Типы соединения: Виды соединений

Содержание

Виды соединений

Любые машины, их узлы и агрегаты состоят из множества различных отдельных деталей. Все эти детали определенным образом взаимодействуют между собой, составляя единый целый функционирующий механизм. Взаимодействие это определяет виды соединения деталей. Соединения могут быть как разъемными, так и неразъемными.

Разъемные соединения

Разъемные соединения – это те, при помощи которых возможно, как правило, неоднократно произвести сборку и разборку узлов механизма. Примеры разъемных соединений – это резьбовые, шплинтовые, штифтовые, зубчатые и пр. В свою очередь, они могут быть как подвижными, так и неподвижными.

Разъемные соединения получили широкое применение там, где необходима периодическая замена одной детали на другую в связи с регламентным обслуживанием или ремонтом механизма, смены какого-либо рабочего элемента машины (приспособление, инструмент), для постоянной или временной фиксации детали, периодическим взаимодействием деталей механизмов друг на друга в процессе их работы и т.д.  Такие соединения образуются при помощи крепежных резьбовых элементов (болты, резьбовые шпильки, различные гайки, винты), ходовых винтов (червячных, шнековых), шлицов (зубьев) сопрягаемых деталей, шпонок, штифтов, шплинтов, клиньев, а также комбинацией нескольких таких элементов. Возможно разъемное соединение способом сочленения специальных выступов на скрепляемых деталях.

Резьбовое соединение – самое распространенное из разъемных соединений. Широко применяется оно из-за простоты и легкости монтажа и демонтажа, а также относительно низкой стоимости изготовления крепежных элементов. Резьба представляет собой ряд равномерно расположенных друг от друга выступов постоянного сечения различной формы, образованных на боковой поверхности прямого кругового стержня или конуса. Она бывает метрической (наиболее используемая в крепеже) и дюймовой (применяется в трубных соединениях). Также по различным признакам резьба может классифицироваться как цилиндрическая и коническая, трапецеидальная, круглая, упорная, ходовая, одно- и многозаходная. Могут изготавливаться нестандартные и специальные резьбы.

Рис. Резьбовое соединение.

 

Соединения при помощи ходовых винтов используется там, где необходимо преобразование вращательного движения в поступательное для перемещения суппортов, кареток, фартуков и других механизмов.

Зубчатое соединение представляет собой скрепление деталей при помощи шлицов-зубьев, по сути это многошпоночное соединение, где шпонки составляют монолитное целое с деталью, например, валом, и расположены вдоль ее продольной оси. Такие соединения используются в коровках передач, в карданных валах, в узлах, где происходит перемещение вдоль осей валов.

Рис. Зубчатое соединение.

 

Шпоночное соединение используется для фиксации одной вращающейся ведомой детали на другой – ведущей. Так при помощи шпонки крепится колесо, шкив на валу для передачи крутящего момента. Для белее точной фиксации вместо шпонок используется штифтовое соединение.

Рис. Штифтовое соединение

 

Шплинты применяются в основном для стопорения прорезных и корончатых гаек.

Рис. Шплинтовое соединение

 

Неразъемные соединения

Неразъемные соединения – это те, разборка которых невозможна без механических воздействий, разрушающих и/или повреждающих сопрягаемые детали. Образовываться такие соединения могут при помощи сварки, пайки, склепки и даже склеивания деталей между собой.

Для неразъемного соединения применяют методы:

  • сварки,
  • склепки,
  • склейки,
  • опрессовки,
  • развальцовки,
  • посадки с натягом,
  • сшивания,
  • кернения.

Такие соединения имеют место там, где оно работает весь срок службы машины, механизма, агрегата или узла, и требуется неподвижная фиксация деталей относительно друг друга.

Сварка представляет собой соединение, в процессе которого разогреваются детали, изготовленные из различных материалов (сталь, пластмасса, стекло), до состояния частичной или полной пластичности в местах их скрепления.

Рис. Сварка

 

В отличии от сварки при соединении пайкой детали не прогреваются до пластического или расплавленного состояния, а роль скрепляющего элемента играет расплавленный припой из материалов, имеющих существенно более низкую температуру плавления, чем сопрягаемые элементы.

Рис. Пайка

 

В клеевых швах вместо припоя используются различные клеевые составы.

Соединения при помощи клепки хорошо выдерживают вибрационные и температурные нагрузки, устойчивы к коррозии. Склепываются также трудносвариваемые материалы и материалы, различные по своему химическому составу. Такое соединение образуется при помощи заклепок с коническими, сферическими или коническо-сферическими головками. Существуют также комбинированные вытяжные заклепки, увеличивающие быстроту монтажа. 

Рис. Соединение при помощи клепки

 

Опрессовка позволяет армировать изделия, выполняя изолирующие функции от коррозионного воздействия.

Рис. Опрессовка

 

Кернение и вальцовка осуществляются за счет деформации деталей в месте соединения.

Посадка с натягом производится при определенных терморежимах с определенными допусками изготовленных деталей.

назначение, виды соединений. Примеры, достоинства, недостатки видов соединений

Машины и станки, оборудование и бытовая техника — все эти механизмы в своей конструкции имеют множество деталей. Их качественное соединение – гарантия надежности и безопасности при работе. Какие виды соединений бывают? Их характеристики, достоинства и недостатки рассмотрим подробнее.

Классификация

Различные виды соединений можно поделить на две основные группы. Первая из которых по принципу действия:

  • Подвижные. Детали могут производить движение относительно друг друга.
  • Неподвижные. Обе части детали жестко закреплены между собой.

В свою очередь, каждый вид предыдущей классификации может осуществляться двумя способами соединения:

  • Разъемное. Применяется, когда требуется периодическая замена деталей, сборка и разборка механизма в целом. Это следующие виды соединений: резьбовое (при помощи ходовых болтов), зубчатое, шпоночное и пр.
  • Неразъемное. Такие соединения можно демонтировать только с помощью механического воздействия, при котором происходит разрушение сопряженных частей. Какие это виды соединений? Среди них — сварка, склейка, клепание, развальцовка, опрессовка, посадка с натягом, сшивание, кернение и т. д.

Итак, давайте рассмотрим подробнее основные виды соединений деталей.

Резьбовой метод

Старый и давно испытанный вариант крепления. Для него используются следующие элементы: болты, винты, шпильки, винтовые стяжки и прочие. Крепление осуществляется за счет резьбы на крепеже и в отверстии детали.

Спиральные выступы на стержне и в технологическом отверстии деталей называют резьбой. Рассмотрим основные крепежные изделия:
  • Болт представляет собой резьбовой стержень, на одном конце которого находится крепежная головка. Ее форма бывает шестигранной, квадратной, круглой и т. д.
  • Винт отличается от предыдущего изделия тем, что на головке располагается прорезь (шлиц) под отвертку. Он бывает шестигранным, прямым, крестовым и т. д. По типу головки изделия бывают потайными, цилиндрическими, полукруглыми, полупотайными.
  • Шпилька – стержень с резьбой на обоих концах. В отличие от предыдущих вариантов не имеет головки.
  • Установочная шпилька на одном конце имеет шлиц.
  • Гайка – призма со сквозным отверстием или заглушенным с одной стороны.

К этим метизам выпускаются шайбы: плоская, пружинная, деформируемая. Такая фиксация применяется повсеместно.

Шпоночное

Шпонки фиксируют вал с деталями, которые передают вращение и колебание. Конструкция таких элементов может быть призматическая, клиновая, сегментная, тангенциальная. Такой крепеж образует следующие виды соединений:

  • Ненапряженные осуществляются с помощью призматических сегментных шпонок. При сборке нет предварительного напряжения.
  • Напряженные производятся тангенциальными и сегментными шпонками. При сборке появляется монтажное напряжение. Используются для сложных механизмов.

Зубчатые (шлицевые) соединения

Крепление происходит за счет выступающих зубьев на валу и углубления под них в ступице.

Размеры закреплены стандартами. Этот способ используется для подвижных и неподвижных креплений.

Здесь выделяют три варианта фиксации по жесткости: легкая, средняя, высокая. Отличие состоит в количестве и высоте зубьев. Оно лежит в диапазоне 6-20 штук. Форма зубьев:

  • Треугольные маловостребованы. Используются для небольших неподвижных валов и с малым вращательным моментом.
  • Прямобочные. Центрируются по боковым граням, по внутреннему и наружному диаметру.
  • Эвольвентные. Применяются для больших валов.

Где используются эти виды? Назначение соединений такого плана – передача вращающего момента. Наиболее известное применение – электроинструменты.

Мы рассмотрели разъемные крепления. Далее изучим основные виды соединений неразъемных.

Сварочное

Чем они особенны? Такие виды соединений образуются за счет нагрева и наплавления материала в месте крепления с образованием сварного шва. Это сцепление считается одним из самых распространенных.

Существует несколько вариантов сварки. Самые популярные из них:
  • Сварка электродугой. Можно выделить три основных подвида: автоматическая под флюсом (отличается высокой производительностью и качеством, используется в массовом производстве), полуавтоматическая под флюсом (используется для коротких прерывистых швов), ручная (пониженная скорость производительности, качество зависит напрямую от опыта сварщика).
  • Контактная сварка. Применяется на массовом производстве для тонколистного металла. Шов выполняется нахлесточный.

Один из популярных вариантов крепления представлен на фото.

Часто применяется и в загородном строительстве.

Пайка

В отличие от сварки в момент пайки поверхность металла не нагревается до температуры оплавления. Роль связующего выполняет расплавленный припой, который имеет более низкую температуру плавления.

Такой способ сцепления применяется для малых деталей. Связано это с ограничением зазора между поверхностями частей.

Клеевые соединения

Для такого крепления не требуется разогрев поверхностей.

Под каждый вид металла подбирается свой клей, который обеспечит плотное сцепление. Для таких операций детали подготавливаются. Поверхность шлифуется, обезжиривается, наносится специальная грунтовка, после этого производят операцию по склеиванию. Применяемые составы отличаются дополнительными свойствами и адгезией к различным поверхностям.

Клепочная фиксация

Этот способ сцепления применяется в основном для соединения листового металла и фасонных профилей. Технологическое отверстие в поверхностях осуществляют сверлением, далее вставляется клепка.

За счет механического воздействия стержень и головка деформируются, заполняют и фиксируют отверстие. Такую операцию производят ручным и механизированным способом. Клепками фиксируют материал, не поддающийся сварным работам, пайке, склеиванию, и к деталям, где надо оттянуть разрушающий процесс.

Соединения с натягом

Производится подгонкой посадочных мест деталей. Сцепка происходит за счет силы трения. В основном этот вид считается неразъемным. Но это условно. В практике все же производят демонтаж и замену деталей.

