделанной из известняка, добытого в карьере недалеко от Падуи. Эти известь назывались «водяная известь». Более поздний термин «гидравлическая известь» является характерным для французского эллинизма и вошел в английский язык только в конце девятнадцатого века, когда французские достижения в технологии извести стали известны в Англии. Этот термин, по-видимому, первым использовал Вика.

За исключением этой характеристики, они были похожи на обычную известь: известняк был слегка обожжен, а затем гашен до образования тонкой пасты.Хорошая водная лайм была известна исключительно из анекдотов, и у разных практикующих были свои местные фавориты. Они включали лайм Grey Chalk со всего Доркинга и некоторых других мест, а также различные источники лайма Blue Lias. Следует иметь в виду, что стратиграфическая геология, основанная Уильямом Смитом, появилась только в 1790-х годах, поэтому отдельные карьеры не обязательно считались геологически связанными.

Для маяка требовался строительный раствор, который стал бы прочным и водонепроницаемым в промежутке между последовательными приливами, во время которых будет происходить строительство.Смитон собрал образцы как извести, так и камня, из которого она была обожжена, из всех возможных мест. Он подверг лайм простому физическому испытанию: их отмерили (то есть затирали шпателем с постепенным добавлением воды) до твердой консистенции, скатывали в шарик и помещали в воду, а затем оценивали их способность затвердевать без разрушения. Он провел грубый химический анализ известняков, растворив их в кислоте. Он отметил, что характеристики извести в воде напрямую связаны с количеством нерастворимого в кислоте материала в исходном известняке, и действительно хорошие извести гашатся очень неохотно.В конце концов он остановился на растворе извести Blue Lias от Watchet и Aberthaw и пуццолана, привезенного из Civita Vecchia, недалеко от Неаполя. Его маяк использовался до 1876 года, когда эрозия подстилающей породы потребовала его замены. Фактически, его замена была необходима, когда еще полностью неподвижный маяк начал раскачиваться на своем основании при сильном ветре. Сам маяк был конструктивно прочным, а его верхняя часть была восстановлена ​​на Плимутском мосту, где его можно увидеть сегодня.

То, что мы сейчас называем гидравлической известью, производится из глинистого известняка, в котором содержание глинистого вещества находится в диапазоне 10-20%. При обжиге при 900-1000ºC получается материал, содержащий ß-дикальций силикат (белит), количество которого пропорционально содержанию кремнезема в известняке. Соответственно образуется меньше свободного оксида кальция, так что интенсивность реакции гашения уменьшается. Белит медленно реагирует с водой с образованием нерастворимых гидратов, придающих прочность.

Смитон не стал углубляться в свои наблюдения, но они были опубликованы. Смысл его наблюдения состоит в том, что там, где природа не может предоставить достаточно загрязненный известняк, должно быть возможно сделать водную известь путем сжигания однородной смеси известняка и глины в соответствующем соотношении. Однако в инженерных приложениях использование обычной извести с трассой оставалось нормальной практикой. Для применения в штукатурке было предложено множество рецептур, ни на одну из которых Смитон не повлиял.Ряд исследователей во Франции независимо друг от друга отметили взаимосвязь между содержанием глины и водостойкостью, и по крайней мере один из них произвел искусственную гидравлическую известь еще в 1774 году. В Англии в области штукатурки произошла революция с появлением в 1796 году «римского» цемента Паркера.

«Римский цемент» Паркера

Использование этого сбивающего с толку названия иллюстрирует то, как люди все еще искали волшебный ингредиент, делавший римский бетон таким прочным. Фактически, римляне никогда не использовали ничего похожего на цемент Паркера.Паркер основал производство в Нортфлите, на месте, которое стало известно как Робинс, где была сдана в аренду древняя приливная водяная мельница. Он занимался там обжигом извести более десяти лет, прежде чем открыл, и сразу запатентовал «римский цемент» в 1796 году (см. Патент). Продукт был получен путем обжига известковых конкрементов септариев, которые встречаются во многих типах глины. Помимо карбоната кальция они содержат большое количество глинистого материала, а также немного пирита и апатита.Жилки в конкрециях в основном состоят из кальцита. Их можно было найти во многих прибрежных местах, где материнская глина размывается под воздействием моря, оставляя относительно твердые септарии в виде пляжной гальки. Классические локации находились в лондонской глине на острове Шеппи и вокруг Харвича, в третичных глинах в Соленте и в юрских глинах вдоль берегов Дорсета и Северного Йоркшира: лучшим, который использовал Паркер, был глина Шеппи. . Первоначально септарии собирали с пляжей, а затем в огромных количествах выкапывали из прибрежных морей.Септарии были грубо раздроблены и сожжены при относительно высокой температуре (не из-за химического состава, который легко сжигается, а из-за большой неоднородности конкреций), а затем измельчены с помощью жерновов. Полученный цемент измеряли с добавлением песка или без него и быстро наносили: схватывание происходило через пять-тридцать минут.

