Сварка цветных металлов и сплавов: Сварка меди: особенности и технология

Содержание

Сварка меди: особенности и технология

Сварка меди и ее сплавов — сложный, но вместе с тем интересный опыт, после которого вы сможете работать с любыми металлами. Дело в том, что медь обладает несколькими свойствами, существенно усложняющими ее сварку. По этой причине существует множество методов соединения деталей из этого металла: точечная сварка меди, сварка меди угольным электродом, газовая сварка меди, дуговая сварка меди, контактная сварка меди и т.д. Также возможна комбинированная сварка, например, сварка меди с нержавейкой, меди с железом и сварка меди со сталью.

Что касается оборудования, тот вам доступна и сварка меди инвертором, и сварка меди полуавтоматом, и сварка с применением иных термических или механических сварочных приспособлений. В этой статье в нашем фокусе именно сварка меди аргоном с применением полуавтомата, как самый распространенный способ соединения медных, медно-никелевых или иных других сплавов.  Мы подробно расскажем, в чем заключается сложность при сварке и поведаем технологию соединения деталей из меди.

Содержание статьи

Особенности сварки меди

Как мы писали выше, существуют некоторые особенности сварки меди и ее сплавов, из-за которых процесс соединения металлов существенно усложняется. Давайте перечислим основные нюансы, на которые нужно обратить внимание.

Во-первых, у меди очень высокая теплопроводность, а это значит, что в работе вам необходимо использовать дугу, способную выдавать большую тепловую мощность, и симметрично выводящую тепло из сварочной зоны. Также из-за этой особенности не получится использовать любые виды швов. Мы рекомендуем применять для сварки медных деталей стыковые соединения.

Во-вторых, медь при плавлении начинает быстро стекать, из-за этого крайне сложно сделать потолочные и вертикальные швы, поскольку металл при малейшем перегреве стремительно стекает вниз. Чтобы избежать этой проблемы сварочная ванна должна быть минимального размера, и расплавленный металл должен быстро охлаждаться.

В-третьих, при сварке меди с использованием стыковых швов и в нижнем положении нужно обязательно использовать графитовые, асбестовые подкладки или флюсовые подушки. Это необходимо, чтобы избежать прожогов металла.

В-четвертых, находясь в расплавленном состоянии медь активно поглощает кислород и водород. Это приводит к образованию горячих трещин и в шве образовываются пор. Все это ухудшает качество шва, страдает надежность и эстетическая составляющая. Чтобы этого избежать необходима тщательная защита сварочной зоны. С этой проблемой справляется газ.

В-пятых, медь крайне склонна к окислению, при этом окисная пленка очень тугоплавкая и от нее трудно избавиться. Эта проблема решается применением присадочной проволоки, содержащей в своем составе фосфор, марганец и кремний.

И, наконец, последнее, что вам нужно знать. Медь отличается от других металлов большим коэффициентом линейного расширения. Это значит, что металла легко деформируется, и особенно подвержен образованию горячих трещин. Эту проблему можно решить относительно просто: деталь нужно предварительно прогреть в печи или с помощью горелки до температуры 300 градусов по Цельсию.

Несмотря на все сложности, сварка меди в домашних условиях возможна. Но для начала металл нужно как следует подготовить, об этом мы расскажем далее.

Подготовительные мероприятия

Для сварки или для пайки меди нужно соблюсти еще и правила подготовки металла перед сваркой, чтобы результат вас не разочаровал. В зависимости от рода детали (труба, лист, заготовка и т.д.) ее предварительно разрезают на отдельные части, если это необходимо. Медь можно разрезать с помощью шлифмашинки, трубореза или станка. Также возможна плазменно-дуговая резка. Не используйте болгарку или иные подобные инструменты.

Далее нужно разделать кроки у детали. Делается это механическим методом. Также нужно очистить металл и проволоку от окисной пленки и грязи, деталь должна в буквальном смысле блестеть. Обезжирьте металл. Обработайте кромки вручную с помощью мелкозернистой наждачки. Также для этих целей можно использовать щетку с жесткими металлическими щетинами.

Не используйте слишком жесткую щетку или наждачку с крупным зерном, иначе повредите металл. Также рекомендует выполнить травление присадочной проволоки и детали. Травление выполняется в специальном растворе, который можно приготовить самостоятельно. В качестве основного компонента может выступать азотная, серная или соляная кислота. Кислота смешивается с водой и в раствор помещаются заготовки с проволокой. После травления все нужно промыть в воде и просушить горячим воздухом.

Если деталь имеет толщину более 1 сантиметра, то ее нужно предварительно прогреть в печи или с помощью газовой горелки. Далее детали нужно состыковать друг с другом. Между деталями должен оставаться небольшой зазор, его размер не должен меняться при повторной стыковке. Чтобы точно состыковать детали можно использовать прихватки. Сами прихватки тоже должны быть очищены, чтобы не образовались трещины.

Иногда в процессе сварки используются дополнительные приспособления. Например, графитовые или медные подкладки, а также съемные экраны. Подкладки незаменимы при сварке нижних швов (или увеличивают теплоотвод), а съемные экраны понадобятся при сварке меди на улице (они защитят сварочную зону от ветра).

Настройка режима сварки

Для пайки медных труб и для сварки нужно правильно установить режим. Первое, что вам нужно запомнить — сварка меди осуществляется на постоянном токе и с прямой полярностью. А вот значение сварочного тока меняется. Чтобы узнать, какое значение сварочного тока будет оптимальным, умножьте толщину металла (в миллиметрах) на 100. Вы получите лишь ориентировочное значение тока, более точная настройка станет вам доступна с опытом.

Сварка меди полуавтоматом осуществляется в среде защитного газа. Можно использовать аргон, азот, гелий или смеси из этих газов. Если варите с применением аргона или гелия, то дуга должна быть короткой, до 3 миллиметров. Если варите с азотом, то дуга должна быть 10-12 миллиметров.  Существуют отдельные нормы расхода газа. Так, при сварке меди полуавтоматом вы должны расходовать не более 10 литров аргона в минуту, не более 20 литров гелия в минуту и не более 20 литров азота в минуту.

Скорость сварки никак не регламентируется и подбирается индивидуально, исходя из навыков сварщика и типа шва. Если деталь имеет толщину не более 6 миллиметров, то ее можно без проблем варить аргоном без предварительного нагрева. Если деталь толще, то рекомендуем заменить аргон на азот или гелий. Также для сварки меди большей толщины деталь нужно прогреть (температуры от 200 до 300 градусов будет достаточно).

Технология сварки

Сварка меди полуавтоматом должна вестись углом вперед, допускается выпуск электрода не более чем на 7 миллиметров. Электрод может быть графитовым или угольным. Вольфрамовые электроды лучше не использовать при сварке меди, поскольку они слишком быстро расходуются. Дополнительно используется присадочная проволока. Проволока может быть изготовлена из меди, медно-никелевого сплава, бронзы или из специальных сплавов.

Присадочную проволоку нужно подавать с краю сварочной зоны. Это необходимо для того, чтобы расплавленный металл не попадал на электрод. Что касается режима сварки, то тут подойдут наши рекомендации, которые мы писали выше. Ниже таблица с ориентировочными режимами сварки меди в аргоне.

Как видите, технология сварки меди и ее сплава не так уж сложна. Практикуйтесь как можно больше, прежде чем приступить к ответственной работе.

Вместо заключения

В рамках одной небольшой статьи сложно рассказать про все способы сварки меди, поэтому мы рассказали вам про самый эффективный и распространенный. Для большего комфорта приобретите сварочный пост для пайки и сварки меди. Это компактные комплекты оборудования, закрепленные на металлическом каркасе для транспортировки. Сварочные посты продаются в специализированных интернет-магазинах. Делитесь своим опытом в комментариях, он наверняка будет полезен для новичков. Желаем удачи в работе!

[Всего: 1   Средний:  5/5]

Сварка цветных металлов и сплавов: методы, технологии

Цветные металлы и их сплавы востребованы на производстве и в быту. В основном, в ход идут сплавы. Изготовление деталей соответствующего качества из подобных сплавов возможно посредством сварки. Но, на первый взгляд, сварка цветных металлов и сплавов — легкий процесс, не требующих особых усилий. Однако, это не так. О том, какие сплавы и из каких цветных металлов популярны, а также об особенностях их сварки мы постараемся рассказать подробнее.

Свойства цветных металлов

Цветные металлы практически не встречаются в чистом виде, зато востребованы сплавы из них. Основными направлениями применения таких сплавов в промышленности стали авиация, автостроение, химическая и пищевая отрасли. В домашних же условиях для сварки используют чаще медь, алюминий, никель и другие вещества.

При проведении сварочных работ по цветным металлам и сплавам необходимо учитывать их особенности, тип сваривания и другие нюансы:

  • Окисление. Цветные металлы и сплавы из них сильно подвержены влиянию кислорода, из — за чего впоследствии на их поверхности образуется оксидная пленка. Эта пленка препятствует прочному соединению и провоцирует образование трещин в шве.
  • Теплопроводность. Она проявляется в скором остывании свариваемых поверхностей. Для качественного соединения потребуется предварительный нагрев деталей или источники сильного тепла.
  • Температура плавления. Существуют металлы, у которых разная температура плавления со сплавами, в связи с чем высока вероятность испарения «легкого» элемента. Ускорение процесса поможет этого избежать.
  • Потеря прочности. В процессе нагревания цветные металлы могут разрушаться от слабого воздействия извне. Работать с такими веществами надо предельно аккуратно.
  • Взаимодействие с окружающей средой. В связи с особенностями данных металлов и их сплавов сварку стоит выполнять исключительно в среде защитных газов для достижения требуемого результата.

Учитывая указанные нюансы не стоит пренебрегать предварительной обработкой деталей к свариванию, а именно удалением оксидов с поверхности и обезжириванием краев соединения.

Алюминий

Алюминий по использованию в чистом виде находится на втором месте после железа, но и сплавы из него не менее популярны. Наиболее распространенные из них силумин, дюралюминий и авиаль.

Подготовка алюминиевых заготовок для сварки помимо зачистки и обезжиривания кромок включает в себя необходимость протравить детали пару минут в растворе фтористого натра (пропорции 50/50), окунуть на пару минут в азотную кислоту и промыть горячей и холодной водой. Этот же алгоритм позволяет подготовить присадку.

Ни в коем случае нельзя использовать для зачистки абразивные материалы.

По своим свойствам для скрепления алюминия подходит технология как ручной, так и автоматической сварки. При ручном методе необходимо контролировать угол наклона при подаче присадочной проволоки, и выполнять шов медленно справа налево. Автоматический вариант немного легче в исполнении и позволяет добиться шва выше качеством.

При обработке толстых алюминиевых заготовок оптимальным решением будет сначала выполнить точечные прихваточные швы, а основательную сварку производить после этих манипуляций.

Никель и медь

Сплавы на основе никеля в основном применяются для изготовления деталей, подвергающихся воздействию высоких температур. Подобные запчасти используют в паровых турбинах, ракетостроении и других отраслях, так как рабочая температура никелевых сплавов 700-1000°C градусов. В бытовых агрегатах самым популярным сплавом из никеля является нихром. Он используется для создания деталей к нагревательным элементам.

Из-за чувствительности никеля к газовой среде сварочный шов может получиться пористым, поэтому сварку стоит проводить плавкими электродами и на постоянном токе обратной полярности. Реже для сварки никелевых сплавов используется аргоновая сварка, но в этом случае электроды используют из вольфрама.

Медь и медные сплавы наиболее распространены в автомобилестроении для изготовления труб и емкостей разных размеров. Для этого металла также подходит любой метод сварки, но чаще всего это ручная дуговая сварка, либо обработка в среде инертных газов.