Достоинства, недостатки видов соединений

Каждый крепеж отличается своими характеристиками. Рассмотрим все варианты с точки зрения преимуществ и недостатков:

  • Резьбовое. Выдерживает большие нагрузки, надежное сцепление, широкий ассортимент изделий, легкость монтажа и демонтажа, возможность применять механизацию, невысокая стоимость. Недостатки: повышенное количество концетратов напряжения, снижает сопротивляемость.
  • Шпоночное. Несложная конструкция, легкий монтаж и демонтаж. Недостатки: паз для шпона за счет уменьшения сечения вала и ступицы ослабляет их. Также это происходит за счет концентраций напряжений кручений и изгиба. Трудоемкий процесс изготовления крепежа.
  • Зубчатое. Образует хорошее сцепление и точное направление осевого перемещения, передает больший вращающий момент, меньшее количество деталей, надежность при реверсивных и динамических нагрузках, меньшее ослабление вала, уменьшение длины ступицы. Недостатки: повышенная цена, сложная технология производства.
  • Сварочное. Невысокая стоимость работ, соединение получается герметичным и плотным, применение автоматизированных процессов, возможность работы с толстым профилем. Недостатки: при ручной сварке качество зависит напрямую от квалификации работника, деформация поверхности деталей при нагреве, низкая надежность при вибрациях и ударных воздействиях.
  • Пайка. Нет деформации поверхностей деталей, высокая точность, возможность распайки. Недостатки: сложный процесс подготовки оснований, должен обеспечиваться минимальный зазор.
  • Клеевое. Невысокая стоимость, не происходит ослабление рабочего сечения, возможность комбинированного использования с другими видами креплений, герметичность стыка, повышает антикоррозийные свойства шва, устойчивость к воздействию воды, химии, температурным перепадам, простата технологии нанесения. Недостатки: тщательная подготовка основания, при неправильном подборе состава могут снижаться прочностные характеристики.
  • Клепочное. Возможность применения к материалам, которые не поддаются сварке, надежность, препятствует появлению усталостных трещин. Недостатки: трудоемкость, материалоемкость, при процессе появляется деформация поверхностей деталей из-за механического воздействия.
  • Соединения с натягом. Конструкция достаточно проста, хорошее расположение деталей относительно друг друга, выдерживает большие нагрузки. Недостатки: непростая сборка, прочность рассеивается под воздействием вибраций и колебаний.

Как видно, каждый вид имеет свои преимущества и недостатки. Учитывая эти факторы, подбирают оптимальные виды крепежа в каждом конкретном случае. Рассмотрим, где применяются различные соединения.

Виды соединений. Примеры применения

Резьбовое, клеевое, сварное соединения встречаются повсеместно в любой отрасли. Например, строительной, мебельной, в тяжелой промышленности и так далее. Шпоночные и шлицевые фиксации широко используется в электроинструментах, оборудовании, машиностроении. Соединения с натягом устанавливаются на валы зубчатых колец, червячные колеса. Пайка часто применяется в работе с электронными системами, где требуется максимальная точность. Клепочное применяется для сшивания листов тонкого металла. Однако, как показано на последнем фото, при помощи заклепок можно скрепить достаточно крупные швеллера. Это лишь незначительный список применения отдельных вариантов крепления.

Можно сказать, что с техническим прогрессом технология сцепления бурно развивается, а это значит, что будут появляться новые виды соединений деталей. Современный мир наполнен агрегатами, машинами и механизмами. От того, насколько прочно закреплены детали, зависят качество и срок службы узлов. Также важно, чтобы соединение не искажало форму изделия и не вносило дополнительных изменений в конструкцию. Поэтому оно должно соответствовать технологическим нормам. Если их соблюдать, то количество аварийных ситуаций на предприятиях сократится в разы, а сами агрегаты прослужат очень долго.

Итак, мы выяснили, какие существуют виды соединения деталей.

Анатомия человека. Типы соединения костей.

Автор статьи — профессиональный репетитор М. А. Филатов

Различают три типа соединения костей в организме:

  1. Неподвижное
  2. Полуподвижное
  3. Подвижное

Неподвижный тип соединения костей характерен для костей черепа (за исключением нижней челюсти) и таза. При таком типе соединения одна кость словно врастает в другую, в результате в месте их соединения образуется костный шов. Неподвижный тип соединения – самый прочный.


Рис. Неподвижное соединение костей черепа с помощью швов(швы обозначены красным).

При полуподвижном типе соединения кости связываются друг с другом с помощью хрящей. Полуподвижно друг с другом соединены позвонки, а также рёбра с грудиной.


Рис. Соединение позвонков в позвоночнике с помощью хрящевых межпозвоночных дисков (обозначены голубым) – пример полуподвижного соединения.

Подвижные соединения костей называют суставами. Сустав образуют две или несколько костей, соединённых друг с другом связками – прочным тяжами из соединительной ткани. Если в суставе только две кости, то одна из них образует суставную головку, а другая – суставную впадину. Головка и впадина снаружи покрыты гиалиновым (

суставным) хрящом. Он позволяет уменьшать трение во время работы сустава. Кроме того, снаружи сустав окружает суставная сумка. Её клетки выделяют в полость сустава синовиальную (суставную) жидкость, которая также необходима для уменьшения трения при работе сустава. Помимо этого синовиальная жидкоcть доставляет к клеткам гиалинового хряща питательные вещества, так как в нём отсутствуют кровеносные сосуды.


Рис. Схема строения сустава:

1 – суставная связка,
2 – суставная сумка,
3 – гиалиновый хрящ,
4 – суставная впадина,
5 – суставная головка,
6 – синовиальная жидкость.

Какой тип соединения указать при настройке роутера? Узнаем нужную информацию, которая пригодится в процессе настройки

Перед тем, как приступить к настройке маршрутизатора, желательно узнать необходимую информацию. Нам нужно узнать, какую технологию соединения с интернетом использует наш интернет-провайдер, нужно иметь необходимые параметры, которые нужно будет задать в настройках роутера (в зависимости от технологии соединения). Если, например провайдер использует соединение по технологии Динамический IP, то вам не нужно никаких дополнительных параметров. Достаточно, в настройках роутера выбрать Динамический IP, и интернет заработает.

Как определить тип соединения интернет-провайдераТак же, нужно узнать, делает ли провайдер привязку по MAC адресу. Если делает, то после подключения кабеля к роутеру, интернет не будет работать даже после правильной настройки, ведь у провайдера не прописан MAC адрес роутера.

Сейчас мы по порядку во всем разберемся.

Самое главное, это понять, что задача роутера, это подключится к интернету и раздавать его на ваши устройства. Он устанавливает соединение с вашим провайдером точно так же, как и компьютер. Для того, что бы настройка маршрутизатора прошла гладко и без проблем, нужно правильно указать тип соединения (WAN Connection Type), и задать нужные параметры.

Что будет, если неправильно выбрать тип соединения?

Это самая популярная проблема при настройке роутеров. Интернет работать не будет. Беспроводная сеть появится, но, после подключения к ней, на ваших устройствах интернета не будет. На компьютерах, например, будет статус соединения «Без доступа к интернету». По кабелю, от маршрутизатора, интернет так же не будет работать.

После настройки роутера, интернет не работаетТут все понятно, роутер не установил соединения с вашим провайдером, так как неправильно заданы параметры.

Как узнать технологию соединения, которую использует мой провайдер?

В России, Украине, и наверное в других странах СНГ, чаще всего провайдеры используют такие технологии: Динамический IP, Статический IP, PPPoE, PPTP, L2TP.

  • Динамический IP – самая нормальная технология:) . Очень много интернет провайдеров используют именно ее. Просто подключаем кабель к роутеру и интернет уже работает, ничего настраивать не нужно. Только нужно указать технологию Dynamic IP. Но, как правило, в настройках роутера она установлена по умолчанию.
  • Статический IP – не очень популярная технология. Что бы настроить такое подключение на роутере, вы должны знать IP адрес, который вам должен выдать интернет провайдер.
  • PPPoE – популярная технология (в России), которая требует создания специального высокоскоростного соединения. Если ваш провайдер работает по технологии PPPoE, то на компьютере у вас скорее всего было создано такое соединение. В настройках маршрутизатора нужно будет выбрать PPPoE, указать логин и пароль, которые вам выдает провайдер. Так же, возможно, нужно будет задать статический IP адрес.
  • PPTP и L2TP – похожие протоколы, при настройке которых нужно так же указывать имя и логин. А так же, адрес сервера и по необходимости – статический IP. Если интернет был раньше подключен к компьютеру, то на компьютере так де было специальное подключение, которое вы запускали.

Написал уже много, а на главный вопрос, так и не ответил.

Перед тем, как приступить к настройке роутера, обязательно узнайте, какую технологию использует ваш интернет-провайдер.

Как узнать? Позвоните в поддержку провайдера и спросите. Зайдите на сайт провайдера и найдите там инструкции по настройке оборудования. Или посмотрите в документах, которые вы получили при подключении.

Если будете звонить в поддержку, то спросите еще, делает ли провайдер привязку по MAC адресу, и какое значение MTU, лучше указать в настройках маршрутизатора.

Если вы уже знаете технологию соединения, то вы так же должны знать необходимые параметры. Если у вас Динамический IP, то как я уже писал выше, никаких параметров не нужно, но если у вас например Статический IP, PPPoE, PPTP, или L2TP, то вы должны знать логин, пароль, статический IP (если нужно), адрес сервера. Или только определенные параметры (все зависит от соединения).

Как правило, эта информация указана в договоре по подключению к интернету.

Есть ли привязка по MAC адресу?

Очень многие провайдеры, привязывают интернет к MAC адресу определенного сетевого устройства. Каждая сетевая карта компьютера, или роутер, имеют свой MAC адрес, и этот адрес прописывается у провайдера.

Если ваш интернет провайдер делает такую привязку, то даже после правильной настройки роутера, интернет работать не будет. Так как скорее всего, у провайдера прописан MAC адрес вашего компьютера, не маршрутизатора.

Что делать в такой ситуации?

Узнать, делается ли привязка по MAC-адресу. Если нет, то никаких дополнительных настроек делать не нужно. Если есть привязка, то в настройках роутера, нужно клонировать MAC адрес. Нужно, что бы на роутере был такой же MAC, как и на компьютере, к которому привязан интернет. В статьях по настройке определенных роутеров, я стараюсь писать, как это сделать.

Есть еще один вариант: посмотреть MAC-адрес роутера (как правило, он находится на наклейке на самом роутере), позвонить в поддержку интернет-провайдера, и сказать им новый MAC, к которому нужно привязать интернет.

Залог успешной настройки Wi-Fi роутера:

  • Правильно указать тип соединения, и правильно задать необходимые параметры (это настройки на вкладке «WAN», «Интернет», «Internet» – на разных роутерах по-разному), которые выдаете интернет провайдер.
  • Клонировать MAC-адрес, или прописать MAC-адрес роутера, если провайдер делает привязку.