По химическому составу эти цементы обычно имели соотношение кремнезем / известь больше, чем у белита, поэтому они содержали мало свободной извести и некоторое количество негидравлических низших силикатов.Поскольку они не содержали свободной извести, их нельзя было гашить, и, в отличие от гидравлической извести, измельчение было неизбежным. Благодаря содержанию в них алюминатов кальция они быстро застывались. Для лепнины это сделало их идеальными. За счет умеренного темпа традиционной кладки кирпича его можно было использовать в качестве раствора в (относительно) высокопрочных каменных конструкциях, и он был широко использован Марком Брунелем в своем туннеле в Темзе. Его использование в государственных верфях стало настолько стратегически важным, что, когда начали возникать сомнения относительно запасов хорошего камня, была предложена система нормирования и налогообложения.Такая паника была сильным стимулом для разработки «искусственного цемента», который имитировал бы его характеристики, и предложения начали появляться в первые три десятилетия девятнадцатого века.

См. Также страницу Roman Cement .

Таким образом, у нас есть две отдельные композиции, используемые в несколько разных приложениях:

  • Гидравлическая известь с более высоким содержанием извести, состоящая в основном из белита, но со значительным количеством гидроксида кальция, полученная легким обжигом и гашением и используемая в медленно схватывающихся водостойких строительных растворах
  • «Римские» цементы с более низким содержанием извести, состоящие в основном из белита с небольшими количествами негидравлических силикатов и реакционноспособных алюминатов, получаемые путем более твердого обжига и измельчения и используемые в быстротвердеющих водостойких строительных растворах.

В настоящее время общеизвестно, что сырьем для быстротвердеющих и / или гидравлических цементов должен быть глинистый известняк, природный или искусственный. Во Франции материал, подобный «римскому» цементу, был приготовлен в 1796 году путем сжигания и измельчения определенной пляжной гальки в окрестностях Булони. Это были септарии из Киммериджской глины.

Первое зарегистрированное предположение о том, что «искусственный» известняк может быть получен путем перемалывания мела и глины в суспензию, относится к Vicat в 1817 году: он и многие другие континентальные производители использовали эту технику для производства гидравлической извести.Искусственная гидравлическая известь Vicat производилась и в двадцатом веке. В Великобритании основной целью было воспроизвести быстротвердеющий «римский» цемент, и было выдано несколько патентов на составление суспензионных смесей с низким содержанием извести. Из них самым важным был Фрост.

«Британский цемент» Джеймса Фроста

Джеймс Фрост был крупным производителем (на самом деле, возможно, когда-то крупнейшим) римского цемента и главным государственным подрядчиком в этой роли.Фрэнсис предполагает, что его отношения с правительством защищали его от судебного преследования, поскольку он делал римский цемент, пока патент Паркера все еще был в силе. Еще до 1810 года он экспериментировал с искусственными композициями, хотя он не получил патента на свой «британский цемент» до 1822 года (см. Патент). Он основал его в Суонскомбе в 1825 году. В патенте не упоминается суспензия как метод производства сырой смеси. Похоже, Фрост черпал вдохновение у Вика, работы которого он посетил, возможно, между 1822 и 1825 годами.Его метод представлял собой классический мокрый процесс, который впоследствии почти два столетия применялся в цементной промышленности с небольшими изменениями. Мягкий мел со стороны Темзы смешивали с аллювиальной глиной Медуэй и водой в стиральной мельнице, которая уже была обычным явлением для приготовления глиняного шликера в керамической промышленности. Полученную жидкую суспензию поместили в «заднюю часть суспензии»: большой неглубокий резервуар, в котором ей дали высохнуть, частично путем слива через пористое основание, а частично путем слива воды, которая поднялась вверх.Когда он достигал «кожаной» консистенции, знакомой керамистам, его разрезали на куски подходящего размера и сушили на «сушильных площадках»: поверхности из кирпича или железа, нагреваемые снизу угольной печью. После сушки до достаточно твердых комков они были загружены в печь для обжига извести чередующимися слоями с коксовым топливом и сожжены. Этот цемент производился вместе с римским цементом примерно до 1850 года. В целом он оставался дешевой, но худшей альтернативой римскому цементу. Фрост уехал в 1832 году, продав растение Фрэнсису и Уайту.