Ручной метод сварки предполагает как рабочую температуру до 400°С и обратную полярность тока, так и работу покрытыми электродами из угля и графита при токе прямой полярности.

Процесс сварки в защитной газовой среде состоит из использования газовой горелки, инертного газа и присадочной проволоки. В качестве защитного газа используется аргон, азот, гелий или смеси этих газов, а присадкой может быть пруток из меди или бронзы. Применение этого типа соединения обеспечивает минимальное попадание посторонних частиц в шов, а также дает возможность создать сплав высокой прочности и устойчивости к коррозии.

Титан и магний

Изделия из титана не так известны как другие соединения. В основном, титан встречается в виде сплавов, часто легированных для увеличения прочности. Широко применяется в авиационной и атомной промышленности, реже встречается в машиностроении.

Для зачистки титановых деталей перед сваркой допускается использование абразивных материалов. Но сам сварочный процесс требует внимательности для создания качественного шва. Для сварки титановых заготовок используется газовая защитная среда, но концентрация газов должна быть минимальной. При аргонодуговом методе газ должен быть высшего или первого сорта, а ток постоянным прямой полярности.

Чистый магний редкость из-за малой прочности. Однако путем легирования удалось приблизиться по прочности к стали. Магний и его сплавы сваривают в среде инертных газов вольфрамовыми электродами на переменном токе обратной полярности. Из газов предпочтительно использовать гелий или аргон, так как они прекрасно защищают поверхности заготовок от постороннего воздействия. Предотвратит попадание окисла в шов предварительное проплавление кромок деталей и прокладка между ними металла с низкой теплопроводностью.

Свинец

Свинец как материал весьма устойчив к коррозии в любой среде, в том числе и в серной кислоте. По этой причине он используется при изготовлении аккумуляторов, а также в обкладке сосудов для предохранения от коррозии.

В процессе сварки свинца и его сплавов главной проблемой становится то, что окисная пленка на поверхности плавится при температуре около 850°С, а сам металл уже при 327°С. Из-за такой большой разницы пи подготовке деталей из свинца к сварке пленку удаляют механически, а в процессе работы с этой задачей справляется флюс. Обычно в качестве флюса применяют стеарин, канифоль, либо смесь из этих материалов.

Для сварочных работ со свинцовыми сплавами оптимальна электродуговая сварка угольными и графитовыми электродами как при постоянном, так и переменном токе, водородная и ацетилен — кислородная сварка.

Сварка цветных металлов и сплавов имеет ряд оригинальных свойств, а также требует применения современных технологий, направленных на минимизацию нагрева и защиту поверхностей от постороннего воздействия и влияния окружающей среды. Во время сварки необходим тщательный контроль качества сварного шва для предотвращения попадания посторонних частиц и проявления коррозии.

Повышенная текучесть некоторых металлов напоминает о том, что не стоит пренебрегать защитной амуницией при проведении сварочных работ. Контроль качества соединений осуществляется на основе ГОСТа, который для каждого металла содержит отдельные требования.

Сварка цветных металлов и их сплавов: новые технологии

Несмотря на кажущуюся простоту, сварка цветных металлов не является простым процессом, осуществляемым по отношению к преобразованию имеющихся элементов. В ходе процесса сварки цветные металлы и сплавы подвергаются воздействию низких температур. Подобная особенность сварки обусловлена повышенным уровнем химической активности цветных металлов в случае контакта с кислородным элементом.

Данная категория металлов характеризуется покрытием пленкой оксидной природы возникновения, чье существование отмечается направленностью на препятствие детальному соединению высокого уровня качества. Посредством обычного нагревания химическая активность задействованных элементов значительно увеличивается, что имеет результатом образование оплавленных краев с одномоментным формированием пленок оксидной природы возникновения.

Следует отметить, что сварку цветных металлов и их сплавов рекомендуется осуществлять в специально созданной среде, для которой характерен почти отсутствующий доступ кислородного элемента.

Подготовительный этап

Перед тем, как приступить к осуществлению сварки, необходимо провести подготовительные работы. В частности, рекомендуется предварительную зачистку места будущей сварки специальной металлической щеткой. Возможно задействование шабера, который обеспечит устранение пленки оксидного происхождения. Затем следует провести очищение поверхности бензином или растворителем, рассчитанным на устранение жирового слоя.

Обязательным условием достижения правильной технологии сварки цветных металлов является размещение процесса в нижней области, а также предварительная фиксация детали, подвергающейся видоизменению. Это поможет достичь выполнение ровного и незаметного шва. Также считается возможным применение дополнительных фиксирующих соединений для осуществления последующей комплексной обварки.

Проводить сварку следует в инертной газовой среде, что будет служить защите сварочной ванны от возможного контакта со средой воздуха. Оптимальным вариантом для достижения поставленной цели является применение азота. Кроме того, возможно вовлечение аргона, гелия или их смеси. Для обеспечения формирования дуги считается целесообразным использование вольфрамовых, угольных и графитовых электродов для сварки цветных металлов.

В случае сварки элементов незначительных размеров, которые не отвечают за выполнение несущей роли конструкции, рекомендуется акцентирование внимания на применении угольных электродов. Для прочих сварочных ситуаций можно обойтись использованием графитовых или вольфрамовых электродов.

Осуществление сварки

Сварочный процесс может осуществляться только в специально организованной среде газов инертной природы возникновения. Обеспечение сварки проводится посредством задействования проволоки.

Детали, подвергающиеся сварки, нужно разместить в специально предназначенных подкладках с предусмотренными канавками. По данным выемкам обеспечивается прохождение инертного газа с целью создания защитного средства для стороны шва, находящейся с обратной стороны по отношению к области воздействия. Подобная мера формируется для нивелирования возможного контактирования с воздушным пространством.

Осуществление сварочного процесса должно сопровождаться нанесением аппаратом сварки цветных металлов тонких сварочных слоев с гарантированием определенной длительности, необходимой для остывания конструкций и отдельных элементов. В результате завершения сварочных работ рекомендуется обеспечить отпуск термического действия по отношению к изготавливаемому изделию с целью устранения остаточного напряжения.

Следует отметить, что такой конструкционный материал, как цинк, в исключительно чистом варианте не задействуется. Основным полем деятельности, в которое он может быть вовлечен, является формирование сплавов и покрытий антикоррозионного характера для деталей из стали и железа.

Также отмечается прямая зависимость между степенью свариваемости элементов с покрытием из цинка и применяемым его количеством. Для гарантирования успешности сварочного процесса рекомендуется формировать газовую среду защитного свойства для нивелирования нежелательных последствий по отношению к области, подвергаемой сварке, и стороне шва, находящейся с обратной стороны изменяемой поверхности. В данном случае предполагается применение исключительно вольфрамовых неплавящихся электродов.

Такой металл, как титан, также отмечается довольно редким применением в сварочном процессе в чистом виде. Чаще всего задействуются сплавы, которые включают в своем составе легирующие элементы. Данный аспект обосновывается высоким уровнем прочности, который достигается посредством такого соединение, что имеет результатом улучшение первоначальных характеристик металла.

Сварочный процесс начинается с непосредственной зачистки необходимого участка с применением механического воздействия или помещения в кислотную среду для устранения сторонних слоев. В качестве очистки механического характера предусматривается использование наждачной бумаги, а также металлических щеток со вспомогательным автоматическим вращательным элементом. Следует отметить, что для достижения стабильности сварочного процесса рекомендуется применение проволоки, которая соответствует марке имеющегося сплава.

Для того, чтобы сварочный процесс был успешен и в дальнейшем не потребовалось совершение сторонних модификаций, следует акцентировать внимание на плотном сжатии деталей, подвергающихся сварке. Подобное условие будет гарантировать отсутствие сторонних веществ, что может сказываться на качестве сварки и отобразиться на прочности сварочного шва.

Сварочный процесс требует использования специально предназначенного оборудования, а также комплекса защитных устройств и средств с целью формирования высокого качества проводимых работ. В частности, для газовой сварки цветных металлов и сплавов необходимо применение баллонов с конкретным газом на основании осуществленного выбора технологического метода.

Кроме того, газовая сварка цветных металлов предусматривается вовлечение в рабочий процесс редукторов понижающего принципа действия, специальных горелок и шлангов. Предполагается обеспечение принудительной вентиляции большой мощности рабочей зоны. Также обязательно следованию правилам личной безопасности.

Интересное видео

[Всего: 1   Средний:  5/5]

Сварка цветных металлов и сплавов: методы, технологии

Цветные металлы и их сплавы востребованы на производстве и в быту. В основном, в ход идут сплавы. Изготовление деталей соответствующего качества из подобных сплавов возможно посредством сварки. Но, на первый взгляд, сварка цветных металлов и сплавов — легкий процесс, не требующих особых усилий. Однако, это не так. О том, какие сплавы и из каких цветных металлов популярны, а также об особенностях их сварки мы постараемся рассказать подробнее.

Свойства цветных металлов

Цветные металлы практически не встречаются в чистом виде, зато востребованы сплавы из них. Основными направлениями применения таких сплавов в промышленности стали авиация, автостроение, химическая и пищевая отрасли. В домашних же условиях для сварки используют чаще медь, алюминий, никель и другие вещества.

При проведении сварочных работ по цветным металлам и сплавам необходимо учитывать их особенности, тип сваривания и другие нюансы:

  • Окисление. Цветные металлы и сплавы из них сильно подвержены влиянию кислорода, из — за чего впоследствии на их поверхности образуется оксидная пленка. Эта пленка препятствует прочному соединению и провоцирует образование трещин в шве.
  • Теплопроводность. Она проявляется в скором остывании свариваемых поверхностей. Для качественного соединения потребуется предварительный нагрев деталей или источники сильного тепла.
  • Температура плавления. Существуют металлы, у которых разная температура плавления со сплавами, в связи с чем высока вероятность испарения «легкого» элемента. Ускорение процесса поможет этого избежать.
  • Потеря прочности. В процессе нагревания цветные металлы могут разрушаться от слабого воздействия извне. Работать с такими веществами надо предельно аккуратно.
  • Взаимодействие с окружающей средой. В связи с особенностями данных металлов и их сплавов сварку стоит выполнять исключительно в среде защитных газов для достижения требуемого результата.

Учитывая указанные нюансы не стоит пренебрегать предварительной обработкой деталей к свариванию, а именно удалением оксидов с поверхности и обезжириванием краев соединения.

Алюминий

Алюминий по использованию в чистом виде находится на втором месте после железа, но и сплавы из него не менее популярны. Наиболее распространенные из них силумин, дюралюминий и авиаль.

Подготовка алюминиевых заготовок для сварки помимо зачистки и обезжиривания кромок включает в себя необходимость протравить детали пару минут в растворе фтористого натра (пропорции 50/50), окунуть на пару минут в азотную кислоту и промыть горячей и холодной водой. Этот же алгоритм позволяет подготовить присадку.

Ни в коем случае нельзя использовать для зачистки абразивные материалы.

По своим свойствам для скрепления алюминия подходит технология как ручной, так и автоматической сварки. При ручном методе необходимо контролировать угол наклона при подаче присадочной проволоки, и выполнять шов медленно справа налево. Автоматический вариант немного легче в исполнении и позволяет добиться шва выше качеством.

При обработке толстых алюминиевых заготовок оптимальным решением будет сначала выполнить точечные прихваточные швы, а основательную сварку производить после этих манипуляций.

Никель и медь

Сплавы на основе никеля в основном применяются для изготовления деталей, подвергающихся воздействию высоких температур. Подобные запчасти используют в паровых турбинах, ракетостроении и других отраслях, так как рабочая температура никелевых сплавов 700-1000°C градусов. В бытовых агрегатах самым популярным сплавом из никеля является нихром. Он используется для создания деталей к нагревательным элементам.