Это два основные правила. Уделите особое внимание этим двум пунктам, и у вас все получится. Главное, что роутер уже будет раздавать интернет, а там настроить Wi-Fi сеть, установить пароль, и другие функции, вы уже сможете по инструкции для определенного производителя, или модели. Эти инструкции вы можете найти у нас на сайте, или в интернете.

Назначение и виды резьбовых соединений — классификация резьб

Автор статьи: pkmetiz.ru

Наиболее распространенным способом стыковки элементов различных конструкций является резьбовое соединение. Оно широко применяется в строительстве, при монтаже трубопроводов, в машиностроении и многих других отраслях. Популярность этого способа обусловлена следующими преимуществами:

  • высокая надежность и продолжительный срок службы;
  • создание разъемных соединений, простота монтажа и демонтажа при помощи общедоступных инструментов;
  • контроль силы затягивания при сборке;
  • малый вес и размеры крепежа, по сравнению с соединяемыми конструктивными элементами;
  • широкая доступность, большой выбор типоразмеров крепежа.

Для использования при изготовлении и монтаже деталей необходимо знать существующие виды и параметры резьбовых соединений.

Назначение и виды резьбовых соединений

Резьбовые соединения любых видов резьб выполняют несколько основных функций. Основным назначением является обеспечение плотного соединения стыкуемых деталей с достижением необходимого значения. Кроме того, обеспечивается фиксация деталей в заданном положении, предотвращается возможность их смещения при эксплуатации конструкции или механизма. Еще одним распространенным назначением резьбовых соединений является обеспечение заданного расстояния между деталями.

Классификация соединений этого типа осуществляется по нескольким параметрам. При этом она имеет большое значение, поскольку от вида резьбовых соединений зависит их область применения, особенности эксплуатации, нормы отбраковки.

В зависимости от способа исполнения различают соединения, которые выполняются посредством крепежных элементов и непосредственные соединения. В первом случае монтаж выполняется при помощи болтов, шпилек, гаек, винтов и других вспомогательных элементов. Непосредственное соединение монтируется путем скручивания друг с другом соединяемых элементов, например, труб с нарезанной резьбой.

В зависимости от формы поверхности различают цилиндрические и конические резьбы. Оба этих типа резьб могут быть наружными и внутренними. По направлению витков нарезка может быть левой или правой.

Ключевым параметром для классификации является тип профиля нарезки. По этому признаку выделяют следующие виды резьбовых соединений деталей:

  • метрическая;
  • дюймовая;
  • трубная цилиндрическая;
  • трапецеидальная;
  • упорная;
  • круглая.

Рассмотрим эти типы более подробно.

Метрическая резьба

Самым распространенным видом резьбовых соединений является метрическая резьба. Ее профиль выполняется в соответствии с ГОСТ 9150-81 в форме равностороннего треугольника с углом 60°. Шаг метрической резьбы может составлять 0,25-6 мм, а внешний диаметр — от 1 мм до 600 мм. Такой тип резьбового соединения применяется при изготовлении большинства крепежных деталей.

Кроме того, применяется коническая метрическая резьба с диаметром 6–60 мм конусностью 1:16. Этот тип нарезки позволяет выполнять герметичные соединения. При ее использовании достигается стопорение крепежа, что исключает необходимость применения стопорных гаек.

Дюймовая резьба

Дюймовая резьба имеет профиль в форме равнобедренного треугольника со значением угла 55°, что отличает ее от формы профиля метрической нарезки. Диаметры резьбы измеряются в дюймах. Шаг определяется в количестве витков на 1 дюйм длины резьбовой части изделия. В промышленности применяются резьбовые соединения с наружным диаметром от 3/16 до 4 дюймов с числом витков на один дюйм от 3 до 28. Этот тип нарезки широко применяется на деталях трубопроводов, а также на крепеже производства США, Великобритании и ряда других стран.

Также выпускаются изделия с конической дюймовой резьбой. Благодаря конической форме достигается улучшенная герметичность соединения, что позволяет не использовать уплотнительные элементы. Коническая дюймовая нарезка широко применяется при прокладке напорных трубопроводов малого диаметра в гидравлических системах.

Трубная резьба

Трубная цилиндрическая резьба выполняется по ГОСТ 6357-81. Она имеет профиль в форме равнобедренного треугольника, угол наклона гребней составляет 55°. Верхние грани гребней скруглены. Благодаря этому устраняются дополнительные зазоры в зоне выступов и впадин, что обеспечивает повышенную герметичность соединения. Трубная резьба относится к дюймовым. Ее диаметр составляет от 1/16 до 6 дюймов, а шаг — от 11 до 28 витков.

По сравнению с другими видами дюймовых резьб шаг трубной резьбы сокращен. Уменьшенный шаг позволяет не допустить критического сокращения толщины стенки трубы, что необходимо для сохранения прочностных характеристик трубопровода.

Трубная резьба может быть цилиндрической и конической. В последнем случае ее конусность определяется соотношением 1:16.

Трапецеидальная

К резьбовым соединениям этого вида относятся чаще всего соединения типа винт-гайка. Трапецеидальная резьба выполняется в соответствии с ГОСТ 9481-81. Ее форма представляет собой равнобокую трапецию. Угол наклона граней составляет 30°. Для резьбы крепежных элементов, применяемых в червячных передачах, предусмотрен угол наклона 40°.

Трапецеидальный профиль резьбы позволяет достичь повышенной прочности соединения. Благодаря этому ее применяют для соединения деталей механизмов, работающих под воздействием динамических нагрузок, например, в ходовых гайках, которыми фиксируются штоки задвижек и т. д.

Упорная резьба

Упорная резьба в соответствии с ГОСТ 10177-82 имеет профиль в виде неравнобокой трапеции. Угол наклона одной грани гребня составляет 3°, а второй грани — 30°. Этот тип применяют для крепежных элементов диаметром от 10 мм до 600 мм. Шаг резьбы составляет 2–25 мм. Этот вид резьбового соединения используется для крепления деталей, которые в процессе эксплуатации испытывают значительные осевые нагрузки в одном направлении. Профиль нарезки позволяет эффективно противостоять таким нагрузкам.

Круглая резьба «Эдисона»

Круглая резьба, выполняемая в соответствии с ГОСТ 6042-83, имеет профиль, формируемый дугами. Угол наклона сторон составляет 60°. Благодаря такой форме профиля круглая резьба обладает высокой стойкостью к механическому износу. Это позволяет применять ее в деталях конструкций и механизмов, которые подвержены регулярным переменным нагрузкам, например, в деталях трубопроводной арматуры.

фото, чертеж, примеры, монтаж. Виды разъемных и неразъемных соединений

В машиностроении и приборостроении очень важную роль играют не только детали, которые используются при производстве, но и их соединения. Казалось бы, все должно быть предельно просто, но на самом деле, если углубляться в эту тему, то можно обнаружить, что существует огромное количество разнообразных соединений, каждое из которых имеет свои преимущества и недостатки.

В данной статье будут описаны соединения разъемные – вы узнаете о том, какими именно они бывают, где применяются. Также будет проведено их сравнение с неразъемными соединениями.

На данный момент вы вряд ли себе представляете, что вообще все это значит, поэтому не стоит сразу окунаться в не самые простые нюансы. Прежде чем подробно рассматривать соединения разъемные, вам стоит понять, какими вообще они бывают, то есть разобраться с базовой классификацией этих деталей на производстве.

Классификация соединений

Если брать все виды соединений, то они делятся на две основные группы:

  • неподвижные;
  • подвижные.

Легко можно понять, что если соединение относится к первой группе, то значит, что две детали с его помощью скрепляются так, чтобы они находились статично по отношению друг к другу и не двигались. Они могут перемещаться в целом в механизме, но между собой они скреплены «намертво».

Что касается второй группы, то здесь речь идет о таком креплении, которое позволяет двум деталям в процессе работы механизма двигаться относительно друг друга, оставаясь при этом соединенными между собой.

Подвижные соединения уже подразделяются на разъемные и неразъемные. Первая подгруппа описывает те, которые можно в любой момент разомкнуть каким-либо способом, в то время как во вторую группу входят те, которые можно лишь разрушить – с применением силы, но без возможности восстановления соединения. Чаще всего такие соединения функционируют до тех пор, пока не износятся, после чего их попросту заменяют.

Но пришло время вернуться к первой большой группе – неподвижным соединениям. Здесь также имеются две подгруппы — соединения разъемные и неразъемные. В принципе, повторять их описание нет смысла, так как оно остается таким же, как и в случае с подвижными соединениями.

Теперь, когда вы ознакомились с базовой классификацией, пришло время сосредоточить свое внимание на главной теме статьи. Соединения разъемные будут описаны максимально детально, с указанием всех основных видов, которые можно встретить на производстве.

Резьбовое соединение

Виды разъемных соединений многочисленны, но среди них самым известным для всех, вероятнее всего, будет резьбовое. Даже если вы не работаете на производстве, вы определенно когда-либо использовали болт или винт, чтобы прикрепить ножку стула или какую-нибудь другую деталь.

Данный вид соединения характеризуется наличием резьбы, которая и обеспечивает крепеж, причем, при необходимости, детали можно рассоединить – именно поэтому данный вид и относится к разъемным. Резьбовая группа может быть разделена на 2 подгруппы, которые немного отличаются друг от друга:

  1. Один вид такого соединения может подразумевать использование двух деталей, на каждой из которых имеется соответствующая резьба, за счет чего и происходит скрепление. Однако такой вариант используется далеко не всегда.
  2. В быту вы, вероятнее всего, сталкивались именно со вторым вариантом, когда две детали скрепляются между собой посредством дополнительного резьбового элемента, такого как болт, винт или шпилька.

Достоинств у этого вида имеется очень много – он считается надежным, используется повсеместно, является универсальным, детали в нем взаимозаменяемы, а также он является высокотехнологичным.

Но имеются, естественно, и недостатки – например, такое соединение в определенных условиях может раскрутиться, так что его постоянно нужно контролировать. Также отверстия под крепеж вызывают концентрацию напряжения на одном участке, что может привести к перегрузке. Ну и, конечно же, такое соединение не обеспечивает герметичности. Все это было бы плохо, если бы данный вид являлся единственным, но, к счастью, существуют и другие виды разъемных соединений, о которых сейчас и пойдет речь.

Штифтовое соединение

Какие еще бывают разъемные соединения? Фотографии в тематических книгах и журналах всегда показывают в основном именно резьбовую версию, так как она является самой массовой и распространенной. Но есть и еще не менее популярное – штифтовое. Оно отличается от предыдущего тем, что у него нет резьбы.