Изображение: © Ben Dalton 2010, и разрешено для повторного использования в соответствии с этой лицензией Creative Commons. Мемориальная доска в память о первом предприятии Аспдина в Лидсе.

«Портлендский цемент» Джозефа Аспдина

Среди других, гораздо менее значимых игроков был Джозеф Аспдин , который получил патент на аналогичный продукт в Лидсе в 1824 году. Это, конечно, был знаменитый патент на «портландцемент» (британский патент 5022, 1824: ). Усовершенствование режимов изготовления искусственного камня .См. Патент).

Отчасти из-за того, что его сын искажал информацию, точная природа и значение ранних действий Джозефа Аспдина остались неясными. Неакадемические истории цемента часто включают раздражающее утверждение, что Джозеф Аспдин изобрел портландцемент «в своей кухонной плите». Ни один из первоисточников не предполагает этого, да и технически это невозможно. Однако сам Джеймс Паркер сказал, что он «открыл» римский цемент, случайно сжигая септарии в камине своей гостиной (см. Фрэнсис, стр. 27), и Роберт Лесли, похоже, небрежно сложил эти истории, исследуя историю отрасли.Как президент Портлендской цементной ассоциации США, его отчет стал священным писанием, и PCA продолжила предоставлять статьи по истории цемента, например, в Энциклопедию Британника. . Процесс Джозефа Аспдина отличался от процесса Фроста тем, что он использовал твердый известняк и использовал процесс «двойного обжига»: известняк готовился путем обжига его в кусковой форме, гашения, затем добавления глины и воды для образования суспензии. который впоследствии был высушен и обожжен, как по методу Фроста.Все комментаторы сходятся во мнении, что патент подразумевает продукт, который, по крайней мере, изначально был похож по свойствам на «римский» цемент. Аспдин переехал в Уэйкфилд и работал на двух участках в Киркгейте. Его старший сын Джеймс выполнял функции его бухгалтера, а второй сын Уильям стал отвечать за повседневное производство. Такая договоренность продолжалась, не привлекая внимания за пределами Йоркшира до 1841 года, когда Уильям поспешно уехал. Следующее сообщение появилось в Leeds Mercury 7 августа 1841 года (стр. 1):

Строителям и другим лицам.- Я, Джозеф Аспдин, из Уэйкфилда, производитель цемента, пользуюсь этой возможностью, чтобы выразить мою самую лучшую благодарность моим друзьям и общественности за многочисленные милости, которые я получал от них в течение многих лет; и прошу сообщить им, что я только что заключил со мной своего Сына, Джеймса Аспдина; и что в дальнейшем мы будем вести Бизнес под фирмой «Джозеф Аспдин и сын».
Я считаю правильным одновременно уведомить о том, что мой покойный агент, Уильям Аспдин, в настоящее время не находится на моей работе, и что он не уполномочен получать какие-либо деньги или заключать какие-либо Долги от моего имени или от имени новой Фирмы.
Joseph Aspdin,
Cement Works, Wakefield, 2d Uug. 1841.

Джозеф ушел на пенсию в 1844 году в возрасте 65 лет и оставил Джеймса, чтобы управлять заводом самостоятельно.

Такова была ранняя история «портландцемента». Этот термин был использован Аспдином из-за сходства полученного цементного раствора с портландским камнем. Ключевым атрибутом, связанным с названием Portland, является светлый цвет: все римские цементы были оранжевого / коричневого цвета из-за количества присутствующего несвязанного оксида железа. Фрост в одной из своих более поздних работ ( Журнал Института Франклина штата Пенсильвания , XVI , декабрь 1835 г., стр. 376) описал римский цемент как «предмет одиозного цвета».Это сравнение часто проводилось при использовании штукатурки в Англии. Портлендский камень был и остается престижным строительным камнем южной Англии. Он имеет очень бледно-серый цвет и мелкозернистую оолитовую текстуру (обычно с россыпью мелких окаменелостей ракушек), которая в свежем виде легко распиливается, долбится и гладко шлифуется. Смитон сравнил с ним свои ступки по цвету и твердости. Фрэнсис отмечает, что Уильям Локвуд из Вудбриджа продавал продукт под названием портландцемент в 1823 году.Это был обычный римский цемент, сделанный из местных септариев. Холстед цитирует забавную книгу Бернелла 1850 года по извести и цемент, относящуюся к «портлендскому цементу, как его очень нелепо называют». Маловероятно, что такие названия продуктов порезали кого-то, кто знал, как на самом деле выглядит портлендский камень.