Из-за чувствительности никеля к газовой среде сварочный шов может получиться пористым, поэтому сварку стоит проводить плавкими электродами и на постоянном токе обратной полярности. Реже для сварки никелевых сплавов используется аргоновая сварка, но в этом случае электроды используют из вольфрама.

Медь и медные сплавы наиболее распространены в автомобилестроении для изготовления труб и емкостей разных размеров. Для этого металла также подходит любой метод сварки, но чаще всего это ручная дуговая сварка, либо обработка в среде инертных газов.

Ручной метод сварки предполагает как рабочую температуру до 400°С и обратную полярность тока, так и работу покрытыми электродами из угля и графита при токе прямой полярности.

Процесс сварки в защитной газовой среде состоит из использования газовой горелки, инертного газа и присадочной проволоки. В качестве защитного газа используется аргон, азот, гелий или смеси этих газов, а присадкой может быть пруток из меди или бронзы. Применение этого типа соединения обеспечивает минимальное попадание посторонних частиц в шов, а также дает возможность создать сплав высокой прочности и устойчивости к коррозии.

Титан и магний

Изделия из титана не так известны как другие соединения. В основном, титан встречается в виде сплавов, часто легированных для увеличения прочности. Широко применяется в авиационной и атомной промышленности, реже встречается в машиностроении.

Для зачистки титановых деталей перед сваркой допускается использование абразивных материалов. Но сам сварочный процесс требует внимательности для создания качественного шва. Для сварки титановых заготовок используется газовая защитная среда, но концентрация газов должна быть минимальной. При аргонодуговом методе газ должен быть высшего или первого сорта, а ток постоянным прямой полярности.

Чистый магний редкость из-за малой прочности. Однако путем легирования удалось приблизиться по прочности к стали. Магний и его сплавы сваривают в среде инертных газов вольфрамовыми электродами на переменном токе обратной полярности. Из газов предпочтительно использовать гелий или аргон, так как они прекрасно защищают поверхности заготовок от постороннего воздействия. Предотвратит попадание окисла в шов предварительное проплавление кромок деталей и прокладка между ними металла с низкой теплопроводностью.

Свинец

Свинец как материал весьма устойчив к коррозии в любой среде, в том числе и в серной кислоте. По этой причине он используется при изготовлении аккумуляторов, а также в обкладке сосудов для предохранения от коррозии.

В процессе сварки свинца и его сплавов главной проблемой становится то, что окисная пленка на поверхности плавится при температуре около 850°С, а сам металл уже при 327°С. Из-за такой большой разницы пи подготовке деталей из свинца к сварке пленку удаляют механически, а в процессе работы с этой задачей справляется флюс. Обычно в качестве флюса применяют стеарин, канифоль, либо смесь из этих материалов.

Для сварочных работ со свинцовыми сплавами оптимальна электродуговая сварка угольными и графитовыми электродами как при постоянном, так и переменном токе, водородная и ацетилен — кислородная сварка.

Сварка цветных металлов и сплавов имеет ряд оригинальных свойств, а также требует применения современных технологий, направленных на минимизацию нагрева и защиту поверхностей от постороннего воздействия и влияния окружающей среды. Во время сварки необходим тщательный контроль качества сварного шва для предотвращения попадания посторонних частиц и проявления коррозии.

Повышенная текучесть некоторых металлов напоминает о том, что не стоит пренебрегать защитной амуницией при проведении сварочных работ. Контроль качества соединений осуществляется на основе ГОСТа, который для каждого металла содержит отдельные требования.

Сварка цветных металлов и их сплавов: новые технологии

Несмотря на кажущуюся простоту, сварка цветных металлов не является простым процессом, осуществляемым по отношению к преобразованию имеющихся элементов. В ходе процесса сварки цветные металлы и сплавы подвергаются воздействию низких температур. Подобная особенность сварки обусловлена повышенным уровнем химической активности цветных металлов в случае контакта с кислородным элементом.

Данная категория металлов характеризуется покрытием пленкой оксидной природы возникновения, чье существование отмечается направленностью на препятствие детальному соединению высокого уровня качества. Посредством обычного нагревания химическая активность задействованных элементов значительно увеличивается, что имеет результатом образование оплавленных краев с одномоментным формированием пленок оксидной природы возникновения.

Следует отметить, что сварку цветных металлов и их сплавов рекомендуется осуществлять в специально созданной среде, для которой характерен почти отсутствующий доступ кислородного элемента.

Подготовительный этап

Перед тем, как приступить к осуществлению сварки, необходимо провести подготовительные работы. В частности, рекомендуется предварительную зачистку места будущей сварки специальной металлической щеткой. Возможно задействование шабера, который обеспечит устранение пленки оксидного происхождения. Затем следует провести очищение поверхности бензином или растворителем, рассчитанным на устранение жирового слоя.

Обязательным условием достижения правильной технологии сварки цветных металлов является размещение процесса в нижней области, а также предварительная фиксация детали, подвергающейся видоизменению. Это поможет достичь выполнение ровного и незаметного шва. Также считается возможным применение дополнительных фиксирующих соединений для осуществления последующей комплексной обварки.

Проводить сварку следует в инертной газовой среде, что будет служить защите сварочной ванны от возможного контакта со средой воздуха. Оптимальным вариантом для достижения поставленной цели является применение азота. Кроме того, возможно вовлечение аргона, гелия или их смеси. Для обеспечения формирования дуги считается целесообразным использование вольфрамовых, угольных и графитовых электродов для сварки цветных металлов.

В случае сварки элементов незначительных размеров, которые не отвечают за выполнение несущей роли конструкции, рекомендуется акцентирование внимания на применении угольных электродов. Для прочих сварочных ситуаций можно обойтись использованием графитовых или вольфрамовых электродов.

Осуществление сварки

Сварочный процесс может осуществляться только в специально организованной среде газов инертной природы возникновения. Обеспечение сварки проводится посредством задействования проволоки.

Детали, подвергающиеся сварки, нужно разместить в специально предназначенных подкладках с предусмотренными канавками. По данным выемкам обеспечивается прохождение инертного газа с целью создания защитного средства для стороны шва, находящейся с обратной стороны по отношению к области воздействия. Подобная мера формируется для нивелирования возможного контактирования с воздушным пространством.

Осуществление сварочного процесса должно сопровождаться нанесением аппаратом сварки цветных металлов тонких сварочных слоев с гарантированием определенной длительности, необходимой для остывания конструкций и отдельных элементов. В результате завершения сварочных работ рекомендуется обеспечить отпуск термического действия по отношению к изготавливаемому изделию с целью устранения остаточного напряжения.

Следует отметить, что такой конструкционный материал, как цинк, в исключительно чистом варианте не задействуется. Основным полем деятельности, в которое он может быть вовлечен, является формирование сплавов и покрытий антикоррозионного характера для деталей из стали и железа.

Также отмечается прямая зависимость между степенью свариваемости элементов с покрытием из цинка и применяемым его количеством. Для гарантирования успешности сварочного процесса рекомендуется формировать газовую среду защитного свойства для нивелирования нежелательных последствий по отношению к области, подвергаемой сварке, и стороне шва, находящейся с обратной стороны изменяемой поверхности. В данном случае предполагается применение исключительно вольфрамовых неплавящихся электродов.

Такой металл, как титан, также отмечается довольно редким применением в сварочном процессе в чистом виде. Чаще всего задействуются сплавы, которые включают в своем составе легирующие элементы. Данный аспект обосновывается высоким уровнем прочности, который достигается посредством такого соединение, что имеет результатом улучшение первоначальных характеристик металла.

Сварочный процесс начинается с непосредственной зачистки необходимого участка с применением механического воздействия или помещения в кислотную среду для устранения сторонних слоев. В качестве очистки механического характера предусматривается использование наждачной бумаги, а также металлических щеток со вспомогательным автоматическим вращательным элементом. Следует отметить, что для достижения стабильности сварочного процесса рекомендуется применение проволоки, которая соответствует марке имеющегося сплава.

Для того, чтобы сварочный процесс был успешен и в дальнейшем не потребовалось совершение сторонних модификаций, следует акцентировать внимание на плотном сжатии деталей, подвергающихся сварке. Подобное условие будет гарантировать отсутствие сторонних веществ, что может сказываться на качестве сварки и отобразиться на прочности сварочного шва.

Сварочный процесс требует использования специально предназначенного оборудования, а также комплекса защитных устройств и средств с целью формирования высокого качества проводимых работ. В частности, для газовой сварки цветных металлов и сплавов необходимо применение баллонов с конкретным газом на основании осуществленного выбора технологического метода.

Кроме того, газовая сварка цветных металлов предусматривается вовлечение в рабочий процесс редукторов понижающего принципа действия, специальных горелок и шлангов. Предполагается обеспечение принудительной вентиляции большой мощности рабочей зоны. Также обязательно следованию правилам личной безопасности.

Интересное видео

Сварка цветных металлов и сплавов: технологии, аппараты, электроды

Автор admin На чтение 5 мин. Просмотров 562 Опубликовано

Объёмы применения цветных металлов с каждым годом становятся всё больше и больше. Наиболее популярные из них – титан, медь, алюминий и никель, используются в различных отраслях промышленности, как в чистом виде, так и в форме сплавов. При этом, обладая рядом особенностей, эти материалы достаточно трудно плавятся и варятся.

Хотя сварка цветных металлов и сплавов является наилучшим способом соединения изготавливаемых из них конструкций.

Особенности и технология сварки цветных металлов бывают такими:

  • Все эти материалы обладают сродством к кислороду, благодаря чему некоторые из них даже используются как раскислители.
  • Окислы, образующиеся в процессе плавки этих металлов, более тугоплавкие, чем сам материал, в результате чего сварочный шов засоряется ими. При меньшей температуре плавления окислов на сваренной поверхности могут возникнуть трещины.
  • Часть таких металлов (а именно, алюминий, магний и медь) быстро остывают, а, значит, требуют и большей мощности источника, при помощи которого производится сварка.
  • В сплавах разные компоненты имеют и различную температуру плавления, что создаёт опасность испарения более лёгких веществ.
  • Тяжёлые сплавы могут проваливать под своим весом сварочные ванны, а слишком непрочные – разрушается при незначительном ударе.
  • Каждый цветной сплав активнее, чем чёрные металлы, взаимодействует с газовой средой.

Таким образом, получается, что газовая сварка цветных металлов должна учитывать ряд их особенностей, которые являются различными для каждого материала.

Сварка меди и сплавов

Основным предназначением, как самой меди, так и созданных на её основе сплавов является химическое машиностроение, где из них изготавливают различные трубопроводы, сосуды и ёмкости.

При необходимости сварки меди угольными или графитовыми электродами процесс выполняется при помощи токов прямой полярности. Дуга должна иметь длину от 35 до 40 мм, а сечению присадочного прутка лучше быть равным по ширине 20–25 мм. Флюсом при этом служат смесь из металлического магния (5%) и прокаленной буры (95%), а сама сварка стыков производится на прокладке из асбеста или графита

При выполнении ручной сварки медных изделий (обычно делается для изделий толщиной более 2 мм) используются постоянные токи обратной полярности, а температура изделий достигает 400 градусов. Сварка в защитных газах производится с применением аргона и гелия. В качестве присадочного материала обычно берётся бронзовая проволока.

Сварка алюминия и сплавов

Алюминиевые сплавы и сам этот металл необходимы, как правило, в пищевой или химической промышленности. За счёт высокой прочности, коррозионной стойкости и лёгкости их применяют также и в машиностроении, и в строительстве.

Электроды для сварки используют в основном угольные.

Ручная сварка такого типа целесообразна при толщинах металла 1,5–20 мм, а также при необходимости заварки дефектов алюминиевых изделий. Если материал не толще 2 мм присадочная проволока не нужна.