Штифт – это деталь, которая плотно вставляется в отверстие, проходящее через обе детали, которые вам необходимо скрепить. В результате они остаются на одном месте и надежно крепятся друг к другу. Если вам сложно представить описываемый вариант в машиностроении, то можете представить что-то более обыденное – например, визит к стоматологу. Там также имеются специальные штифты, которые вставляются в десну, а затем на них наживляется пломба или коронка. Как видите, примеры разъемных соединений можно найти абсолютно во всех сферах жизни.

Шпоночное соединение

Это первый тип соединений в списке, являющийся подвижным. Чаще всего он используется для передачи вращательного движения. Как именно он функционирует? Монтаж разъемных соединений данного типа довольно прост – имеется вал для передачи вращения, в котором находится паз, куда можно вставить шпонку. На ступице, к которой присоединяется вал, имеется паз, в который и заходит шпонка, что обеспечивает передачу вращения.

Все крайне просто и эффективно – более того, вряд ли можно себе представить более легкое в монтаже и демонтаже соединение. А еще больше плюсов в копилку шпонки добавляет низкая стоимость. Но при этом не трудно догадаться, что пазы со шпонками ослабляют общую прочность всей конструкции, а также порождает излишнюю концентрацию напряжений.

Но в целом данное соединение также является крайне распространенным, и вы найдете его во многих механизмах. Так что если вас спросят о том, какие соединения относятся к разъемным, то вы можете смело называть те, о которых вы уже узнали из этой статьи – они самые популярные. Но не стоит думать, что на этом перечисление заканчивается – впереди вас ждут еще самые разнообразные виды соединений, которые используются повсеместно на производстве и даже в быту.

Шлицевое соединение

Шлицевое соединение также называется зубчатым, поскольку контакт и крепеж деталей в нем осуществляется за счет зубцов, расположенных по длине вала, в то время как в опоясывающей его детали имеются пазы для всех этих зубцов. Основным достоинством данного типа является его большая прочность, однако особое внимание стоит уделить и тому факту, что при таком соединении у вала остается возможность перемещения по всей длине, опоясывающей детали в случае необходимости. Во многом этим и отличаются разъемные и неразъемные соединения. Чертеж таких крепежей всегда выполняется довольно просто, поэтому каждый сможет спокойно с ним разобраться.

Только подобное крепление редко можно встретить в быту, чаще всего оно наблюдается в машиностроении и на других типах производства. У шлицевого соединения имеется широкая классификация, которая включает в себя разделение на группы:

  • по форме зубцов;
  • по тому, какая нагрузка через них передается опоясывающей детали;
  • по центрированию сопрягаемых деталей;
  • по подвижности и т. д.

Как видите, это один из ярчайших примеров того, что некоторые типы разъемных соединений могут относиться сразу к двум большим группам, то есть и к подвижным, и к неподвижным.

Байонетное соединение

Вы уже узнали, что разъемным является соединение, которое позволяет вам при необходимости отсоединить детали, скрепляемые между собой. Байонетное соединение также является разъемным, и его можно встретить довольно часто.

Выглядит оно необычно – одна деталь имеет какой-либо выступ, а другая – особый паз, в который выступ не просто заходит, он крепится путем нажима и поворота, что делает соединение гораздо более прочным. Сферы применения байонетов очень разнообразны – от машиностроения и электроники, до кухонной бытовой техники и фотоаппаратов. Так что существует довольно высокая вероятность того, что вы уже сталкивались с таким вариантом крепежа.

Клеммовые соединения

К разъемным соединениям относятся и клеммовые – они служат для соединения вала со ступицей, но при этом происходит процесс довольно необычным образом. Дело в том, что у ступицы имеется один или два разреза, в которые вставляется болт или другой крепежный элемент. При его закреплении ступица стягивается, плотно прижимаясь к валу, находящемуся внутри нее. Это довольно простое соединение, которое используется довольно часто и во многих сферах деятельности.

Особенно стоит выделить тот факт, что в большинстве случаев подобные соединения, используемые для крепления вала и ступицы, — такие как шпоночное или шлицевое — позволяют вам крепить детали исключительно соосно. Однако клеммовый тип позволяет вам соединять их под различными углами, а также производить крепление на любом участке вала. Чертеж разъемного соединения подобного типа обязательно включает в себя обозначения всех этих важных моментов.

Конусное соединение

Данный тип соединения так же использует стягивание в качестве основной силы крепления, как и предыдущее. Однако на этот раз используется немного другой подход. Принцип действия его сложно объяснить на словах, так как ступица в данном случае является относительно сложным механизмом, имеющим несколько встроенных элементов, которые при повороте ключа в отверстиях, проделанных специально для этого в ступице, сужают главное отверстие, в которое вставляется вал.

Если такое объяснение вам не кажется понятным, то проще всего будет представить себе старую дрель со сменными сверлами – там используется именно такое конусное крепление. Вы вставляете специальный ключ, разводите в стороны крепящие элементы, вставляете нужное сверло и закрепляете его повторным поворотом ключа. Однако используется подобное соединение далеко не только в дрелях, но и во многих механизмах на производстве.

Профильное соединение

Ну и последнее популярное разъемное соединение – это профильное. Оно отличается от всех предыдущих тем, что не имеет ни шпонок, ни зубцов, ни резьбы, ни каких-либо еще крепежных элементов. Дело в том, что детали в данном случае крепятся путем совмещения их между собой так, чтобы в результате они образовывали общую неразрывную поверхность. Проще говоря, они крепятся так, чтобы плотно прилегать друг к другу, при этом образовывая прочное соединение.

Главным его достоинством является невероятная простота и полное отсутствие каких-либо сторонних элементов, которые вызывают в других типах крепления излишнюю концентрацию напряжения. Но у этого вида соединений имеются и свои недостатки, такие как высокое контактное напряжение или большое распространение силы.

Ранее нами было сказано, что в данной статье будут описаны виды разъемных и неразъемных соединений. И хоть первые при этом были упомянуты как главная тема материала, нам все же стоит рассмотреть и основные, самые популярные, неразъемные крепежи.

Неразъемные соединения

Соединений, которые невозможно разъединить с или без использования инструментов не так уж и много. В первую очередь стоит отметить сварное соединение, которое используется практически везде на производстве. Каждый может себе представить процесс сварки, для которого используется специальное устройство, сильно разогревающее метал обеих деталей в месте крепления. Затем при остывании этот металл смешивается, образуя сварной шов, который невозможно уже разъединить просто так – только путем уничтожения.

Другой тип, который функционирует довольно схоже с первым, это пайка. Для создания паяного соединения также необходимо специальное устройство – паяльник. Он подает специальный материал на место крепления, и этот материал имеет более низкую температуру плавления, за счет чего детали остаются нетронутыми, но они соединяются между собой за счет этого материала. Данный метод применяется тогда, когда детали нельзя деформировать, изменять, то есть сварка для них не подходит.

Если же речь не идет о работе с металлом, то тогда часто применяется клееное соединение – такой вид известен абсолютно всем людям, так как вы, вероятнее всего, хотя бы раз в жизни пользовались клеем, чтобы соединить две детали для получения единого неподвижного целого. Точно то же самое происходит и на производстве, только в гораздо больших масштабах.

Ну и еще одно неразъемное соединение, о котором стоит упомянуть – это крепление с помощью заклепок. Данный вид используется довольно редко и был популярен ранее. Суть его заключается в том, что в подготовленные в деталях отверстия вставляются также подготовленные заранее крепежные материалы, которые называются клепками. Затем происходит процесс заклепывания – клепки обрабатываются таким образом, чтобы они прочно соединяли детали между собой, и разнять их было уже невозможно. Однако вы можете себе представить, насколько затратным и трудоемким был такой процесс. Именно поэтому сейчас клепочное соединение используется крайне редко, а заклепки в современности гораздо чаще можно увидеть в качестве декоративных украшений на обуви, одежде и так далее.

Вот и все основные виды производственных соединений — как разъемных, так и неразъемных. Конечно, их имеется гораздо больше – особенно если говорить об устаревших видах, которые сейчас практически не используются. Также существуют и те крепежи, которые не сильно распространены, используются в конкретной области и не являются особо популярными, чтобы их упоминать отдельно. Но можно смело сказать, что даже этого количества соединений достаточно, чтобы на производстве иметь возможность выбрать именно то, которое бы больше всего подходило для той или иной задачи и давало максимальную прочность и идеальное выполнение всех требований.

Типы подключения к интернету

Вступление

Интернет давно стал не только нормой, но даже необходимостью в нашей жизни. Очень много вещей завязаны на использовании Всемирной паутины. Но подключиться к нему невозможно, просто воткнув шнур в розетку. Рассмотрим, какие существуют типы подключения к интернету.

Глобальная сеть ИнтернетГлобальная сеть Интернет

Со временем устаревшие технологии интернета заменяют более совершенными

Кабельное подключение

Витая пара и оптический кабель

Это самый популярный тип подключения. К вам в квартиру или офис проводится кабель, по которому поступает сигнал интернета. Применяют два варианта соединения: витая пара и оптический кабель.

В первом случае от поставщика услуг к дому или распределительной коробке проводится оптоволоконный кабель с высокой пропускной способностью, а в саму квартиру заводится витая пара, являющая собой медный провод со специальным способом обжатым концом, который втыкается в компьютер или роутер. Скорость подключения в этом случае чаще всего не превышает 100 Мбит/с.

Обзор проводного интернета

Обзор проводного интернета

Во втором случае в жилище заводится оптический кабель, подсоединяемый в распределительное устройство. Среди его преимуществ выделяют гораздо большую скорость, вплоть до 1 Гбит/сек. По этому кабелю можно одновременно получать услуги интернета, телефона и телевидения — то есть один кабель вместо трёх. Кабельное подключение имеет два варианта организации сети: локальная и виртуальная.

Локальная сеть

Суть локальной сети заключается в том, что провайдер присваивает вам отдельный IP-адрес. Все компьютеры, по большому счёту, являют собой большую сеть, имеющую выход в интернет через поставщика. Бывает доступ с динамическим и статическим IP.

Динамический IP

Для вас это самый простой тип связи. Все установки при каждом соединении присваиваются провайдером, и вам не нужно ничего дополнительно настраивать. Вы просто втыкаете кабель в компьютер либо в роутер — и начинаете пользоваться интернетом.

Локальная компьютерная сеть

Локальная компьютерная сеть

Статический IP

При этом типе пользователю нужно ввести в установки сетевой карты или роутера параметры, которые выдаёт провайдер и которые являются неизменными при каждом сеансе связи. Это довольно удобно для онлайн-сервисов, запрашивающих у вас постоянный IP-адрес. Узнать тип подключения можно в техподдержке провайдера, на сайте поставщика услуг или в договоре. При пользовании роутером большинство моделей могут определить тип подключения автоматически.