Уильям Аспдин

В 1841 году Уильям Аспдин, второй сын Джозефа, переехал в Лондон. Он начал, как только мог, производить и продавать продукт, который он назвал портландцементом, и это явно произвело сенсацию. Исаак Джонсон в своих мемуарах саркастически отзывался о «звуке труб», который был сделан в связи с новым цементом. В частности, был привлечен независимый подрядчик для проведения испытаний по сравнению продукта Aspdin с нынешними римскими цементами, которые показали, что продукт значительно прочнее. Аспдин также переусердствовал в продвижении своего продукта экстравагантными заявлениями. В частности, он утверждал, что изделие его отца использовалось при аварийном ремонте тоннеля Марка Брунеля в Темзе, который был одним из самых известных проектов гражданского строительства того времени.На самом деле дневники и записи Брюнеля были чрезвычайно тщательными, и из них ясно, что использовался только «римский» цемент. Заявление Аспдина было одной из многих неприкрытых лжи, которые он сказал в ходе своей независимой карьеры.

Однако его продукт явно был «портландцемент, каким мы его знаем». Сегодня термин портландцемент означает известковый цемент, содержащий трехкальциевый силикат (алит). То, что цемент Аспдина содержал алит, можно продемонстрировать путем анализа частично прореагировавшего из него бетона.Алит гораздо более реактивен, чем белит, и приводит к быстрому приросту силы. Для получения алита температура обжига должна быть выше 1250ºC (обычно значительно выше), и на практике необходимо спекать (частично плавить) материал с образованием клинкера. Клинкер всегда производился в небольших количествах случайно при производстве гидравлической извести и «римского» цемента в результате «перегорания». Клинкерный материал всегда выбрасывали, потому что он не гаснет, а если измельчать, то оказывается, что он не реагирует.Еще одна практическая причина отказа от клинкера заключалась в том, что из-за своей твердости он быстро разрушал внешний вид обычных плоских камней, используемых для измельчения. Попытки измельчить его, несомненно, были одной из причин поспешного ухода Уильяма Аспдина из Уэйкфилда.

Отчет Джонсона о его собственном независимом открытии достоинств клинкера иллюстрирует, как продолжалась предыдущая работа Уильяма Аспдина: он измельчал клинкер и смеси клинкера с более мягко обожженным материалом и превращал их в пасту.Смеси быстро схватились и стали теплыми обычным образом, но один клинкер был все еще мягким и холодным после обычного получасового периода схватывания, поэтому он отказался от этого и оставил его. Вернувшись через несколько дней, он обнаружил, что слой только для клинкера был намного тверже, чем смеси, «кроме того, цвет был приятного серого». Ясно, что молотый клинкер не обладал теми быстротвердеющими качествами, которые требуются от «римского» цемента, но придавал прочность. Похоже, что Уильям Аспдин тщательно сочетал в своем продукте недообожженный материал в количестве, достаточном для удовлетворения требований к быстрому схватыванию, при этом клинкер обеспечивает дополнительную прочность.Интересно, что Лесли (например, стр. 26) говорит, что в США несколько производителей «натурального цемента», постепенно переходя на производство портландцемента, производили «улучшенные» натуральные цементы путем смешивания этих двух продуктов.

К тому времени, когда Исаак Джонсон, который был менеджером завода Джона Бэзли Уайта в Суонскомбе, преуспел в подражании продукту Аспдина, последний был на рынке уже три года. Джонсон в своих мемуарах утверждал, что его продукт намного превосходит продукт Аспдина (незначительное утверждение, не подтвержденное независимыми испытаниями в то время), и подразумевал, что только он один обнаружил необходимость производства клинкера.Аспдин, напротив, всегда держал свои процессы в секрете и не делал никаких заявлений о степени сжигания, которую он использовал. Более того, он всегда утверждал, что его продукт был таким же, как и у его отца, и защищался тем же патентом. Возможно, из-за незаслуженного презрения, с которым Уильям Аспдин относился к отрасли, Джонсон долгое время считался изобретателем «настоящего» портландцемента, первым заявившим о важности твердого обжига. Статьи о цементе в последующих изданиях Британской энциклопедии постоянно приписывают это ему.Тем не менее, изобретение принадлежит Аспдинам более поздними технически компетентными авторами. Во-первых, сравнительные испытания показали, что продукты Джонсона и Уильяма Аспдина были очень похожи, обладали примерно одинаковой прочностью и значительно превосходили римский цемент. Совершенно очевидно, что цемент Аспдина был признан компанией Johnson and White’s лучшим, потому что:

  • много усилий было вложено в эмуляцию продукта
  • они и все последующие производители использовали торговую марку Aspdins для своей продукции.