Дуговой тип сварки алюминия и изделий из него производится при помощи металлических электродов. Сварка ведётся постоянными токами обратной полярности, а листы металла предварительно подогревают: если толщина составляет 6–8 мм, до 200 градусов, для листов 8–16 мм – до 400 градусов. Для толщин металла более 20 мм дополнительно требуется разделка кромок.

Сварка аргоном цветных металлов в случае с алюминием производится с использованием аргона 1-го и высшего сорта. Материал электрода в этом случае – вольфрам, а необходимость в разделке кромок определяется, исходя из толщины металла: до 4 мм – не нужна, более 4 мм – кромки разделываются. Величину силы тока в первом случае выставляют в амперах в 50 раз больше толщины металла в мм, во втором – в 35-40 раз больше.

Сварка никеля и сплавов

Для никеля, прочного и пластичного, а также жаростойкого материала, в современном мире нашлось применение, как для одного из важнейших легирующих элементов. Впрочем, используют его и в химической, и в электрохимической промышленности.

Сварка никеля может быть связана с возникновением в районе шва трещин и пор, причиной чего являются растворяемые при высокой температуре газы. Для предотвращения подобного в металл вводят специальные элементы, например, типа Mn и Mg, образующие тугоплавкие соединения с серой и, таким образом, связывающие её.

Для сварки никеля используют, как правило, металлические электроды и постоянный ток обратной полярности. Марка электродов, которые требует аппарат для сварки цветных металлов в данном случае, «Прогресс-50» или же Н37к.

Для сплавов, в состав которых входит не только никель, но и медь, необходимы электроды марки МЗОК. Для никель-молибденовых сплавов лучше всего подойдут электроды марки ХН-1.

Если же существует необходимость в проведении аргонодуговой сварки, необходимы вольфрамовые электроды, а также введение в состав свариваемого материала кремния, ниобия и алюминия.

Сварка титана и его сплавов

Титан пользуется популярностью в специализированных технических отраслях. Применяют его и в самолетостроении, машиностроении и даже в атомной энергетике.

Сварка цветных металлов типа титана и его сплавов связана с некоторыми особенностями. Например, с высоким сродством титана с кислородом, а также появление трещин при остывании материала ниже 100 градусов. Пластичность титана увеличивается за счёт воздействия не только с кислородом, но и с азотом. При этом, правда, снижается пластичность и повышается стойкость к воздействию коррозии.

Качественный титан можно получить, ограничив содержание в нём азота, водорода и кислорода. Большая же прочность требует выбора рационального режима варки.

При сварке титана аргоном потребуется этот газ только самого лучшего (1-го или высшего) сорта, а сам процесс ведётся постоянными токами с прямой полярностью. Для того чтобы результат сварки был как можно лучше, применяются герметичные камеры с инертным газом.

Сварка цветных металлов

Титан обладает низкой прочностью и поэтому в чистом виде применяется крайне редко. А для конструктивных целей используют титан с примесями легирующих элементов, значительно увеличивающих его физико-механические свойства. Химическая активность титана под воздействием больших температур может привести к снижению его пластичности и конструкционной прочности, поэтому сварку выполняют с защитой от атмосферного воздействия. Защите подлежит не только сварочная ванна, но и все участки металла, которые подвергаются нагреву до температуры свыше 623°С.

Обладая низкими теплопроводными свойствами, титан достаточно длительное время поддерживает сварочную ванну в расплавленном состоянии при высокой температуре, что способствует росту зерна не только в сварном соединении, но и в околошовной зоне. Особенно отрицательно сказывается на качестве сварочного шва водород, который попадает в сварочную ванну вместе с адсорбированной влагой на свариваемых кромках и в присадочном материале. Взаимодействуя с кислородом, горячий титан окисляется, что способствует появлению в сварочном шве пор холодных трещин. Поэтому свойства сварных соединений напрямую зависят от качества защиты, подготовки свариваемых кромок и титановой проволоки, служащей присадочным материалом.

Подготовительный этап заключается в механической обработке свариваемых кромок или травлением раствором кислот. Свариваемые кромки зачищают механическими приспособлениями на ширину не менее 20 —25 мм от границ разделки, после чего место сварки тщательно обезжиривают и протравливают. Для зачистки кромок применяют вращающиеся металлические щетки, шаберы, шлифовальную шкурку и другие приспособления, позволяющие добиться необходимой чистоты поверхности. Для изготовления механических щеток применяют проволоку из нержавеющей стали диаметром 02 —03 мм. Зачистку поверхностей осуществляют непосредственно перед сваркой или заблаговременно при условии надежной их защиты от внешних воздействий. Очищенная поверхность должна иметь серебристый оттенок, без трещин, вмятин, заусенец и надрывов.

Непосредственно перед сваркой кромки обезжиривают и протравливают следующим раствором: соляная кислота — 240 — 390 мл, азотная кислота — 35 — 60 мл, фтористый натрий — 50 г. В качестве обезжиривающего состава может служить ацетон, бензин марки Бр-1и другие растворители на основе ацетона. Поверхность сначала обрабатывают бензином, а после этого — ацетоном. В исключительных случаях допускается обезжиривание одним ацетоном.

Сварочную титановую проволоку подбирают согласно маркировке, которая наносится на упаковке или на специальных бирках. Различают следующие составы проволоки, используемой при сварке титана и его сплавов: ВТ1-00, ВТ1-00С (для сплавов ВТ1-00 и ВТ1-0), ОТ4-1 (для сплавов ОТ4), СПТ2 и ВТ2св (для сплавов ВТ5, ВТ6 и ВТ 15). Непосредственно перед сваркой проволоку обезжиривают, а при необходимости подвергают механической очистке, которую выполняют наждачной шкуркой зернистостью не выше № 12.

Допускается предварительное обезжиривание проволоки, которую сразу же следует защитить полиэтиленовой пленкой и хранить в специальных пеналах. В любом случае срок хранения обезжиренной проволоки не должен превышать 5 суток. Качество поверхности проволоки проверяют непосредственно перед сваркой при помощи чистой белой салфетки. Если на салфетке остаются следы загрязнений, то обезжиривание следует повторить.

Кромки деталей перед сваркой плотно сжимают между собой, следя за тем, чтобы на поверхность не попали жировые включения. Поэтому к подготовленным поверхностям нельзя касаться руками или грязной ветошью.

Сварку титана и его сплавов выполняют в ручном или автоматическом режимах с защитой сварочной ванны и околошовной зоны аргоном или инертным газом. Сварку ведут вольфрамовым электродом при постоянном источнике тока прямой полярности. Существует несколько схем защиты сварочного шва. Для сварки ответственных изделий существуют специальные камеры с контролируемой атмосферой.

Сварку ведут без колебательных движений горелки, на короткой дуге углом вперед. Угол между электродом и присадочным материалом поддерживают в пределах 90°, а подачу проволоки ведут непрерывно. Чаще всего сварку выполняют «левым»  способом,  при    котором  ось вольфрамового электрода наклонена в сторону, противоположную направлению сварки.

Вылет электрода из сопла не должен превышать 5 —7 мм. В труднодоступных местах вылет электрода может быть увеличен при условии надежной защиты сварочного шва. Присадочный материал вводят в сварочную ванну навстречу сварочной горелке, не допуская вывода ее конца из зоны газовой защиты. Снятие защиты производят не ранее, чем при снижении температуры ниже 400°С. Ориентировочные режимы аргонодуговой сварки титана и его сплавов приведены в таблице.

Защита сварочного шва считается качественной, если в зоне стыка отсутствуют следы окисления и металл имеет серебристый цвет. При некачественной защите на сварочном шве появляются следы побежалости. Титан, толщиной до 8 мм, можно сваривать без скоса кромок, более толстый металл сваривают погружной дугой.

Для снижения погонной энергии и сужения зоны термического влияния дополнительно к газовой защите используют флюсы АТН-21А , Атн-23А. Применение флюсов существенно повышает защиту и позволяет повысить качество сварного соединения за счет уменьшения пористости шва. Флюс наносят на свариваемые кромки непосредственно перед сваркой при помощи волосяной кисти толщиной 0,1 —0,15 мм. Для того чтобы из пасты хорошо испарялся спирт, сварку выполняют при температура не ниже 15°С.

Сварка плавящимся электродом выполняется в автоматическом режиме током обратной полярности при мелкокапельном переносе металла.

Режимы аргонодуговой сварки титана и его сплавов 

Толщина свариваемого металла, ммДиаметр, миСила сварочного тока, АНапряжение на дуге, В Расход аргона, л/мин 
Вольфрамового электродаПрисадочной проволокиВ горелкуВ насадкуЧисло проходов
0,51,51-1,515-208-106-82-41
11,5-21-1,540-608-106-82-41
1,51,5-21,5-260-6010-128-102-41
22-2,51,5-280-10010-1210-124-61
32,5-32-3120-14010-1210-124-61
42,5-32-3140-16012-1412-146-82
6-103-42-3160-18012-1412-146-84-8
12-163-43-4180-24014-1614-1610-1210-14
18-243-43-4240-28014-1614-1610-1218-24

Сварка черных и цветных металлов

Содержание страницы

1. Сварка сталей

Сварка малоуглеродистых сталей. Малоуглеродистые стали с содержанием углерода до 0,25 % хорошо свариваются и не требуют нагрева до, в течение и после сварки. Для повышения производительности сварку ведут на максимально допустимых режимах. Сварные соединения легко обрабатываются режущим инструментом.

Сварка углеродистых сталей. При сварке среднеуглеродистых сталей возможно образование трещин как в основном, так и в наплавленном металле. Необходим предварительный подогрев изделия перед сваркой до температуры 200…350 °С. После сварки изделие помещают в печь, нагревают его до 675…700 °С и медленно охлаждают вместе с печью до 100…150 °С. Завершают охлаждение изделия на воздухе. Для сварки используют электроды марок УОНИ-13/45, УОНИ-13/55, К-5А, УП-1/45, ОЗС-2, УП-2/45, ВСП-1, МР-1, ОСЗ-4 и др. Сварку электродами УОНИ-13, ОЗС-2, ВСП-3 выполняют на постоянном токе обратной полярности. Используя электроды ВСП-1, МГ-1, ОЗС-4, К-5А, можно производить сварку как на постоянном, так и переменном токах.

Технология сварки высокоуглеродистых сталей включает обязательный предварительный подогрев до 350…400 °С, иногда сопутствующий подогрев и последующую термическую обработку. Сварку производят узкими валиками и небольшими участками. Сварку при температуре окружающей среды ниже плюс 5 °С и на сквозняках производить нельзя.

Сварка легированных сталей. Легированные стали классифицируют на три группы: низколегированные – с содержанием легирующих элементов до 2,5 %; легированные – от 2,5 до 10 % легирующих элементов; высоколегированные – более 10 % легирующих элементов.

Перед сваркой легированных сталей кромки тщательно очищают от окалины, пыли, грязи, шлака, а также удаляют влагу с поверхности металла подогревая кромки газовой горелкой до температуры 110…120 °С.

Перед сваркой, для предупреждения появления трещин, необходим предварительный подогрев изделия до температуры 100…350 °С.

Для исключения закалки основного металла применяют многопроходную сварку швами одинакового сечения, а также метод отжигающих валиков.

Низколегированные стали. Стали типа 15ХСНД при сварке склонны образовывать закалочные структуры. Для предупреждения перегрева и образования закалочных структур применяют многослойную сварку с большим интервалом времени между наложением слоев. Сварку изделий толщиной более 2 мм производят электродами УОНИ-13/55, УОНИ-13/65 на постоянном токе обратной полярности.

Изделия толщиной более 15 мм после сварки подвергают высокотемпературному отпуску при температуре 550…650 °С.