Виртуальная сеть VPN

VPN расшифровывается как «виртуальная частная сеть». Эта технология зашифровывает обмен данными между компьютером абонента и сервером провайдера, значительно повышая безопасность.

PPPoE

Наиболее популярный тип подключения по VPN. Для пользования вам нужно узнать лишь логин и пароль. Операционная система Windows рассматривает это соединение как высокоскоростное подключение с набором номера.

L2TP/PPTP

Менее популярные виды подключения по VPN. Кроме логина и пароля, нужно узнать адрес сервера, предоставляемый оператором связи. Разница между ними — лишь в методе шифрования, который выбирается в дополнительных настройках соединения. Самый известный провайдер, работающий с этим стандартом — Билайн.

Комбинированное подключение

Объединяет в себе несколько видов подключения для доступа в интернет и к ресурсам провайдера. VPN применяется как главный тип подключения, динамический или статический IP — как дополнительный. Разница между ними — в ручном введении локального адреса либо автоматического его определения. Такое подключение считается самым сложным, поэтому используется редко. Можно узнать параметры у техподдержки конкретного поставщика услуг.

Телефонная линия

Несмотря на то, что в последнее время кабельное подключение доминирует, во многих местностях тянуть отдельную интернет-линию экономически нецелесообразно. В таком случае спасает наличие телефонной линии, подключиться к интернету можно только через неё. Существуют два типа подключения: ADSL и Dial-Up.

ADSL

Современные стандарты дают доступ к интернету со скоростью в несколько десятков мегабит, чего вполне достаточно для большинства задач. Суть сводится к тому, что при помощи сплиттера сигнал разделяется на разные частоты: низкие — для голосовой связи, высокие — для интернета. Соответственно, можно одновременно звонить и пользоваться интернетом.

Подключение с помощью телефонной связи

Подключение с помощью телефонной связи

Для организации связи используется модем. Схема подключения довольно проста: телефонный кабель, который заводится в помещение, подключается к сплиттеру, к нему в соответствующие разъёмы подсоединяются домашний телефон и ADSL-модем.

Dial-Up

Этот тип подключения пришёл к нам ещё с девяностых годов прошлого века. Является очень устаревшим, так как при его применении телефонная линия остаётся занятой, а средняя скорость составляет около 56 килобит. По нынешним меркам это очень мало. Тем не менее, в некоторых местностях иногда применяется и такой вид подключения.

Dial-Up факс-модем

Dial-Up факс-модем

Работает он следующим образом: модем подключается к телефонной линии и к компьютеру, в его настройки добавляется номер модемного пула. Модем звонит на этот номер, а после установки соединения абонемент получаете доступ к интернету.

Телевизионный кабель DOCSIS

Этот тип подключения предоставляет интернет по телевизионному кабелю. Несомненно, платить за интернет и телевизор одной фирме куда удобнее. Кабель заводится в квартиру или дом, с помощью сплиттера сигнал распределяется на телевизионный и интернет. Сигнал интернета поступает на кабельный модем, подключённый к ПК либо к роутеру.

Коаксиальный телевизионный кабель

Коаксиальный телевизионный кабель

Современные стандарты позволяют получать скорость интернета до 300 Мбит/сек. Несмотря на относительно невысокую популярность технологии, провайдер телекоммуникационных услуг АКАДО подключает по ней абонентов в Москве, Санкт-Петербурге и Екатеринбурге.

Мобильный интернет

Развитие стандартов 3G и 4G позволяет использовать интернет на скорости, сопоставимой с домашним подключением. Во многих городах России доступен стандарт 4G со скоростью до 100 с лишним мегабит. Там, где он недоступен, работает 3G на скорости до 40 мегабит.

Современный мобильный интернет

Современный мобильный интернет

В последнее время предлагаются безлимитные тарифы, пусть и довольно условные. Не нужно никаких проводов, подключиться можно относительно дёшево в любом месте, где доступно покрытие. Можно применять USB-модем, мобильный роутер или смартфон/планшет в качестве модема. Встроенное программное обеспечение также может определить параметры сети.

Спутниковый интернет

Самый дорогой, но при этом самый вездесущий. Позволяет получать доступ к интернету даже вдали от коммуникаций, хоть посреди тайги. Единственное условие — видимость спутника.

Все знакомы со спутниковым телевидением. Тарелки антенн можно наблюдать почти на каждом доме и в огромном количестве. Такая же тарелка используется и для доступа к интернету. Существует односторонний и двухсторонний спутниковый интернет.

Доступ к интернету через спутник

Доступ к интернету через спутник

При одностороннем доступе исходящие запросы передаются по наземному каналу связи, — например, через мобильную сеть, а входящие данные приходят уже со спутника. При двухстороннем доступе весь обмен происходит по спутниковому каналу. Для этого вам нужна будет антенна с передающей головкой.

Скорость доступа достигает нескольких десятков мегабит. Главный недостаток — огромная цена за комплект оборудования и довольно высокие тарифы.

WiMax и Wi-Fi

С Wi-Fi знакомы практически все, практически у всех дома имеется роутер, а во многих общественных местах действуют бесплатные точки доступа. WiMax позволяет покрыть те районы, в которых тяжело обеспечить кабельное подключение в каждом доме. Это применимо в частном секторе или коттеджных посёлках. Для обеспечения покрытия используются базовые станции, обеспечивающие покрытие в радиусе нескольких километров.

Сеть с технологией WiMax

Сеть с технологией WiMax

Для подключения вам нужно иметь специальный приёмник, а при удалении от станции — усилительную антенну. Технология не получила широкого применения, так как все равно требует подвода кабеля к посёлку. Куда целесообразнее воспользоваться мобильным интернетом.

Заключение

Мы перечислили все возможные виды подключения к интернету. Если вы живете в городе, вероятнее всего, провайдер подключит вас по кабелю. Это самый дешёвый тип подключения в многоэтажной застройке. Настройка оборудования будет отличаться при различном типе связи, подробнее с эти вопросом вы можете ознакомиться в нашей статье Как подключить интернет на ноутбуке. Кроме того, никогда не стесняйтесь обратиться в техническую поддержку поставщика услуги, чтоб узнать параметры доступа к сети.

А каким типом подключения пользуетесь вы? Устраивает ли вас качество связи? Пишите нам в комментариях.

типов подключений к Интернету — ссылка на Webopedia

Главная »Краткий справочник»

Автор: Ванги Бил

Технологии меняются быстрыми темпами, как и скорость подключения к Интернету. Мы проверяем скорости подключения от коммутируемого до T3 и все, что между ними.

По мере развития технологий растет и наша потребность в больших, лучших и быстрых Интернет-соединениях.С годами способ представления контента через Интернет также сильно изменился. Десять лет назад возможность центрировать, выделять жирным шрифтом и отображать текст разных цветов на веб-странице вызывала восхищение. Сегодня стандартами являются Flash, анимация, онлайн-игры, потоковое видео, веб-сайты на основе баз данных, электронная торговля и мобильные приложения (и это лишь некоторые из них).

Жажда скорости

Потребность в скорости изменила варианты, доступные как потребителям, так и предприятиям с точки зрения того, как и с какой скоростью мы можем подключаться к Интернету.Перечисленные ниже скорости подключения представляют собой снимок от общей средней до максимальной скорости на момент публикации. Это, несомненно, изменится со временем, и скорость подключения к Интернету также варьируется в зависимости от поставщика услуг Интернета (ISP).

Аналог: коммутируемый доступ в Интернет

Аналоговое подключение к Интернету, также называемое коммутируемым доступом, является экономичным и медленным. Используя модем, подключенный к вашему ПК, пользователи подключаются к Интернету, когда компьютер набирает телефонный номер (который предоставляется вашим интернет-провайдером) и подключается к сети.Коммутируемое соединение — это аналоговое соединение, поскольку данные передаются по аналоговой телефонной сети общего пользования. Модем преобразует полученные аналоговые данные в цифровые и наоборот. Поскольку для коммутируемого доступа используются обычные телефонные линии, качество связи не всегда хорошее, а скорость передачи данных ограничена. Типичная скорость коммутируемого соединения составляет от 2400 бит / с до 56 Кбит / с. Сегодня аналоговая связь широко заменена широкополосным (кабельным и DSL).

ISDN — цифровая сеть с интеграцией служб

Цифровая сеть с интегрированными услугами (ISDN) — это международный стандарт связи для передачи голоса, видео и данных по цифровым телефонным линиям или обычным телефонным проводам.Типичные скорости ISDN варьируются от 64 до 128 кбит / с.

B-ISDN — широкополосный ISDN

Широкополосный ISDN по функциям аналогичен ISDN, но передает данные по оптоволоконным телефонным линиям, а не по обычным телефонным проводам. SONET — это физическая транспортная магистраль B-ISDN. Широкополосный ISDN не получил широкого распространения.

DSL — цифровая абонентская линия

DSL часто называют «всегда активным» соединением, потому что он использует существующую 2-проводную медную телефонную линию, подключенную к помещению, поэтому услуга предоставляется одновременно с проводной телефонной связью — она ​​не будет связывать вашу телефонную линию как аналоговый набор. -вверх соединение.Две основные категории DSL для домашних абонентов называются ADSL и SDSL. Все типы технологий DSL вместе именуются xDSL. Скорость подключения xDSL составляет от 128 Кбит / с до 9 Мбит / с.

Рекомендуемая литература: Кабель против DSL.

ADSL — Асимметричная цифровая абонентская линия

ADSL — наиболее распространенный тип DSL в Северной Америке. Сокращение от асимметричной цифровой абонентской линии. ADSL поддерживает скорость передачи данных от 1,5 до 9 Мбит / с при приеме данных (известная как скорость нисходящего потока) и от 16 до 640 Кбит / с при отправке данных (известная как скорость восходящего потока).ADSL требует специального модема ADSL.

ADSL + 2 — добавочный номер ADSL

Расширение широкополосной технологии ADSL, которое обеспечивает абонентам значительно более высокую скорость загрузки по сравнению с традиционными соединениями ADSL. ADSL + 2 работает так же, как и ADSL: на телефонной линии абонента устанавливается специальный фильтр для разделения существующих медных телефонных линий (POTS) между обычным телефоном (голосовой) и ADSL + 2. Услуга ADSL2 + обычно предлагается в густонаселенных городских районах, и для получения услуги ADSL2 + абоненты должны находиться в непосредственной близости от центрального офиса провайдера.