Тогда возникает вопрос, был ли, как утверждал Уильям Аспдин, его отец изобретателем «портландцемента, каким мы его знаем». И Холстед, и Скемптон склонны утверждать, что это так, хотя производство и использование клинкера было разработано спустя некоторое время после получения оригинального патента. Причины, выдвинутые в пользу этого:

  • Уильям Аспдин сказал, что это было так
  • Уильям Аспдин дал своему продукту то же имя, что и продукт его отца
  • Продукт Джозефа Аспдина был неизвестен или незамечен в Лондоне не потому, что это был малоизвестный и обычный штукатурный цемент, а потому, что Уэйкфилд находился слишком далеко, чтобы его можно было туда отправить
  • Обжиговые печи Wakefield имели размер, пригодный для жесткого обжига.

Однако есть убедительные контраргументы:

  • все утверждения Уильяма Аспдина ненадежны: в его интересах было заявить, что его продукт был таким же, как у его отца, поскольку это давало ему покрытие патентом его отца без необходимости раскрытия, которое произошло бы, если бы был запрошен новый патент.
  • Продукт
  • вполне мог быть доставлен в Лондон из Уэйкфилда по воде, и если бы он был лучше, его стоимость окупила бы любые транспортные расходы.Лайм Blue Lias в Мидлендсе и «римские» цементы Аткинсона и Масгрейва, изготовленные в районе Уитби, были хорошо известны и использовались в большом количестве в Лондоне.
  • размер более ранних обжиговых печей Уэйкфилда неизвестен: большие печи, описанные впоследствии, были построены только в 1848 году.
  • есть все основания предполагать, что Уильям Аспдин покинул Уэйкфилд из-за разногласий по поводу процедур.

Подводя итог, можно сказать, что, хотя вполне возможно, что «портландцемент в том виде, в каком мы его знаем», впервые был произведен в более раннее время в Уэйкфилде, он, безусловно, был произведен в Ротерхите в 1842 году, и баланс вероятностей состоит в том, что это на самом деле именно там он был впервые коммерчески произведен.

Распространение технологии

Увеличение объемов производства и приемки продукта после 1842 г. было резким. Его первоначальный медленный прогресс, вероятно, был связан с тем, что в Англии его главным конкурентом был «римский» цемент, поэтому он был разработан для быстрого схватывания, хотя это и противоречило его наиболее очевидному историческому применению — бетону. Еще одна серьезная проблема заключалась в том, что из-за отсутствия «стандартной рабочей процедуры» для ее производства новым участникам приходилось либо получать технологию у существующих производителей, либо «изобретать колесо заново».Те, кто использовал последнюю стратегию, потерпели неудачу. Уильям Аспдин передал свои методы Робинсу и Бевансу, а затем и различным немецким фирмам. Джонсон передал свои методы Джорджу Берджу, который распространил их по Медуэю.

Возможный быстрый рост рынка портландцемента идет параллельно с ростом использования бетона, который впервые получил развитие во Франции. Гидравлическая известь Vicat позволила получить медленный, но надежный бетон, а технологиям производства бетона во Франции было уже 30 лет, когда на рынок пришел английский портландцемент.Было легко доставлять цемент на северное побережье Франции с прибрежных британских заводов, и в 1840-1860 годах наблюдалась значительная активность в повышении рейтинга предприятий в северных французских портах: особенно в Дьепе, Гавре, Шербурге. и Брест. В портовых работах использовался как монолитный, так и сборный бетон. Например, более 6000 тонн (производство за четыре года в печи) было отправлено в Шербур одним только Дж. Б. Уайтом. Эта работа предоставила британским предприятиям запасной рынок, позволив им развивать свой бизнес и методы работы в эти скудные годы.Он также предоставил проверенные примеры бетонной практики британским инженерам-строителям, и с 1860 года в Великобритании наблюдался быстрый рост бетонного строительства, причем портландцемент был почти единственной базой. Канализационная система Столичного управления работ была новаторским проектом, позволившим получить широко разрекламированные данные о преимуществах портландцемента. Французские историки склонны преуменьшать важность появления английских цементов во Франции, но и здесь появление римского цемента Parker’s в 1800 году и портландцемента на берегу Темзы в 1840-х годах привело к интенсивной деятельности по их подражанию.Оба были впервые произведены во Франции в Булони, где доступны как септарии Киммериджа, так и мел. Жюри Всемирной выставки (Париж, 1855 г.), на которой продукт из Булони получил золотую медаль, отметило, что «supériorité du ciment de Portland (anglais) неоспоримо».