Хромокремнемарганцовистые стали 20ХГСА, 25ХГСА, 30ХГСА и 35ХГСА относятся к низколегированным конструкционным сталям повышенной прочности. При сварке они образуют закалочные структуры. В зависимости от толщины металла применяют однослойную и многослойную сварку с малыми интервалами времени между наложением слоев. Для сварки применяют электроды со стержнями Св-18ХГС, Св-18ХМА или низкоуглеродистую проволоку Св-08А. Марки покрытий электродов: НИАТ-3М, ЦЛ-18-63, ЦЛ-30-63, ЦЛ-14, УОНИ-13/85. После сварки изделия из стали 25ХГСА, нагревают до температуры 650…880 °С с выдержкой из расчета 1 ч на каждые 25 мм толщины, после чего охлаждают на воздухе или в горячей воде.

Среднелегированные стали. Стали 12М, 12ХМ, 15ХМ, 20ХМ предназначены для изготовления деталей, работающих в условиях высоких температур (400…600 °С) и при давлении газа или пара до 30,0 МПа (трубчатые элементы паровых котлов, элементы нефтеперегонной и химической аппаратуры и т. п.). Эти стали имеют склонность к образованию трещин в зоне термического влияния. Перед сваркой необходим предварительный подогрев до температуры 200…300 °С. После сварки производят отпуск (нагрев изделия до 710 °С, выдержка при этой температуре из расчета 5 мин на каждый миллиметр толщины металла с последующим медленным охлаждением).

Для сварки применяют электроды ЦУ-2МХ, ЦЛ-38, ЗИО-20, УОНИ- 13ХМ. Сварку производят на постоянном токе обратной полярности.

Высоколегированные стали. Стали типа Х18Н9, Х18Н9Т, применяют в химическом и пищевом машиностроении. Эти стали имеют высокие прочность, вязкость и пластичность. Из-за пониженной электропроводности и теплопроводности возможны значительные коробления и межкристаллитная коррозия. Для сварки применяют электроды ЗИО-3, ОЗЛ-8, ЦЛ-11, ЦТ-1 и др. Сварку ведут на постоянном токе обратной полярности, применяя медные подкладки или ускоренное охлаждение швов водой или сжатым воздухом.

Стали типа Х25Н12 и Х25Н20 относятся к окалиностойким сталям, применяющимся при изготовлении трубопроводов, деталей турбин, котлов высокого давления, химической аппаратуры и др. Они имеют повышенное сопротивление коррозии и выдерживают длительные нагрузки при высоких температурах. Эти стали имеют склонность к образованию горячих трещин. Сварку ведут на постоянном токе обратной полярности электродами ЦЛ-25, ОЗЛ-4, ОЗЛ-9А, ГС-1, ОЗЛ-5 и ЦТ-17.

После сварки для снятия напряжений производят высокотемпературный отпуск при температуре 650 °С.

Хромистые стали Х6СМ, 4Х9С2, 15Х5М, Х5МФ, 12X13 с содержанием хрома 4…14 % применяют для изготовления конструкций повышенной прочности, работающих в агрессивной среде (аппаратура нефтеперерабатывающей промышленности). Стали 15X28, 1X17Ю5 с содержанием хрома 18…30 % хорошо сопротивляются окислению при высоких температурах.

Стали имеют склонность к закаливанию на воздухе с образованием мартенситной структуры и росту зерен в зоне термического влияния, что составляет основные трудности при сварке.

Перед сваркой производят предварительный подогрев до температуры 200…400 °С. После сварки изделие охлаждают на воздухе до температуры 150…200 °С. В завершение производят высокотемпературный отпуск: нагрев в печи до 720…750 °С с минимальной выдержкой 1 ч или из расчета 5 мин на 1 мм толщины металла, с последующим охлаждением на спокойном воздухе.

Стали с содержанием хрома 7…10 % выдерживают в печи из расчета 10 мин на 1 мм толщины металла. Сварку производят на постоянном токе обратной полярности электродами ЦЛ-17-63, СЛ-16, УОНИ-13/85 и др.

Высокомарганцовистые стали типа 110Г13Л, содержат 11…16 % марганца. Стали имеют высокую износостойкость и предназначены для изготовления железнодорожных крестовин, зубьев экскаватора, ковшей землечерпалок и других деталей. Для сварки применяют никелемарганцовистые электроды: содержащие 4…4,5 % никеля, 11…13 % марганца и 0,6…1,0 % углерода. Стержни имеют покрытия основного типа: коррозионно-стойкие, низкоуглеродистые и покрытия с содержанием до 60…65 % феррохрома. Сварку стали производят в закаленном состоянии на постоянном токе обратной полярности.

Инструментальные стали P18, Р9 и их заменители ХВГ, 9ХВГ, 9ХС предназначены для изготовления режущего инструмента. Электродуговую сварку применяют при изготовлении режущего инструмента для приварки пластин быстрорежущей стали к державкам из поделочной стали, а также для наплавки быстрорежущей стали или ее заменителей на заготовку из углеродистой стали.

Наплавку ведут в один прием, не прерывая по мере оплавления. После наплавки инструмент отжигают, затем подвергают механической обработке, последующей закалке и трехкратному отпуску. По завершении твердость наплавленного металла достигает HRC 61…64.

2. Сварка чугуна

Сваркой исправляют чугунное литье до процесса и в процессе механической обработки. При восстановлении деталей из чугуна сварку применяют для устранения трещин, пробоин и изломов.

По свариваемости чугун относится к группе плохо свариваемых металлов. Это обусловлено высоким содержанием в нем более 2 % углерода, 1,6…2,0 % кремния, 0,5…1,2 % марганца, до 0,12 % серы, до 0,8 % фосфора и быстрой скоростью охлаждения.

Причины, затрудняющие сварку чугуна:

  1. образование карбидов железа (отбеливание чугуна) в месте сварки, отличающихся высокой твердостью и не поддающихся механической обработке обычным режущим инструментом;
  2. низкая пластичность, вызывающая при неравномерном нагреве трещины в зоне сварки;
  3. отсутствие пластического состояния при переходе из твердого состояния в жидкое, вследствие чего невозможно выполнение горизонтальных, вертикальных и потолочных швов;
  4. образование пористости за счет большого количества окиси углерода и быстрого затвердевания расплавленного металла;
  5. образование пленки окислов кремния на поверхности ванны, имеющих высокую температуру плавления.

Чугунные детали после эксплуатации в условиях высоких температур, плохо свариваются, так как углерод и кремний окисляются и чугун становится хрупким. Плохо свариваются чугунные детали, длительное время контактировавшие с маслом и керосином. При сварке масло и керосин сгорают и образовавшиеся газы являются причиной сплошной пористости сварочного шва.

Способы сварки чугуна. Различают три способа сварки чугуна: холодный, полугорячий и горячий. Холодную сварку чугуна ведут без подогрева изделия, полугорячую – с полным или местным подогревом до температуры 300…400 °С, горячую – с полным нагревом до температуры 600…800 °С.

Холодная сварка. Качество сварного соединения зависит от технологических и металлургических факторов. Технологическими факторами являются: сила сварочного тока, напряжение дуги и скорость сварки, металлургическими – графитизация, удаление углерода и карбидообразование. Не допускается отбеливание чугуна и закалка сварочного шва.

Сварку проводят на щадящих режимах при силе тока 90…120 А, электродами малого диаметра (3 мм), короткими валиками (длиной 40…50 мм) с последующим охлаждением каждого валика до температуры 330…340 °С. Это приводит к снижению доли основного металла в металле шва и сварочных напряжений, которые дополнительно снижают проковкой валиков шва сразу же после окончания сварки.

В состав сварочных материалов вводят углерод, кремний, алюминий, титан, никель, медь, которые способствуют более полному процессу графитизации, т. е. чтобы углерода в связанном состоянии осталось минимальное количество. В результате получают более мягкую перлитно-ферритную структуру.

При введении вольфрама, хрома, ванадия, молибдена, последние связывают углерод в труднорастворимые карбиды.

Холодную сварку ведут электродами: стальными, стальными со специальными покрытиями (с карбидообразующими элементами в покрытии, с защитно-легирующими покрытиями, с окислительными покрытиями), стальными с применением шпилек, чугунными, комбинированными, медными, из монельметалла, из никелевого аустенитного чугуна.

Сварка стальными электродами без специальных покрытий. Применяется при ремонте неответственных чугунных деталей небольших размеров с малым объемом наплавки. Сварное соединение имеет неоднородную структуру, недостаточную плотность и низкую прочность.

Трещины в чугунной детали заваривают многослойной наплавкой – методом отжигающих валиков, который позволяет избежать образования трещин в сварочном шве. Метод отжигающих валиков был предложен в конце 50-х годов прошлого столетия изобретателем Л. И. Вититловым, что позволило существенно расширить область использования стальных электродов.

Вдоль трещины производят V-образную разделку кромок (рис. 1, а). Вначале на одну из кромок вразброс наносят короткими участками длиной 15…25 мм (рис. 1, б) подготовительные 1…3 и отжигающие 4 и 5 валики (рис. 1, в), затем на другую кромку – соответственно валики 6…10, не соединяя их.

Рис. 1. Схема метода отжигающих валиков: 1…3, 6…8 – подготовительные валики; 4, 5, 9 и 10 – отжигающие валики; 11…14 – соединительные валики

При наложении отжигающего валика на подготовительный, последний больше прогревается и впоследствии остывает с меньшей скоростью. Значительная доля цементита распадается, выделяется графит, а в закаленной части шва происходит частичный отпуск и нормализация. Благодаря подготовительному валику отжигающий валик меньше подвержен закалке, в итоге значительно снижается твердость всего шва и частично снимаются остаточные напряжения.

Валики наплавляют высотой 4…5 мм, покрывая предыдущий на 60…70 %. После наложения валиков по всей длине трещины, деталь охлаждают до температуры 70…80 °С, после чего заваривают вразброс промежутки между ними соединительными валиками 11…14.

Метод позволяет снизить твердость сварочного шва на HRC 20…25, по сравнению со сваркой без отжигающих валиков, что позволяет обрабатывать его механической обработкой резанием. Прочность и плотность шва при этом удовлетворительные.

Сварка электродами с защитно-легирующими покрытиями. Перед сваркой выполняют Vили Xобразную разделку кромок. Для равномерного разогрева детали сваривают отдельными участками вразбивку. Длина отдельных участков наплавленного сварного шва не более 100…120 мм. После наплавки каждого участка шов остужают до температуры 60…80 °С. Наилучшие результаты получают при сварке электродами с покрытиями УОНИ-13/45, на постоянном токе обратной полярности. Сварку электродами с покрытиями ОММ-5 и К-5 выполняют как на постоянном, так и на переменном токе.

Сварка с использованием шпилек и скоб. Применяется при восстановлении ответственных деталей (гидравлические и пневматические цилиндры, станины прессов, станков и др.), работающих при значительных нагрузках и требующих после сварки обработки.

Необходима специальная подготовка изделий под сварку. При толщине деталей более 5 мм производят разделку кромок под углом 45°. В подготовленных кромках просверливают отверстия, нарезают резьбу и ввертывают стальные шпильки. Шпильки располагают в шахматном порядке (рис. 2).

Рис. 2. Подготовка чугунных деталей под сварку с помощью шпилек

При толщине деталей до 10 мм диаметр шпилек не более 6 мм. При большей толщине свариваемых деталей диаметр шпилек выбирают по табл. 1.

Таблица 1. Диаметр шпилек в зависимости от толщины свариваемых чугунных изделий

Толщина изделия, ммДиаметр шпильки, ммРасстояние между шпильками, мм
поперек детали, lвдоль детали,
l1
10…201040…605…10
20…251248…5010…12
25…301450…5612…15
≥ 301650…8015…20

В этом случае в разделку устанавливают шпильки большего, а около разделки меньшего диаметра.