SDSL — Симметричная цифровая абонентская линия

Сокращение от симметричной цифровой абонентской линии. SDSL — это технология, которая позволяет передавать больше данных по существующим медным телефонным линиям (POTS). SDSL поддерживает скорость передачи данных до 3 Мбит / с. SDSL работает путем отправки цифровых импульсов в высокочастотную область телефонных проводов и не может работать одновременно с голосовыми соединениями по тем же проводам. SDSL требует специального модема SDSL. SDSL называется симметричным, поскольку он поддерживает одинаковые скорости передачи данных для восходящего и нисходящего трафика.

VDSL — очень высокий DSL

Very High DSL (VDSL) — это технология DSL, которая обеспечивает высокую скорость передачи данных на относительно короткие расстояния — чем короче расстояние, тем выше скорость соединения.

Кабель — широкополосное подключение к Интернету

Используя кабельный модем, вы можете получить широкополосное Интернет-соединение, предназначенное для работы по линиям кабельного телевидения. Кабельный Интернет работает с использованием пространства телеканалов для передачи данных, при этом определенные каналы используются для передачи в нисходящем направлении, а другие каналы — для передачи в восходящем направлении.Поскольку коаксиальный кабель, используемый в кабельном телевидении, обеспечивает гораздо большую пропускную способность, чем телефонные линии, кабельный модем может использоваться для обеспечения чрезвычайно быстрого доступа. Провайдеры кабельного телевидения обычно устанавливают ограничение, чтобы ограничить пропускную способность и привлечь больше клиентов. Скорость кабеля составляет от 512 Кбит / с до 20 Мбит / с.

Рекомендуемая литература: Что такое 250 ГБ?

Беспроводное подключение к Интернету

Беспроводной Интернет, или беспроводной широкополосный доступ, — один из новейших типов подключения к Интернету.Вместо того, чтобы использовать телефонные или кабельные сети для подключения к Интернету, вы используете радиочастотные диапазоны. Беспроводной Интернет обеспечивает постоянное соединение, к которому можно получить доступ из любого места — если вы находитесь географически в зоне покрытия сети. Беспроводной доступ все еще считается относительно новым, и в некоторых регионах может быть трудно найти поставщика услуг беспроводной связи. Обычно это дороже и в основном доступно в крупных городах.

Рекомендуемая литература: Страница стандартов беспроводной сети Webopedia.

Линии Т-1 — выделенная линия

Линии

T-1 — это популярный вариант выделенных линий для предприятий, подключающихся к Интернету, и для интернет-провайдеров, подключающихся к магистральной сети Интернет. Это выделенное телефонное соединение, поддерживающее скорость передачи данных 1,544 Мбит / с. Линия T-1 фактически состоит из 24 отдельных каналов, каждый из которых поддерживает 64 Кбит / с. Каждый канал со скоростью 64 Кбит / с может быть настроен для передачи голоса или трафика данных. Большинство телефонных компаний позволяют вам покупать только один или несколько из этих отдельных каналов.Это известно как дробный доступ T-1. T-1 Lines поддерживает скорость 1,544 Мбит / с. Частичная скорость T-1 составляет 64 Кбит / с на канал (до 1,544 Мбит / с), в зависимости от количества выделенных каналов.

Бонда Т-1

Связанный T-1 — это две или более линии T-1, которые были соединены (связаны) вместе для увеличения пропускной способности. Если один T-1 обеспечивает приблизительно 1,5 Мбит / с, два связанных T1 обеспечивают 3 Мбит / с или 46 каналов для голоса или данных. Два связанных T-1 позволяют использовать полную полосу пропускания 3 Мбит / с, тогда как два отдельных T-1 могут использовать максимум 1.5 Мбит / с одновременно. Для подключения T-1 должен в конце подключаться к одному и тому же маршрутизатору, то есть к одному и тому же интернет-провайдеру. Типичная скорость Bonded T-1 (две связанные линии T-1) составляет около 3 Мбит / с.

Линии Т-3 — выделенная выделенная линия

Линии

T-3 — это выделенные телефонные соединения, поддерживающие скорость передачи данных от 43 до 45 Мбит / с. Это тоже популярный вариант выделенных линий. Линия Т-3 фактически состоит из 672 отдельных каналов, каждый из которых поддерживает 64 Кбит / с. Линии T-3 используются в основном поставщиками услуг Интернета (ISP), подключающимися к магистрали Интернета и для самой магистрали.Типичный Т-3 поддерживает скорости от 43 до 45 Мбит / с.

OC3 — оптический носитель

Сокращение от Optical Carrier, level 3, используется для определения скорости волоконно-оптических сетей, соответствующих стандарту SONET. OC3 обычно используется в качестве оптоволоконной магистрали для больших сетей с большими потребностями в передаче голоса, данных, видео и трафика. Скорость составляет 155,52 Мбит / с, что примерно соответствует скорости 100 линий T1.

Интернет через спутник

Интернет через спутник (IoS) позволяет пользователю получить доступ в Интернет через спутник, вращающийся вокруг Земли.Спутник размещается в неподвижной точке над земной поверхностью в фиксированном положении. Из-за огромных расстояний, которые должны проходить сигналы от земли до спутника и обратно, IoS немного медленнее, чем высокоскоростные наземные соединения по медным или оптоволоконным кабелям. Типичная скорость подключения к Интернету через спутник (стандартные IP-услуги) составляет от 492 до 512 Кбит / с.

Дополнительные термины из Webopedia

Ванги Бил, базирующаяся в Новой Шотландии, пишет о технологиях более десяти лет.Она часто пишет в EcommerceGuide и главный редактор Webopedia. Вы можете написать ей в Твиттере на @AuroraGG.

Эта статья последний раз обновлялась 15 марта 2014 г.



.

Типы подключения — Управляемый экземпляр SQL Azure

  • 2 минуты на чтение

В этой статье

ОТНОСИТСЯ К: Управляемый экземпляр SQL Azure

В этой статье объясняется, как клиенты подключаются к управляемому экземпляру SQL Azure в зависимости от типа подключения. Ниже приведены примеры сценариев для изменения типов подключения, а также рекомендации по изменению параметров подключения по умолчанию.

Типы подключения

Управляемый экземпляр Azure SQL поддерживает следующие два типа подключения:

  • Перенаправление (рекомендуется): Клиенты устанавливают соединения непосредственно с узлом, на котором размещена база данных. Чтобы включить подключение с использованием перенаправления, необходимо открыть брандмауэры и группы безопасности сети (NSG), чтобы разрешить доступ к портам 1433 и 11000–11999. Пакеты поступают непосредственно в базу данных, и, следовательно, при использовании перенаправления через прокси-сервер можно улучшить задержку и производительность.
  • Прокси-сервер (по умолчанию): В этом режиме все соединения используют компонент прокси-шлюза. Для обеспечения возможности подключения необходимо открыть только порт 1433 для частных сетей и порт 3342 для общедоступных подключений. Выбор этого режима может привести к увеличению задержки и снижению пропускной способности в зависимости от характера рабочей нагрузки. Мы настоятельно рекомендуем политику перенаправления подключения поверх политики подключения прокси для минимальной задержки и максимальной пропускной способности.

Тип подключения перенаправления

В типе соединения с перенаправлением после того, как сеанс TCP установлен с механизмом SQL, сеанс клиента получает виртуальный IP-адрес назначения виртуального узла кластера от балансировщика нагрузки.Последующие пакеты поступают непосредственно на виртуальный узел кластера, минуя шлюз. Следующая диаграмма иллюстрирует этот поток трафика.

Важно

Тип соединения с перенаправлением в настоящее время работает только для частной конечной точки. Независимо от настройки типа подключения, подключения, проходящие через общедоступную конечную точку, будут осуществляться через прокси.

Тип подключения прокси

При использовании прокси-соединения сеанс TCP устанавливается с использованием шлюза, и все последующие пакеты проходят через него.Следующая диаграмма иллюстрирует этот поток трафика.

Изменение типа соединения

  • Использование портала: Чтобы изменить тип подключения с помощью портала Azure, откройте страницу виртуальной сети и используйте параметр Тип подключения , чтобы изменить тип подключения и сохранить изменения.

  • Скрипт для изменения настроек типа подключения с помощью PowerShell:

Примечание

Эта статья была обновлена ​​для использования новой оболочки Azure PowerShell Az. модуль.Вы по-прежнему можете использовать модуль AzureRM, который будет получать исправления ошибок как минимум до декабря 2020 года. Чтобы узнать больше о новом модуле Az и совместимости с AzureRM, см. Представляем новый модуль Azure PowerShell Az. За Инструкции по установке модуля Az см. В разделе Установка Azure PowerShell.

Следующий сценарий PowerShell показывает, как изменить тип соединения для управляемого экземпляра на Redirect .

  Install-Module -Name Az
Модуль импорта Az.Accounts
Import-Module Az.Sql

Connect-AzAccount
# Получите свой SubscriptionId из команды Get-AzSubscription
Get-AzSubscription
# Используйте свой SubscriptionId вместо {subscription-id} ниже
Select-AzSubscription -SubscriptionId {идентификатор-подписки}
# Замените {rg-name} на группу ресурсов для вашего управляемого экземпляра и замените {mi-name} на имя вашего управляемого экземпляра
$ mi = Get-AzSqlInstance -ResourceGroupName {rg-name} -Name {mi-name}
$ mi = $ mi | Set-AzSqlInstance -ProxyOverride «Перенаправление» -force
  

Следующие шаги

.

Типы соединений

Типы соединений

Открыть тему с навигацией

Большинство типов подключения настраиваются в меню Configuration> Session в AWI или OSD и в меню Profiles> Session Configuration в MC. Единственным исключением является тип соединения «Нулевой клиент — конечная точка вызывающей стороны программного телефона Bria», который настраивается в меню «Конфигурация »> «Унифицированные коммуникации » в AWI и в меню «Профили »> «Конфигурация унифицированных коммуникаций » в MC.

Нулевой клиент поддерживает следующие типы сеансовых соединений:

Подключение платы нулевого клиента к удаленной рабочей станции

Вы можете переместить высокопроизводительные рабочие станции Windows или Linux с картами удаленных рабочих станций PCoIP в свой центр обработки данных, а затем настроить сеансы между нулевыми клиентами и этими хостами рабочих станций через LAN или WAN. Этот тип конфигурации обеспечивает безопасное, надежное и простое в управлении решение, которое удовлетворяет потребности пользователей, у которых есть выделенные компьютеры с требовательными к графике приложениями.

В зависимости от размера вашего развертывания PCoIP вы можете использовать MC или брокера соединений для управления соединениями между картами удаленных рабочих станций и нулевыми клиентами, или вы можете использовать AWI для удаленной настройки отдельных хостов и клиентов. Вы даже можете использовать OSD для настройки параметров конкретного нулевого клиента.

Для нулевых подключений карты клиент-удаленная рабочая станция доступны следующие типы сеансовых подключений:

Для получения информации о предварительных условиях для этих типов подключения см. Требования к плате нулевого клиента и удаленной рабочей станции.