Развитие производства портландцемента за пределами Англии происходило естественным образом там, где существовали сырье и рынок. Как и в случае с некоторыми округами в Англии, к утверждениям о том, что «настоящий» портландцемент был произведен в самом начале, следует отнестись с некоторым скептицизмом, но Скемптон приводит следующее:

PA 907 первый завод за пределами Англии и Франции находился в Щецине, затем в Пруссии, теперь в Польше.Пожалуйста, свяжитесь со мной, если сможете заполнить пробелы.

Относительно поздний старт в США примечателен. «Натуральные» цементы, отдаленно связанные по минералогии с «римскими» цементами, изначально были получены случайно путем сжигания глинистых магнезиальных известняков, встречающихся в штатах Нью-Йорк и Пенсильвании. Впоследствии они производились в огромных количествах и использовались во многих проектах гражданского строительства, особенно в каналах, которые разрастались в 1820-х годах. Если в конце 1860-х годов производство английского портленда обогнало «римский» цемент, то в США производство портленда впервые превысило производство природного цемента только в 1901 году.Первый зарегистрированный импорт британского цемента в США был в 1868 году, а импорт из всех европейских источников достиг пика в 0,5 миллиона тонн в 1895 году. Местное производство предположительно началось в 1871 году на заводе David O. Saylor’s Coplay, Пенсильвания. В его патенте в США утверждалось, что он «во всех отношениях равен портландцементу, произведенному в Англии». Несколько других последовали их примеру, но к 1880 году было все еще меньше дюжины обжиговых печей, а общий объем производства составил 7070 тонн. Следуя примеру природного цемента, большая часть продукции производилась в шахтных печах непрерывного действия, обычно производя 10 т / сутки.В 1880-х годах рынок портландцемента внезапно расширился, увеличившись в 17 раз за период 1878–1888 годов: в течение этого периода почти 90% поставлялось за счет импорта. Местное производство отставало, но впоследствии феноменально увеличилось: пик роста пришелся на десятилетие 1893–1903 годов, когда он увеличился в 38 раз, с 0,101 до 3,811 миллиона тонн. Он обогнал британское производство в 1902 году, был мировым лидером в 1904 году и составлял 50% мирового производства в 1911 году. Это, конечно, точно соответствует развитию вращающихся печей.Первая успешная вращающаяся печь была запущена в производство в 1890 году, и эта технология быстро вытеснила статические печи, при этом большинство из многих новичков в бизнесе приобрели вращающиеся системы «в готовом виде». Этот период подробно описан в книге Лесли. Торговля цементом в США была тщательно определена количественно, и следующая диаграмма суммирует изменения в ее «героический век».

События 1910-1970 годов

Период лидерства США в области производства цемента и бетона привел к тому, что во всем развитом мире возросла осведомленность о потенциальных возможностях использования цемента, а затем последовал период 70 лет, в течение которого наблюдался, поначалу быстрый, базовый спрос.Параллельно с этим постоянно росли и ожидания пользователей в отношении качества. Сформировалась географическая структура спроса — поскольку портландцемент намного проще использовать круглый год в теплом климате, более высокий спрос на на душу населения составил в более южных частях Европы и Северной Америки.

Несмотря на рост базового спроса, на портландцемент особенно сильно повлияло (и остается) влияние экономики в целом. Как и в других отраслях, на потребление влияют ресурсы, доступные в той или иной экономике.Но кроме того, поскольку цементная промышленность связана со многими долгосрочными строительными проектами, на нее влияет «деловая уверенность». В результате возникает цикл спроса на цемент, который несколько предшествует общеэкономическому циклу и имеет значительно большую амплитуду. В результате рынок «взлетов и падений» оказал глубокое влияние на историю британской цементной промышленности. Влияние на технологию производства обсуждается в разделе «Тенденции».

Конечное использование цемента становится все более индустриализированным.Это характеризовалось:

  • большие бетонные заводы с профессиональными операторами на крупных строительных объектах
  • компаний, специализирующихся на массовом производстве «бетонных изделий», таких как брусчатка и уличная мебель, строительные блоки и трубы, а также крупная промышленность по производству асбестоцементных плит
  • с конца 1950-х гг., Быстрый рост производства товарных бетонных смесей.