Сварку производят электродами типов Э42, Э42А, Э50 и Э50А на постоянном или переменном токе. Вначале обваривают шпильки кольцевыми швами, затем заплавляют всю разделку. Сварку ведут короткими участками по 100…150 мм. В табл. 2 приведены режимы сварки.

Таблица 2. Режимы сварки при различной толщине чугунного изделия

Толщина металла, ммДиаметр электрода, ммСила тока, А
До 5

5

до 10

3

4

5

90…100

130…160

180…200

Сварка чугунными электродами. Применяется для исправления дефектов в виде раковин и трещин. Электродуговую сварку ведут прутками, изготовленными из чугуна марки Б. В состав покрытий входит графит, ферросилиций, алюминиевый порошок, углекислый барий, графит и мел. Все компоненты замешаны на жидком стекле.

Металл сварного шва близок по химическому составу к основному металлу, однако в шве и прилегающих к нему зонах происходит отбел, что затрудняет последующую механическую обработку. Режимы холодной сварки чугунными электродами приведены в табл. 3.

Таблица 3. Режимы электродуговой сварки чугунными электродами

Толщина свариваемого металла, ммДиаметр электрода, ммСила тока, А
до 15

от 15 до 30

от 30 до 40

свыше 40

6

8

10

12

270…300

300…400

450…500

500…650

Сварка медными электродами. Применяется для ремонта малогабаритных деталей, работающих при незначительных статических нагрузках.

Электроды изготовляют из медных стержней диаметром 3…6 мм, которые затем обертывают низкоуглеродистой лентой или проволокой. На подготовленный стержень наносят меловое покрытие (80 % мела, 20 % жидкого стекла). Сварку ведут на переменном и постоянном токе обратной полярности. Сварной шов получается плотным, но недостаточно прочным.

Сварка чугуна монель-металлом. Электроды из монель-металла это медно-никелевый сплав (медь 30 %, никель 65 %, марганец 1,5…2 % и железо 3…3,5 %). Способ сварки применяют, когда от сварного соединения не требуется большой прочности. Сварку ведут как электрической дугой, так и газовым пламенем. Электродуговую сварку производят на постоянном токе обратной полярности короткими участками длиной 60…70 мм, вразброс, с промежуточным охлаждением и проковкой каждого валика. Плотность шва получается удовлетворительной. Сварной шов хорошо обрабатывается режущим инструментом.

Сварка проволокой ПАНЧ-11. Применяют при ремонте базисных деталей машин. Сварку ведут открытой дугой на постоянном токе обратной полярности без дополнительной защиты и подогрева детали. Металл шва имеет высокую прочность и плотность (предел прочности до 550 МПа).

Рекомендуются следующие режимы сварки проволокой диаметром 1,2 мм: Iсв = 100…140 А; Uсв = 14…18 В; Vсв = 0,15…0,25 см/с.

Для сварки проволокой ПАНЧ-11 применяют шланговые полуавтоматы, предназначенные для подачи проволоки диаметром 1,0…1,2 мм: А-547Р, А-547У, А-825М, серии ПДГ и др.

Холодная газовая сварка. Используется для сварки неответственных деталей с малым объемом наплавки. Сварку ведут ацетилено-кислородным пламенем. В качестве присадочного материала используют стальную сварочную проволоку Св-08, Св-08А или чугунные прутки марки А. Состав флюса: техническая бура (прокаленная) или смесь из буры (56 %), поваренной соли (22 %) и углекислого калия (22 %).

Полугорячая сварка чугуна. Перед сваркой деталь подогревают до температуры 300…400 °С, что обеспечивает замедленное охлаждение металла шва и предотвращает образование отбеленных зон. Нагрев производят в термических печах, горнах или с помощью газовых горелок ацетиленокислородным пламенем.

Сварку ведут низкоуглеродистыми стальными электродами с защитнолегирующими покрытиями типа ОММ-5, МР-3, К-5 и УОНИ-13, стальными электродами со специальным покрытием, чугунными электродами и ацетиленокислородным пламенем с применением чугунных присадочных прутков марки А. После сварки для снижения скорости охлаждения детали засыпают мелким древесным углем или сухим песком.

Горячая сварка чугуна. Предварительный подогрев мелких деталей до температуры 500…700 °С, а крупногабаритных (толщина стенок более 30 мм) – до 700…800 °С. Нагрев производят в печах, нагревательных колодцах, горнах или с помощью индукционных нагревателей. Сварку ведут электродами ОМЧ-1 и УЗТМ-74 (чугунный пруток Б с покрытием). Из-за значительных объемов наплавляемого металла при горячей сварке применяют электроды больших диаметров (8…16 мм). В табл. 4 приведены режимы сварки чугунными электродами.

Таблица 4. Режимы сварки чугунными электродами

Диаметр электрода, мм8101216
Сила тока, А600…700750…8001000…12001500…1800

Чтобы металл постоянно находился в расплавленном состоянии, сварку ведут непрерывно. После сварки деталь медленно охлаждают вместе с нагревательной печью. Крупногабаритные детали засыпают мелким древесным углем или накрывают асбестовыми листами и выдерживают в течение нескольких суток до полного остывания.

При газовой сварке в качестве присадочного материала используют чугунные прутки марки А, а для защиты сварочной ванны применяют флюсы ФСЧ-1 и ФСЧ-2.

Полугорячая и горячая сварка чугунных деталей применяется на специализированных ремонтных предприятиях.

3. Сварка деталей из алюминия и его сплавов

Технически чистый алюминий имеет ограниченное применение из-за низкой прочности и высокой пластичности. Более широкое применение получили его сплавы: дюралюмин (дюраль), содержащий 4…5 % меди; АМц – 1…1,5 % марганца; АМг – 1,5…7 % магния; силумин, содержащий 6…13 % кремния. Сплавы имеют значительную прочность, что позволяет использовать их для конструкций, работающих под нагрузкой.

Основные причины, затрудняющие сварку алюминия и его сплавов:

  1. на поверхности расплавленного металла постоянно образуется тугоплавкая пленка оксида алюминия Al2O3, которая препятствует сплавлению между собой частиц металла;
  2. высокая температура плавления оксида алюминия (2050 °С) и низкая температура плавления алюминия (658 °С) затрудняет управление процессом сварки;
  3. коэффициент линейного расширения в два раза, а теплопроводность в три раза больше чем у стали, что приводит к появлению значительных деформаций в свариваемых деталях;
  4. металл не имеет пластического состояния и при нагреве сразу переходит из твердого состояния в жидкое, поэтому возможна сварка только в нижнем положении.

Алюминий и его сплавы сваривают с помощью электродуговой, аргоннодуговой и газовой сварки. Перед сваркой алюминиевые изделия проходят специальную обработку: обезжиривают поверхность и удаляют пленку окиси алюминия, зачищая поверхность стальной щеткой до блеска.

Предварительный подогрев перед сваркой до 300…400 °С производят для деталей толщиной более 20 мм.

Дуговая сварка угольным электродом. При толщине листа более 10 мм производят разделку кромок под общим углом 60…70 °. Сварку ведут на графитовых или стальных подкладках угольными или графитовыми электродами диаметром 8…15 мм. Сварочный ток 150…500 А (при толщине свариваемой детали более 25 мм – 700…900 А). Сварка ведется постоянным током прямой полярности. При сварке на основной и присадочный металл наносят флюс. Составы флюсов для сварки алюминия приведены в табл. 5.

Дуговая сварка металлическим электродом. Сварку производят электродами ОЗА-1 (технический алюминий) и ОЗА-2 (сплав алюминия) на постоянном токе обратной полярности (см. табл. А.5). Сила сварочного тока 25…32 А на 1 мм диаметра электрода. После сварки шов немедленно промывают горячей водой и очищают стальной щеткой от остатков шлака.

Таблица 5. Некоторые марки флюсы для дуговой сварки алюминия и его сплавов (содержание, %)

Марка флюсаКриолитХлористый калийХлористый натрийХлористый литийФтористый натрий
АФ-4А

АН-А1

АН-А4

ВАМИ

30

30

20

50

50

50

50

28

20

30

14

20

8

Аргоннодуговая сварка. Широкое применение в ремонтном производстве получила электродуговая сварка неплавящимся (вольфрамовым) электродом в среде аргона. Присадочные алюминиевые прутки вводят в дугу, которая горит между деталью и вольфрамовым электродом. Сварку ведут на переменном или постоянном токе обратной полярности.

Диаметры электрода dэл и присадочного прутка dпр принимают равным толщине детали S. Силу сварочного тока определяют по формуле

Iсв = (40…50) dэл, при S = 1…8 мм,

Iсв = (50…60) dэл, при S = 6…12 мм.

Для аргонно-дуговой сварки промышленность выпускает установки УДАР-300-1, УДАР-500-1 и УДГ-301, УДГ-501.

4. Сварка меди, латуни и бронзы

Затруднения при сварке меди и ее сплавов:

  1. большая теплопроводность (в шесть раз больше теплопроводности стали), интенсивный отвод тепла от зоны сварки;
  2. низкая температура плавления и кипения, большая жидкотекучесть;
  3. малая прочность и большая хрупкость при высокой температуре;
  4. большая теплоемкость и необходимость применения высоких тепловых режимов;
  5. хорошая растворимость в жидком металле вредных газов (кислород, водород, азот).

Сварка угольным электродом. Технология включает предварительный подогрев до температуры 250…350 °С. Детали толщиной до 3 мм сваривают по отбортовке без присадочного металла, более 3 мм – с присадочными прутками диаметром 2…8 мм из меди марки M1, фосфористой или кремнистой бронзы. Для защиты сварочной ванны используют смесь из прокаленной буры (94 %) и магния металлического (6 %). Сварку ведут постоянным током обратной полярности и только в нижнем положении. В табл. 6 приведены режимы сварки.

Таблица 6. Режимы ручной сварки меди угольным электродом

Толщина металла, мм124612
Диаметр электрода, мм466810
Сила тока, А135…180195…260250…330315…430420…550

Сварка металлическим электродом. Сварку ведут постоянным током обратной полярности, используя электроды с покрытием марок «Комсомолец- 100» или ЗТ. Режим сварки приведен в табл. 7.

Для сварки также используют прутки из меди M1, M2, М3 или кремнистой бронзы и флюс ММ3-2.

Таблица 7. Режимы ручной сварки меди металлическим электродом

Диаметр электрода, мм345
Сила тока, А90…110120…140170…190

Сварка в среде защитных газов. В качестве защитных газов используют аргон или азот. Сварку ведут неплавящимся вольфрамовым электродом или плавящимися электродами для изделий толщиной 1,5…20 мм.

Наибольшее распространение получила сварка неплавящимся вольфрамовым электродом в среде аргона. В качестве присадочного материала используют прутки из меди M1, М2 и М3. Ток постоянный прямой полярности. В табл. 8 приведены режимы сварки.

Сварку меди плавящимися электродами ведут на постоянном токе обратной полярности. Электродами является проволока из меди марки М1, кремнемарганцевой бронзы БрКМц3-1 или оловянно-цинковой бронзы БрОЦ4-3.

Таблица 8. Режимы ручной аргонодуговой сварки меди вольфрамовым электродом

Толщина изделия, мм1,63,26,4101216
Диаметр присадочного прутка, мм2,43,24,84,86,46,4
Диаметр электрода, мм2,43,24,84,84,84,8
Сила тока, А80…110200300350400400
Расход аргона, л/мин2,8…3,36,07,07,088

Газовая сварка меди. Данный способ сварки получил наибольшее распространение. Присадочный материал – прутки из меди M1, М2 и М3. В качестве флюса используют буру, борную кислоту или смесь из прокаленной буры (50 %) и борной кислоты (50 %).