Статическое соединение

Для статической настройки нулевого клиента для прямого подключения к определенной карте удаленной рабочей станции используйте сеансовый тип подключения Direct to Host . Для этого варианта вам потребуется указать DNS-имя или IP-адрес платы удаленной рабочей станции.

Вам также необходимо настроить тип подключения сеанса Direct from Client на карте удаленной рабочей станции. У вас есть возможность разрешить хосту принимать запрос на соединение от любого клиента или только от определенного клиента.В последнем случае вам необходимо указать MAC-адрес клиента.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Direct to Host: объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса Direct to Host для нулевых клиентов. Для получения информации о том, как статически связать определенные хосты и клиенты с помощью MC, см. «Руководство пользователя консоли управления Teradici PCoIP®» (TER0812002) в Центре документации поддержки Teradici.
  • AWI Client: Direct to Host: объясняет, как использовать AWI для статической настройки нулевого клиента для подключения к определенной карте удаленной рабочей станции.
  • Хост
  • AWI: напрямую от клиента: объясняет, как использовать AWI для настройки карты удаленной рабочей станции для приема запроса на соединение от любого нулевого клиента или только от определенного нулевого клиента.
  • OSD: Direct to Host: Объясняет, как использовать OSD для статической настройки нулевого клиента для подключения к определенной карте удаленной рабочей станции.

Подключение с использованием SLP Host Discovery

Если карты удаленных рабочих станций находятся в той же подсети, что и нулевые клиенты, вы можете использовать тип сеансового соединения Direct to Host + SLP для настройки клиентов на использование протокола SLP для обнаружения карт удаленных рабочих станций в подсети. В этой конфигурации клиентское OSD отобразит первые 10 обнаруженных карт. Затем пользователь может выбрать желаемый и подключиться к нему.

Примечание. Обнаружение узлов SLP не подходит для развертываний с более чем 10 узлами, если нулевой клиент должен постоянно подключаться к определенному узлу.В этой ситуации требуется сторонний брокер подключений.

Вам также необходимо настроить тип подключения сеанса Direct from Client на карте удаленной рабочей станции. У вас есть возможность разрешить хосту принимать запрос на соединение от любого нулевого клиента или только от определенного. В последнем случае вам необходимо указать MAC-адрес клиента.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Direct to Host + SLP: Объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса Direct to Host + SLP для нулевых клиентов.
  • AWI Client: Direct to Host + SLP: объясняет, как использовать AWI для настройки нулевого клиента для использования обнаружения SLP для подключения к карте удаленной рабочей станции.
  • Хост
  • AWI: напрямую от клиента: объясняет, как использовать AWI для настройки карты удаленной рабочей станции для приема запроса на соединение от любого нулевого клиента или только от определенного клиента.
  • OSD: Direct to Host + SLP: Объясняет, как использовать OSD для настройки нулевого клиента для использования обнаружения SLP для подключения к карте удаленной рабочей станции.

Подключение с помощью стороннего посредника подключений

Сторонний брокер соединений — это диспетчер ресурсов, который динамически назначает хост-компьютеры, содержащие карты удаленных рабочих станций, нулевым клиентам на основе личности пользователя, устанавливающего соединение с нулевым клиентом. Брокеры соединений также используются для выделения пула хостов группе из нулевых клиентов. Обычно они используются в крупных развертываниях PCoIP или когда узлы и клиенты не находятся в одной подсети.

Используйте тип соединения сеанса Connection Management Interface как на хосте, так и на клиенте для этой опции. Вам необходимо указать DNS-имя или IP-адрес стороннего брокера подключений.

Примечание. Для получения информации о сторонних брокерах подключений см. KB 15134-24 на сайте поддержки Teradici.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Интерфейс управления подключением: объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса Интерфейс управления подключением для нулевых клиентов и карт удаленных рабочих станций.
  • Клиент AWI: интерфейс управления подключением: объясняет, как использовать AWI для настройки нулевого клиента для использования стороннего брокера подключений для посредничества между нулевыми клиентами и картами удаленных рабочих станций.
  • AWI Host: Интерфейс управления подключением: объясняет, как использовать AWI для настройки карты удаленной рабочей станции для использования стороннего брокера подключений для приема запроса на подключение от нулевого клиента.
  • OSD: Интерфейс управления подключением: Объясняет, как использовать OSD для настройки нулевого клиента для использования стороннего брокера соединений для посредничества соединения между нулевым клиентом и картой удаленной рабочей станции.

Подключение с помощью брокера сервера подключений View

Вы также можете использовать View Connection Server для установления соединения между нулевыми клиентами и картами удаленных рабочих станций.

Примечание. Это не то же самое, что настройка нулевого клиента для подключения к виртуальному рабочему столу VMware Horizon с помощью View Connection Server.

Для этого варианта агент VMware View должен быть установлен на удаленной рабочей станции, а также должен быть соблюден ряд других требований к конфигурации как для клиента, так и для хоста.Для получения полной информации обратитесь к разделу «Использование хост-карт PCoIP® с VMware View» (TER0911004) в Центре документации поддержки Teradici.

Соединения диспетчера подключений между нулевым клиентом и PCoIP

Диспетчер соединений PCoIP реализует протокол брокера PCoIP для аутентификации и запуска сеанса. Тип соединения сеанса PCoI P Connection Manager может использоваться для подключения нулевых клиентов Tera2 к следующим типам удаленных конечных точек PCoIP:

  • Teradici PCoIP® Workstation Access Software : PCoIP Access Software — это приложение Teradici, установленное на удаленной рабочей станции, которое позволяет вам получать удаленный доступ к вашей рабочей станции с использованием протокола PCoIP без необходимости установки карты удаленной рабочей станции.Используя нулевой клиент Tera2, вы можете подключиться к своему программному обеспечению PCoIP Access с помощью сеансового типа подключения PCoIP Connection Manager или Auto Detect . Подробные сведения об установке программного обеспечения PCoIP Access на рабочую станцию ​​и использовании нулевого клиента Tera2 для установления сеанса см. В «Руководстве пользователя программного обеспечения Teradici PCoIP® Workstation Access» (TER1405004) в Центре документации поддержки Teradici. Предварительные требования для этого типа подключения см. в разделе Необходимые условия программного обеспечения для доступа от нулевого клиента к рабочей станции PCoIP.
  • Amazon WorkSpaces : Amazon WorkSpaces — это облачный сервис Amazon для настольных компьютеров, в котором конечным пользователям предоставляются облачные рабочие столы. Используя нулевой клиент Tera2, вы можете использовать сеанс PCoIP Connection Manager или Auto Detect для подключения к рабочему столу WorkSpaces. Подробные сведения об установке и настройке необходимых компонентов и использовании нулевого клиента Tera2 для установления сеанса см. В разделе «Подключение нулевых клиентов PCoIP® к Amazon WorkSpaces» (TER1408002) в Центре документации поддержки Teradici.Информацию о предварительных условиях для этого типа подключения см. В разделе Предварительные требования к нулевому клиенту и Amazon WorkSpaces.

Для нулевых соединений между клиентом и PCoIP Connection Manager доступны следующие типы сеансовых соединений:

Автоопределение

Чтобы настроить нулевой клиент Tera2 для автоматического определения подходящего брокера для использования на экране OSD Connect , используйте тип подключения сеанса Auto Detect и настройте URI для вашего брокера (например,g., диспетчер подключений PCoIP или просмотр сервера подключений). После успешного подключения вы можете выбрать этот URI из раскрывающегося списка Server на экране OSD Connect .

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Auto Detect: объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса Auto Detect для нулевых клиентов.
  • AWI Tera2 Client: Auto Detect: объясняет, как использовать AWI для настройки нулевого клиента для автоматического определения брокера для использования на экране OSD Connect .
  • OSD Tera2: Auto Detect: объясняет, как использовать OSD для настройки нулевого клиента для автоматического определения брокера для использования на экране OSD Connect .

Диспетчер подключений PCoIP

Чтобы настроить нулевой клиент для подключения к экземпляру программного обеспечения PCoIP Access, установленному на удаленной рабочей станции или к рабочему столу Amazon WorkSpaces, используйте тип подключения сеанса PCoIP Connection Manager .Вам нужно будет предоставить соответствующий URI сервера для типа подключения. Инструкции см. В «Руководстве пользователя программного обеспечения для доступа к рабочей станции Teradici PCoIP®» (TER1405004) и «Подключение нулевых клиентов PCoIP® к Amazon WorkSpaces» (TER1408002) соответственно.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

Диспетчер подключений PCoIP + автоматический вход

Вы также можете использовать тип подключения сеанса PCoIP Connection Manager + Auto-Logon для автоматического ввода данных для входа в систему при подключении в режиме PCoIP Connection Manager.Помимо соответствующего URI сервера, вам необходимо будет указать имя пользователя, пароль пользователя и имя домена.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Диспетчер подключений PCoIP + автоматический вход в систему: объясняет, как использовать MC для настройки профиля, который устанавливает тип подключения сеанса PCoIP Connection Manager + Auto-Logon для нулевых клиентов. Этот тип подключения к сеансу полезен, когда вы хотите установить имя пользователя и пароль по умолчанию в профиле.
  • AWI Client: PCoIP Connection Manager + Auto-Logon: объясняет, как использовать AWI для настройки клиента для автоматической отправки данных для входа в систему при подключении в режиме PCoIP Connection Manager.
  • OSD: PCoIP Connection Manager + Auto-Logon: объясняет, как использовать OSD для настройки клиента на автоматическую отправку данных для входа в систему при подключении в режиме PCoIP Connection Manager.

Соединения нулевого клиента с VMware Horizon

Вы можете настроить нулевые клиенты для использования протокола PCoIP при подключении к рабочим столам в среде VMware Horizon VDI или DaaS или при подключении к рабочим столам VMware Horizon для удаленного взаимодействия приложений и приложениям, опубликованным на сервере RDS.

Примечание. Подключения приложений, размещенных в VMWare Horizon RDS, поддерживаются на View Connection Server , View Connection Server + Auto-Logon , View Connection Server + Kiosk и View Connection Server + Imprivata OneSign для типов сеансов для Нулевые клиенты Tera2. После настройки View Connection Server установите флажок Enable RDS Application Access в Advanced Options на странице Session .

В зависимости от размера вашего развертывания PCoIP вы можете использовать MC для настройки профиля с типом соединения сеанса View Connection Server , или вы можете использовать AWI или OSD для настройки отдельного нулевого клиента для использования Просмотр типа соединения сеанса сервера соединений .

Для нулевого соединения клиента с VMware Horizon VDI доступны следующие типы сеансового подключения:

Для получения информации о предварительных требованиях для этих типов подключения см. Предварительные требования от нулевого клиента к VMware Horizon.