Рост числа профессиональных пользователей привел к улучшению качества цемента, а также к разработке множества различных типов цемента — не все из портландцемента.Среди них в приблизительном хронологическом порядке:

  • Портлендский доменный шлаковый цемент : получают путем измельчения портландского клинкера с гранулированным (закаленным водой) доменным шлаком. Первоначальная мотивация заключалась в том, чтобы производить более дешевый продукт, заменяя клинкер шлаком, который, по сути, был отходом. В Великобритании производство этого продукта было практически ограничено Шотландией, где из-за небольшого количества местного производства клинкера импорт клинкера был дорогим. Позже гранулированный шлак стал гораздо более важным в стране.
  • Быстротвердеющий портландцемент : цемент, который иногда изготавливают из клинкера с более высоким содержанием алита, но часто просто путем измельчения клинкера до более мелких фракций с целью получения более высокой начальной прочности. Это было особенно востребовано в индустрии «бетонных изделий», потому что более быстрое развитие прочности позволило быстрее переворачивать формы. В Великобритании он занял нишу на рынке, на долю которого приходится около 5% продаж. По мере того, как прочность обычных цементов улучшалась в течение столетия, прочность RHPC была увеличена на пропорционально , но высокопроизводительные RHPC, найденные в других странах мира, никогда не производились.
  • Цемент на основе алюмината кальция (не портландцемент): его изготавливали, как правило, путем полного плавления в отражательной печи из смеси боксита и известняка. Цемент набирал прочность намного быстрее, чем любой портландцемент, но был значительно дороже. В 1920-е годы производство было предпринято в нескольких местах, но в Великобритании существовала только одна постоянная производственная площадка — завод Lafarge в Вест-Терроке.
  • Белый портландцемент : при использовании клинкера с низким содержанием железа и других переходных элементов (см. Страницу о клинкере) можно избежать обычного серого цвета портландцемента, а при использовании подходящих заполнителей бетона можно получить белый бетон.Клинкер относительно дорогой, а цемент предназначен только для использования в престижных архитектурных элементах. Рынок серого цемента обычно составляет около 1%.
  • Цветной портландцемент : пигменты, тщательно отобранные, чтобы не мешать схватыванию и развитию прочности, могут быть добавлены в цемент для создания декоративных эффектов. В обычном цементе цвета приглушены, но с белым цементом можно получить яркие, живые цвета. В послевоенные десятилетия спрос вырос примерно до 1% рынка, но из-за примитивных технологий производства было трудно получить прибыль, и продукты практически исчезли.
  • Masonry Cement : предназначен для изготовления строительных растворов с удобоукладываемостью, прочностью, связью и непроницаемостью, аналогичными тем, которые изготавливаются с известью, и состоит из портландцемента с добавлением воздухововлекающего вещества и мелкодисперсного минерала, который может быть измельченным известняком или известью. Несмотря на большое количество раствора, сделанного как с портландцементом, так и с известью, кладочные цементы никогда не были популяризированы в Великобритании. Он достиг пика в 2,8% рынка в 1970 году, а затем снизился. В некоторых частях мира кладочный цемент занимает 20% рынка.
  • Сульфатостойкий портландцемент : при использовании клинкера с модифицированным химическим составом (см. Страницу о клинкере) он устойчив к воздействию сульфатов в грунтовых водах в фундаментах и ​​т. Д. Или в морской воде при морских работах. Сульфатостойкость также может быть достигнута добавлением в бетонную смесь гранулированного шлака. Рынок достиг пика около 5%, но с появлением на рынке измельченного гранулированного шлака спрос на продукт снизился.
  • Oilwell Cement : использует портлендский клинкер с модифицированным химическим составом вместе с рядом добавок, цель которого состоит в том, чтобы создать непроницаемую футеровку, заполняющую пространство между стальной трубой и окружающей коренной породой в нефтяной (или газовой) скважине.В зависимости от давления и температуры, ожидаемых в скважине, производится большое количество марок. Британское участие в их добыче только началось с разработки месторождений в Северном море.
  • Portland Pozzolanic Cements : объединение портландского клинкера с пуццоланом, что дает более дешевую альтернативу чистому портландцементу. Во многих частях мира пуццолан добавляют почти повсеместно, но в Великобритании этого не делали до 1970-х годов. Природные пуццоланы недоступны в Великобритании.Очевидной искусственной альтернативой является измельченная топливная зола (pfa), но неэффективные британские электростанции обычно производят золу, сильно загрязненную несгоревшим углеродом, что препятствует ее использованию в бетоне.

Сложность ассортимента продукции и общий рынок в Великобритании в послевоенный период неуклонно росли с кратковременными перерывами в рецессии до пика в 1973 г., когда Великобритания произвела 21,6 млн тонн цемента, а ирландский рынок Республика еще 1,6 млн тонн.