После сварки любым способом сварные швы подвергают проковке. Для улучшения пластических свойств сварного соединения применяют отжиг при температуре 500…600 °С.

Сварка латуни. Сварка латуни сопровождается испарением цинка, приводящего к пористости шва. Пары цинка токсичны. Вышеуказанные причины затрудняют сварку латуни. Сварку ведут угольным или металлическим электродом, а также газовой сваркой.

При сварке угольным электродом режимы сварки аналогичны режимам сварки меди. Присадочный металл – прутки из латуни ЛК62-05, ЛК80-3, ЛМц58-2, ЛМцЖ55-3-1 или бронзы БрОМцА8-0,7-0,7. Флюс – прокаленная бура или 50 % буры и 50 % борного шлака.

Сварку латуни металлическими электродами применяют для листов толщиной более 5 мм. Электродные стержни имеют такой же химический состав как для сварки угольным электродом. Покрытие электродов двухслойное: первый слой толщиной 0,2…0,3 мм состава: 30 % марганцевой руды, 30 % титанового концентрата, 15 % ферромарганца, 5 % сернокислого калия, 20 % мела; второй слой толщиной 0,8…1,1 мм состава: борный шлак на жидком стекле.

Режимы сварки: при диаметре электрода 5 мм величина сварочного тока должна быть 250…280 А, при диаметре электрода 6 мм величина сварочного тока – 280…320 А, при диаметре электрода 8 мм величина сварочного тока – 350…400 А.

Газовая сварка латуни получила широкое применение. Режимы сварки и флюсы аналогичны тем, что для сварки меди. Сварку для уменьшения испарения цинка ведут окислительным пламенем с избытком кислорода до 30…40 %.

Детали толщиной более 10 мм перед сваркой подогревают до температуры 300…500 °С. После сварки швы подвергают проковке и последующему отжигу при 600…700 °С с медленным охлаждением.

Сварка бронзы. Сварку бронзы ведут угольным или металлическим электродом, а также газовым пламенем. Наиболее распространены бронзы: оловянистая, алюминиевая, марганцовистая, фосфористая, свинцовистая.

Сварка угольным электродом. Присадочный металл – литые прутки того же состава, что и основной металл. В качестве флюса используют буру или смесь из буры (50 %) и борной кислоты (50 %). Сварку ведут постоянным током прямой полярности. Массивные детали перед сваркой подогревают до температуры 350…450 °С.

Сварка металлическим электродом. При сварке оловянистой бронзы используют электроды, стержни которых имеют состав: 8 % цинка, 6 % свинца, 3 % олова, 0,2 % фосфора, 0,3 % железа, 0,3 % никеля, остальные – медь. Состав покрытия: 15 % алюминия, 70 % мрамора, 15 % графита. Толщина покрытия – 1,2…1,5 мм на сторону. Сварку ведут постоянным током обратной полярности. Предварительный подогрев до 250…300 °С. При сварке безоловянистых бронз состав стержня электрода должен быть таким же, как и состав основного металла.

Аргонно-дуговая сварка неплавящимся вольфрамовым электродом ведется постоянным током прямой полярности. В качестве присадочного материала используют прутки того же состава, что и основного металла.

Газовая сварка. Сварку ведут нормальным пламенем. В качестве присадочного материала используют прутки химического состава, близкого к основному металлу. При сварке алюминиевых бронз используют флюсы для сварки алюминия, а для остальных бронз – флюсы, предназначенные для сварки меди. Рекомендуется предварительный подогрев до 350…450 °С.

 

Просмотров: 317

Справочник

— Цветные металлы

Справочник — Цветные металлы Сварка Цветной Металлы Лечение Сварка Чугун Сварка Железо Металлы 1

Продолжение на следующей странице…

СВАРКА ДРУГИХ ЦВЕТНЫХ МЕТАЛЛОВ Как мы уже говорили в начале этой книги, почти любой металл, который вообще можно сваривать, можно сваривать ацетилено-кислородным пламя. Титан — заметное исключение к этому общему правилу. Для меди, для магния и его сплавов, а также для никель и его сплавы, защищенные инертным газом Процессы дуговой сварки всегда следует выбирать в первую очередь на кислородно-ацетиленовую сварку при необходимости оборудование имеется.Мы лишь кратко обсудим эти металлы в этой статье. главу. Однако медные сплавы — латуни и бронзы — широко используются и почти всегда могут быть успешно газосварка, поэтому будем охватите их более подробно. Пока только несколько человек имеют возможность сваривать свинец, газовая сварка — единственное логичное способ сварить этот мягкий металл; требуется специальная техника, которая будет описан в конце этой главы. Медные сплавы — латунь и бронза Основные медные сплавы делятся на три общие категории: медно-цинковые сплавы, обычно называемые латунью, но часто обозначается как «бронза»; медно-оловянные сплавы, которые являются настоящими «бронзами»; и медь-кремний сплавы (из которых одна носит фирменное наименование «Эвердур»).Кроме того, есть алюминиевая бронза, и несколько медных сплавов, содержащих до 30% никеля («медно-никелевый» и «нейзильбер», для пример). В Медно-цинковые сплавы содержат от 5% до 40% цинка. «Свободная резка» латунь также содержит 1-3% свинца. Добавить немного железа и марганца в латунь с высоким содержанием цинка, и вы получите «марганцевую бронзу». Медно-цинковые сплавы обычно могут можно сваривать плавлением только кислородно-ацетиленовым способом. Медь-олово Сплавы в виде листов или пластин часто называют фосфористой бронзой.Термин «люминофор» выводится из факта что медь, используемая для изготовления сплава, была раскислена с помощью фосфора. Количество фосфора Остается в металле после этого раскисления крайне мало. Фосфорная бронза май содержат до 10% олово, или всего 1,25%. Отливка «олово-бронза» будет содержать 4,5% до 11% олова. Все сплавы медь-олово могут быть ацетилено-кислородными. сварной.

Цветные металлы и сплавы

Цветные металлы и сплавы — Мы уже обсуждали, что цветные металлы — это те металлы, которые содержат в качестве своей основной составляющей металл, отличный от железа.В инженерной практике используются различные цветные металлы: алюминий, медь, свинец, олово, цинк, никель и т. Д. И их сплавы. Эти цветные металлы и их сплавы рассматриваются вкратце следующим образом:

1. Алюминий и его сплавы: Основным источником алюминия является глинистый минерал, называемый бокситом, который представляет собой гидратированный оксид алюминия. Он широко используется в компонентах самолетов и автомобилей, где экономия веса является преимуществом. Основными алюминиевыми сплавами являются:

а) дюралюминий. Состав этого сплава следующий:
Медь = 3,5 — 4,5%; Марганец = 0,40 — 0,70%; Магний = 0,40 — 0,70%; а остальное — алюминий.

Этот сплав обладает максимальной прочностью (около 400 МПа) после термической обработки и старения. Если после работы дать металлу стареть в течение 3-4 дней, он затвердеет. Это явление известно как старение.

(б) Y-сплав. Его еще называют медно-алюминиевым сплавом.Состав этого сплава следующий:
Медь = 3,5 4,5%; Марганец = 1,2—1,7%; Никель = 1,8 — 2,3%; кремний, магний, железо = 0,6% каждый; а остальное — алюминий.

Этот сплав подвергается термообработке и упрочнению, как дюралюминий. Он имеет лучшую прочность, чем дюралюминий, при высоких температурах.

(c) Магналиум. Его получают путем плавления алюминия с 2-10% магния в вакууме и последующего охлаждения в вакууме или под давлением от 100 до 200 атмосфер.Он также содержит около 1,75% меди.

(d) Хиндалий. Это сплав алюминия и магния с небольшим количеством хрома. Выпускается в виде проката калибра 16, в основном для изготовления анодированной посуды.

2. Медь и ее сплавы: Медь — один из наиболее широко используемых цветных металлов в промышленности. В чистом виде под землей не встречается. Он встречается в некоторых минералах, таких как медь, медный колчедан, малахит и азурит.

Медные сплавы в целом подразделяются на следующие две группы:

(a) Медно-цинковые сплавы (латуни) , в которых цинк является основным легирующим металлом, и
(b) Медь-олово сплавы (бронзы) , в которых олово является основным легирующим металлом.

Самым распространенным сплавом меди с цинком является латунь. По сути, это бинарный сплав меди с цинком по 50%. В зависимости от пропорции меди и цинка существуют различные типы латуни.Латунь очень устойчива к атмосферной коррозии и легко поддается пайке.

Сплавы меди и олова обычно называют бронзами. Полезный диапазон состава составляет от 75 до 95% меди и от 5 до 25% олова. По коррозионным свойствам бронза превосходит латунь. Вот некоторые из распространенных типов бронзы:

(i) Фосфорная бронза. Бронза, содержащая фосфор, называется фосфорной бронзой. Фосфор увеличивает прочность, пластичность и прочность отливок.Он содержит 87-90% меди, 9-10% олова и 0,1-0,3% фосфора. Сплав обладает хорошими износостойкостью и высокой эластичностью. Применяется для подшипников, червячных колес, шестерен, гаек, накладок. Он также подходит для изготовления пружин.

(ii) Кремниевая бронза. Содержит 96% меди, 3% кремния и 1% марганца или цинка. Он обладает хорошей общей коррозионной стойкостью меди в сочетании с более высокой прочностью. Он широко используется для котлов, резервуаров, печей или там, где требуется высокая прочность и хорошая коррозионная стойкость.

(iii) Бериллиевая бронза. Это сплав на основе меди, содержащий около 97,75% меди и 2,25% бериллия. Он имеет высокий предел текучести, высокий предел выносливости и отличную стойкость к холодной и горячей коррозии. Это особенно подходящий материал для пружин, электрических переключателей, кулачков и втулок. Обладает пленкообразованием и обладает мягкими смазывающими свойствами, что делает его более подходящим в качестве металла подшипников.

(iv) Марганцевая бронза. Содержит 60% меди, 35% цинка и 5% марганца.Этот металл отличается высокой устойчивостью к коррозии. Из этой бронзы часто изготавливают червячные передачи.

(в) Алюминиевая бронза. Это сплав меди и алюминия. Алюминиевая бронза с содержанием алюминия 6-8% обладает ценными свойствами холодной обработки. Алюминиевый сплав с содержанием 6% алюминия имеет цвет чистого золота, который используется для изготовления бижутерии и в декоративных целях.

3. Оружейный металл: Это сплав меди, олова и цинка. Обычно он содержит 88% меди, 10% олова и 2% цинка.Этот металл также известен как оружейный металл Адмиралтейства. Цинк добавляется для очистки металла и увеличения его текучести. Он широко используется для литья арматуры котлов, втулок, подшипников, сальников и т. Д.

4. Баббитовый металл: Сплав на основе олова, содержащий 88% олова, 8% сурьмы и 4% меди, называется металлическим баббитом. Это мягкий материал с низким коэффициентом трения и небольшой прочностью.

5. Сплавы на основе никеля: Наиболее важными сплавами на основе никеля являются:

(a) Металлический монель. Это важный сплав никеля и меди. Он содержит 68% никеля, 29% меди и 3% других компонентов. По внешнему виду он напоминает никель, он прочный, пластичный и вязкий. По коррозионным свойствам он превосходит латунь и бронзу.

(б) К-сплав. Состоит из алюминия на 3% и титана на 0,5%, в дополнение к составу монель. Он имеет лучшие механические свойства, чем монель.

(c) Инконель. Он состоит из 80% никеля, 14% хрома и 6% железа.Этот сплав обладает прекрасными механическими свойствами при обычных и повышенных температурах. Он используется для изготовления пружин, которые должны выдерживать высокие температуры и подвергаться коррозионному воздействию.