События после 1970 г.

Падение спроса на цемент в Великобритании после пика 1973 года было столь же устойчивым, как и рост до этой даты. Первоначальный спад явился результатом серьезной рецессии и утраты доверия, последовавших за ростом мировых цен на энергоносители. Падение было консолидировано ростом затрат и цен на производство цемента из-за более высоких затрат на энергию, что сделало продукт менее конкурентоспособным по сравнению с другими системами.

Рынок в Ирландии исторически примерно следовал британской модели, но период после 1973 года был осложнен последствиями пузыря «кельтского тигра».Результатом стало создание более эффективной промышленности, чем в Британии, и несколько более высокое потребление цемента на душу населения, при нормальной экономике.

В последнее время озабоченность по поводу выбросов CO 2 усугубила необходимость уменьшения количества дорогостоящего портлендского клинкера в бетонных смесях. Период после 1970 года характеризуется увеличением использования «заменителей цемента» в бетоне, состоящих в основном из измельченного гранулированного доменного шлака (ggbs) и пылевидной золы топлива (pfa) .

На металлургическом заводе требуется специальная установка для гранулирования шлака. Гранулирование вызывает затвердевание расплавленного шлака в стекловидном состоянии, в котором шлак легко вступает в реакцию со щелочью или известью с образованием придающих прочность силикатных гидратов, практически таких же, как и при использовании портландцемента. Без быстрого охлаждения гранулята шлак кристаллизуется в инертные минералы. После 1970 года рынок гранулированного шлака вырос, и начали устанавливаться грануляторы. Но последовал резкий спад производства стали в Великобритании.Как упоминалось выше, у Portland Blastfurnace Slag Cement был небольшой рынок, в основном в Шотландии, начиная с Первой мировой войны. Во многих других странах он составлял значительную часть рынка. Однако к 1970-м годам потребительский рынок цемента был сложным, и пользователи предпочитали добавлять измельченный шлак в смеситель, а не поставлять его в виде «добавленной стоимости» как часть цемента. Произошло определенное увеличение количества произведенных PBFC, но они остаются лишь на нескольких процентах рынка.

Пылевидная зола производится электростанциями, сжигающими пылевидный уголь. Поскольку минеральное вещество в мелкодисперсных частицах угля, взвешенных в воздухе, выделяется непосредственно в интенсивное пламя, это вызывает чрезвычайно быстрое плавление — настолько быстро, что вода и диоксид углерода в его химическом составе еще не выделяются. Это приводит к тому, что частица «взрывается» в пузырек с тонкой оболочкой, который впоследствии замерзает в этой форме. Большая из этих «ценосфер» часто содержит внутри много меньших сфер.В определенной степени ПФА может действовать как пуццолан и способствовать прочности бетона, в который он добавлен. Возможно, более важным является текучесть, обусловленная сферической природой частиц, что позволяет снизить соотношение вода / цемент и, следовательно, более низкое содержание цемента для заданной прочности. Исторически сложилось так, что чистота золы была проблемой — смолистые частицы углерода загрязняют ее, что приводит к замедлению схватывания и ухудшению внешнего вида бетона. Совсем недавно были разработаны методы для лучшего контроля горения на электростанциях, получения более чистой золы и отделения углерода от грязной золы.Как и в случае с гранулированным шлаком, пользователи обычно добавляют его в бетономешалку. Несколько цементных заводов производили портландские пуццолановые цементы с использованием ПФА, но они оставались относительно небольшими объемами продукции.

Применение мер по сокращению выбросов углерода за последние двадцать лет привело к гораздо более целенаправленному подходу к снижению количества производимого портлендского клинкера. Даже самая эффективная цементная печь, сжигающая газ, выделяет 0,7 тонны CO 2 на тонну изготовленного портлендского клинкера, и будущие технические усовершенствования не могут существенно повлиять на это.Поэтому текущие исследования сосредоточены на разработке новых цементных систем, которые могут заменить портлендский клинкер. Поскольку портлендский клинкер является предметом этого веб-сайта, эти новые продукты выходят за рамки его сферы действия.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.
Страна Место Начало работы
Франция Булонь (Па-де-Кале) 1853
Польша * Щецин 1855
Германия (Германия) 1858
Австрия 1860
Дания Рингстед (Sjælland) 1868
Швейцария Luterbach (Золотурн) 1871

1871
Бельгия Cronfestu (Hainaut) 1872
Швеция Lomma (Skåne) 1873
Нидерланды Примечание 1875 982