(г) Нихром. Состоит из 65% никеля, 15% хрома и 20% железа. Применяется для изготовления проволоки электрического сопротивления для электропечей и нагревательных элементов.

e) Нимоник. Состоит из 80% никеля и 20% хрома. Он широко используется в газотурбинных двигателях.

NPTEL :: Металлургия и материаловедение

21147 в сварке4 9014 9014 908 Контроль деформации в сварных швах Металлы 901 47 PDF недоступен Загрузка Stack8 Цветные металлы PDF недоступны

Продукты и услуги

  • Все
  • Новости и аналитика
  • Продукты и услуги
  • Библиотека стандартов
  • Справочная библиотека
  • Сообщество

ПОДПИСАТЬСЯ

АВТОРИЗОВАТЬСЯ

Я забыл свой пароль.

Нет учетной записи?

Зарегистрируйтесь здесь. Дом Новости и аналитика Последние новости и аналитика Аэрокосмическая промышленность и оборона Автомобильная промышленность Строительство и Строительство Потребитель Электроника Энергия и природные ресурсы Окружающая среда, здоровье и безопасность Еда и напитки Естественные науки Морской Материалы и химикаты Цепочка поставок Пульс360 При поддержке AWS Welding Digest Товары Строительство и Строительство Сбор данных и обработка сигналов Электрика и электроника Контроль потока и передача жидкости Жидкая сила Оборудование для обработки изображений и видео Промышленное и инженерное программное обеспечение Промышленные компьютеры и встраиваемые системы Лабораторное оборудование и научные инструменты Производственное и технологическое оборудование Погрузочно-разгрузочное и упаковочное оборудование Материалы и химикаты Механические компоненты Движение и управление Сетевое и коммуникационное оборудование Оптические компоненты и оптика Полупроводники Датчики, преобразователи и детекторы Специализированные промышленные товары Контрольно-измерительное оборудование Все каталоги продукции

металлов.Никаких черных металлов. Медь, Серебро

Металлы на земле

Кроме черных металлов, много других металлов используются в технологических устройствах. Стоит выделить использование (среди прочего) меди, бронзы, алюминия и т. Д.

Изделия из чистых цветных металлов.

Алюминий
Ярко-белый цвет, светлый, устойчивый к окислению, очень много, плохие механические свойства.
Контейнеры, металлоконструкции, кабели высокого напряжения и вещи, для которых вес является критическим параметром (очень важным) e.грамм. ступицы колес. (см. рисунок)

оборудования.

Медь

Красноватый цвет, отличная теплопроводность и электрическая проводимость, устойчивость к коррозии, свариваемость, пластичность и пластичность.
Применяется для изготовления электрических проводов и центрального отопления

Олово
Оно имеет очень низкую температуру плавления, имеет бело-голубой цвет, блестящее и очень мягкое. Он очень полезен для сварки труб и медных кабелей.
Также покрывает сталь для формования олова.

Цинк
Белый цвет, очень стойкий к коррозии и окислению, с медью образует латунь. Используется для покрытия других металлов и сплавов для их защиты (оцинковка)

Продукция цветных металлов — сплавы

Сплавы состоят из двух или более элементов, например бронзы и латуни.
Бронза изготавливается из меди и олова и используется для изготовления фигур.

Заключительные процедуры

Формование : Это метод, который позволяет нам получать металлические детали сложной или необычной формы.Он заключается в заполнении формы расплавленным металлом или сплавом таким образом, чтобы при остывании металла он принимал желаемую форму.

Деформация или штамповка: Она заключается в деформации металлов (горячих и холодных) механическим воздействием до получения желаемой формы.
Справа вы видите один из старейших процессов — ковку

.

Механизированный : Придание формы металлу путем вырезания части из большей части.Примеры механических операций — резка пилой, сверление или фрезерование.

Металлы могут образовывать союзы следующих типов:

Постоянно : разрушение союза означает уничтожение материалов, из которых состоит союз. Примеры — сварка и заклепки.
Съемный : можно разорвать соединение и восстановить исходные материалы в неповрежденном виде. Применяется в подвижных элементах и ​​резьбовых соединениях типа петель.

Инструменты

Вот некоторые из наиболее распространенных инструментов:
1. Линейки . Они могут быть металлическими или деревянными. Он используется для измерения вещей. В Англии линейки обычно измеряются в дюймах, что равно 2,54 сантиметрам.

Молотки используются для забивания гвоздей, придания им формы или деформации. Он состоит из ручки (обычно из дерева) и головки (из железа).
Вы должны быть осторожны, когда используете их, потому что с ними легко попасть в аварию, которая может повредить вам или вашему собеседнику.

Стенд Зажим используется для удержания деталей (из металла или других материалов), чтобы нам было проще работать с ними.Он прочно удерживает материал, и мы должны быть осторожны, потому что «выступ» зажима может оставить след на детали, если она мягкая.
Напильники используются для удаления небольших кусочков металла или дерева и создания более гладких поверхностей.
Существует много типов файлов, которые определяются на основе канавок.

Существует много типов отверток , некоторые из них длиннее других, некоторые предназначены для использования с определенными винтами, а другие — для использования с другими винтами, но все они используются в качестве отверток
Пилы : Есть пилы по дереву и пилы для металл, это зависит от зубов (одни крупнее других).
Пила по дереву имеет открытую дугу, а пилы по металлу — закрытую дугу (см. Рисунок)

Словарь:

Винт: Изображение слева

Блок 13: Цветные металлы Dr

Презентация на тему: «Блок 13: Цветные металлы Dr» — стенограмма презентации:

1 Блок 13: Цветные металлы Dr
Блок 13: Цветные металлы Dr.Базиль Хамед Технический английский Исламский университет Газы Февраль, 2017

2 Словарь Duralumin الدوراليومين مزيج من لمونيوم و نحاس
Ducility ليونة Plating تصفيح, لاء معدني Гальваника الجلamedنة Molten موسم

3 Схема A. Обычные цветные металлы
Гальваника цветными металлами Василий Хамед

4 А.Обычные цветные металлы для машиностроения
Эти выдержки с веб-сайта посвящены применению некоторых цветных металлов в машиностроении, то есть металлов, не содержащих железа. Алюминий широко используется, часто в виде сплавов. Примером может служить дюралюминий, сплав, используемый в авиастроении, который также содержит медь (4,4%) и магний (1,5%). Алюминий также можно сплавить с титаном для получения очень прочных и легких металлов. Медь является отличным проводником электричества, что делает ее идеальной для использования в электрических проводах.Хорошая пластичность также делает его пригодным для труб. Медь широко используется в сплавах, особенно в латуни (медь и цинк) и бронзе (медь и олово, а иногда и свинец). Василий Хамед

5 A. Обычные цветные металлы для машиностроения
Серебро — драгоценный металл — ссылка на его высокую стоимость. Это лучший электрический проводник, чем любой другой материал, поэтому его часто используют для электронных соединений.Другой драгоценный металл — золото — также является отличным проводником и обладает высокой устойчивостью к коррозии. Примечания: Подробнее о металлах и сплавах см. Раздел 11. Подробнее о пластичности см. Раздел 18. Химический символ для алюминия = AI, меди = Cu, магния = Mg, титана = Ti, цинка = Zn, олова = Sn, свинец = Pb, серебро = Ag и золото = Au. Василий Хамед


6 B. Гальваника цветными металлами
Цветные металлы можно использовать для защиты стали от коррозии путем гальваники, то есть покрытия тонким слоем металла.Пример — гальваника (цинкование). Сталь можно оцинковать горячим способом, поместив ее в расплавленный (жидкий) цинк. Он также может быть оцинкован гальваническим способом, что является видом гальваники. С помощью этого метода стальной компонент помещается в жидкость (часто кислоту), называемую электролитом, и подключается к отрицательной клемме (-) источника питания, чтобы стать катодом (отрицательная сторона). Кусок цинка также помещается в электролит и подключается к положительной клемме (+) источника питания.Затем он становится анодом (положительная сторона). Василий Хамед

7 B. Покрытие цветными металлами
Электрический ток течет между металлическими частями через электролит. Это вызывает химическую реакцию, в результате которой на катоде осаждается цинк, покрывающий компонент. Родственный процесс, называемый анодированием, используется для защиты алюминия. Анодируемый компонент подключается к положительному выводу (чтобы стать анодом) и помещается в электролит с катодом.По мере прохождения электричества на аноде осаждается оксид алюминия. Поскольку он тверже алюминия, он обеспечивает защиту.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

2019 © Все права защищены.
1 Введение в металлургию сварки PDF недоступен
2 Обзор сварочных процессов PDF недоступен PDF недоступен
4 Фазовая диаграмма системы Iron Carbon PDF недоступен
5 Фазовая диаграмма цветных металлов и сплавов PDF недоступна14 PDF недоступен
7 Диаграммы преобразования температуры и температуры PDF недоступен
8 Диаграммы преобразования непрерывного охлаждения PDF недоступны4
7 PDF недоступен
10 Решение проблем на фазовых диаграммах PDF недоступен
11 Введение в механизм упрочнения в металлах PDF недоступен
твердое решение для улучшения и улучшения зерен PDF недоступен
13 Осадочное упрочнение и усиление мартенсита PDF недоступен
14 Деформационное упрочнение и деформационное старение PDF недоступно для решения проблем с металлами
PDF недоступен
16 Введение в процессы термообработки при сварке PDF недоступен
17 Упрочнение и закаливаемость PDF недоступен
18 Martempe кольцо и Austempering PDF недоступен
19 Способы упрочнения корпуса PDF недоступен
20 Термическая обработка цветных металлов и сплавов14147 PDF недоступен
22 Тепловой поток при сварке PDF недоступен
23 Распределение температуры при сварке PDF недоступно недоступен
25 Металлургическое влияние теплового потока на сварку PDF недоступен
26 Принципы затвердевания при сварке PDF недоступен
Solist 27 доступен
28 Конституционное переохлаждение PDF недоступен
29 Микросегрегация и бандажирование PDF недоступен
3014 Grain 7 9014 Отчетливые зоны в образце, полученном сваркой плавлением PDF недоступен
32 Зона термического влияния PDF недоступен
33 Свойства термоаффектной зоны 4 Продукты в сварных изделиях PDF недоступен
35 Введение в предварительный нагрев и термическую обработку после сварки PDF недоступен
36 Предварительный нагрев и термическая обработка после сварки различных материалов PDF le
37 Остаточные напряжения при сварке PDF недоступен
38 Причины развития остаточных напряжений при сварке PDF недоступен
9014 Измерение остаточных напряжений 9014 9014 Измерение остаточных напряжений 39 недоступен
40 Контроль остаточных напряжений в сварных деталях PDF недоступен
41 Введение в сварочные деформации PDF недоступен
9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 9014 43 Угловые деформации в сварных швах PDF недоступен
44 Изгиб, изгиб и скручивание сварных швов PDF недоступен
45 46 Введение в трещины в сварных швах PDF недоступен
47 Типы трещин сварных швов PDF недоступен
48 Трещины в конкретных сварных швах 14 PDF Трещины и трещины повторного нагрева PDF недоступен
50 Пластинчатые трещины и коррозионное растрескивание под напряжением PDF недоступен
51 Введение в свариваемость металлов14 5214 9014 9014 9014 9014 9014 9014 9014 Углеродистые стали PDF недоступен
53 Свариваемость легированных сталей PDF недоступен
54 Свариваемость чугуна PDF недоступна Свариваемость
56 Введение в сварочные дефекты PDF недоступен
57 Поверхностные и подповерхностные сварные дефекты PDF недоступны
PDF недоступен
59 Рекомендации по усталостному нагружению при сварке PDF недоступен
60 Конструктивные особенности для усталостной и статической нагрузки при сварке Руководство по выбору PDF недоступно