Автоопределение

Чтобы настроить нулевой клиент Tera2 для автоматического определения правильного брокера для использования на экране OSD Connect , используйте тип подключения сеанса Auto Detect и настройте URI для вашего брокера (например, диспетчер подключений PCoIP или просмотр сервера подключений ). После успешного подключения вы можете выбрать этот URI из раскрывающегося списка Server на экране OSD Connect .

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: Auto Detect: объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса Auto Detect для нулевых клиентов.
  • AWI Tera2 Client: Auto Detect: объясняет, как использовать AWI для настройки нулевого клиента для автоматического определения брокера для использования на экране OSD Connect .
  • OSD Tera2: Auto Detect: объясняет, как использовать OSD для настройки нулевого клиента для автоматического определения брокера для использования на экране OSD Connect .

Просмотр сервера соединений

Чтобы настроить нулевой клиент для подключения к виртуальному рабочему столу VMware с ручным входом в систему, используйте тип подключения сеанса View Connection Server .Вам нужно будет указать DNS-имя или IP-адрес View Connection Server.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: View Connection Server: объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса View Connection Server для нулевых клиентов.
  • AWI Client: View Connection Server: объясняет, как использовать AWI для настройки нулевого клиента для использования сеансового типа соединения View Connection Server .
  • OSD: View Connection Server: объясняет, как использовать OSD для настройки нулевого клиента для использования сеансового типа соединения View Connection Server .

Просмотр сервера подключений + автоматический вход в систему

Чтобы настроить нулевые клиенты на автоматический ввод данных для входа в систему, когда нулевые клиенты подключаются к виртуальному рабочему столу, используйте тип подключения сеанса View Connection Server + Auto-Logon . Вам нужно будет указать DNS-имя или IP-адрес View Connection Server, а также имя пользователя, пароль пользователя и имя домена для отправки на сервер.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

  • MC: View Connection Server + Auto-Logon: Объясняет, как использовать MC для настройки профиля, который устанавливает тип соединения сеанса View Connection Server + Auto-Logon для нулевых клиентов. Этот тип подключения к сеансу полезен, когда вы хотите установить имя пользователя и пароль по умолчанию в профиле.
  • AWI Client: View Connection Server + Auto-Logon: Объясняет, как использовать AWI для настройки нулевого клиента для автоматической отправки данных для входа пользователя при подключении к рабочему столу Horizon.
  • OSD: View Connection Server + Auto-Logon: Объясняет, как использовать OSD для настройки нулевого клиента для автоматической отправки данных для входа пользователя при подключении к рабочему столу Horizon.

Просмотр сервера подключений + киоск

View Connection Server + Kiosk mode позволяет настроить нулевые клиенты для подключения к рабочему столу, который будет использоваться для реализации киоска, например, когда несколько пользователей подключаются к рабочему столу для получения информации, не относящейся к одному человеку.Как минимум, вам нужно будет указать DNS-имя или IP-адрес View Connection Server и имя пользователя киоска — либо собственное имя пользователя для киоска, либо его MAC-адрес.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

Просмотр сервера подключений + Imprivata OneSign

View Connection Server + Режим Imprivata OneSign позволяет настроить нулевые клиенты для использования поддержки бесконтактных карт Imprivata OneSign при подключении к виртуальному рабочему столу через View Connection Server.Вам потребуется указать DNS-имя или IP-адрес сервера подключений View и URL-адрес начальной загрузки для сервера OneSign.

Подробные сведения о настройке этого параметра см. В следующих разделах Справочника по графическому интерфейсу:

Соединения нулевого клиента с конечной точкой вызывающего абонента софтфона Bria

Нулевой клиент поддерживает взаимодействие с программным клиентом CounterPath Bria Virtualized Edition для PCoIP Zero Clients, установленным на рабочем столе VMware Horizon View или Horizon DaaS.

После использования нулевого клиента для подключения к рабочему столу Horizon или Amazon WorkSpaces пользователи могут инициировать службы унифицированных коммуникаций (UC) (например, голос, обмен сообщениями, информация о присутствии и контакты) для конечных точек вызывающего абонента с помощью клиента программного телефона Bria Virtualized Edition. который установлен на их рабочем столе. После того, как клиент Bria устанавливает соединение, трафик вызовов маршрутизируется напрямую между нулевым клиентом и конечной точкой вызывающего абонента, таким образом разгружая этот трафик из центра обработки данных.

Эта функция настраивается в меню Configuration> Unified Communications в AWI и в меню Profiles> Unified Communications Configuration в MC. Подробнее см. AWI Tera2 Client: Unified Communications и MC: Unified Communications.

Для получения информации о предварительных требованиях для этого типа подключения см. Предварительные требования к конечной точке вызывающего абонента от нулевого клиента к клиенту Bria Softphone.

Для получения информации о том, как устранить неполадки при вызовах программного телефона, см. AWI Tera2 Client: Packet Capture.


.Поддержка

и типы подключения Поддержка

и типы подключения

Типы опор и соединений


Структурные системы переносят свою нагрузку через ряд элементов на землю. Это достигается путем соединения элементов. на их пересечениях. Каждое соединение спроектировано так, чтобы оно могло передавать, или опора, конкретный тип нагрузки или условия нагрузки. Для того, чтобы быть способность анализировать структуру, прежде всего необходимо иметь четкое представление о силы, которым можно противостоять и передавать на каждом уровне поддержки структура.Фактическое поведение службы поддержки или связи может быть весьма сложный. Настолько, что если бы были учтены все различные условия, проектирование каждой опоры было бы ужасно долгим процессом. И все еще, условия на каждой из опор сильно влияют на поведение элементы, составляющие каждую структурную систему.

Конструкционные стальные системы имеют сварные или болтовые соединения. Сборный железобетон железобетонные системы можно механически соединять разными способами, в то время как монолитные системы обычно имеют монолитные соединения.Древесина системы соединяются гвоздями, болтами, клеем или специальными соединителями. Независимо от материала, соединение должно иметь особую жесткость. Жесткие, жесткие или неподвижные соединения лежат на крайнем пределе этот спектр и шарнирные или штыревые соединения ограничивают друг друга. Жесткий соединение поддерживает относительный угол между соединенными элементами, в то время как шарнирное соединение позволяет относительное вращение. Также есть связи в стальных и железобетонных конструкционных системах, в которых частичная жесткость желаемая особенность дизайна.


ТИПЫ ПОДДЕРЖКИ
Три общих типа соединений, которые соединяют построенную структуру с ее фундамент есть; ролик , шпилька и фиксированная . Четвертый тип, не часто встречающийся в строительных конструкциях, известен как простой поддержка. Его часто идеализируют как поверхность без трения). Все эти опоры могут располагаться в любом месте элемента конструкции. Они найдены на концах, в середине или в любых других промежуточных точках.Тип соединения опоры определяет тип нагрузки, которой может выдержать опора. Тип опоры также имеет большое влияние на несущую способность каждый элемент, а значит, и система.

На схеме показаны различные способы использования каждого типа поддержки. представлен. Единый унифицированный графический метод для представления каждого из этих типов поддержки не существует. Скорее всего, одно из этих представлений будет аналогичен местной практике. Однако независимо от того, какое представление, силы, которым этот тип может сопротивляться, действительно стандартизированы.


РЕАКЦИИ
Обычно необходимо идеализировать поведение опоры, чтобы для облегчения анализа. Применяется подход, аналогичный безмассовому, шкив без трения в домашнем задании по физике. Хотя эти шкивы не существуют, они полезны для изучения определенных проблем. Таким образом, трение и массу часто игнорируют при рассмотрении поведения связи или поддержки. Важно понимать, что все графические Представления опор — это идеализации реального физического соединения.Следует приложить усилия, чтобы найти и сравнить реальность с реальной и / или численная модель. Часто очень легко забыть, что предполагаемая идеализация может быть совершенно иной. чем реальность!

На диаграмме справа указаны силы и / или моменты, которые «доступны» или активны для каждого типа поддержки. Это ожидаемо что эти репрезентативные силы и моменты, если правильно рассчитать, будут добиться равновесия в каждом структурном элементе.


РОЛИКОВЫЕ ОПОРЫ
Роликовые опоры могут свободно вращаться и перемещаться по поверхности при на которую опирается ролик.Поверхность может быть горизонтальной, вертикальной или наклонной. под любым углом. Результирующая сила реакции всегда представляет собой единую силу, которая перпендикулярно поверхности и далеко от нее. Роликовые опоры обычно расположен на одном конце длинных мостов. Это позволяет мостовой конструкции расширяться и сжиматься при изменении температуры. Силы расширения могли сломать опоры у берегов, если конструкция моста была «заблокирована» на месте. Роликовые опоры также могут иметь форму резиновых подшипников, коромысел, или набор шестерен, которые позволяют ограниченное количество боковых движение.

Роликовая опора не может оказывать сопротивление боковым силам. Представить конструкция (возможно, человек) на роликовых коньках. Он останется на месте пока конструкция должна только поддерживать себя и, возможно, идеально вертикальная нагрузка. Как только на конструкцию оказывается какая-либо боковая нагрузка он откатится в ответ на силу. Боковая нагрузка могла быть толчком, порыв ветра или землетрясение. Поскольку большинство конструкций подвергаются боковые нагрузки, из чего следует, что здание должно иметь другие типы опор в дополнение к роликовым опорам.


ОПОРЫ НА ШПИРАХ
Опора на штифтах может выдерживать как вертикальные, так и горизонтальные силы, но не момент. Они позволят элементу конструкции вращаться, но не перемещаться в любом направлении. Предполагается, что многие соединения являются штыревыми. даже если они могут сопротивляться небольшому моменту в реальности. это также верно, что штифтовое соединение может допускать вращение только в одном направлении; обеспечение сопротивления вращению в любом другом направлении. Колено может быть идеализирован как соединение, которое позволяет вращение только в одном направлении и обеспечивает сопротивление боковому смещению.Конструкция штыревого соединения хороший пример идеализации действительности. Одно контактное соединение обычно недостаточно для обеспечения устойчивости конструкции. Другая поддержка должна должны быть предусмотрены в какой-то момент, чтобы предотвратить вращение конструкции. Представление шарнирной опоры включает в себя как горизонтальные, так и вертикальные силы.
ШТИФТОВЫЕ СОЕДИНЕНИЯ
В отличие от роликовых опор проектировщик часто может использовать штифтовые соединения. в структурной системе. Это типичные соединения, которые можно найти почти в все фермы.Они могут быть сочленены или скрыты от глаз; они могут быть очень выразительный или тонкий.

Изображен один из элементов Олимпийского стадиона. в Мюнхене ниже. Это соединитель из литой стали, который действует как узел для устранения ряд растягивающих усилий. При ближайшем рассмотрении можно заметить, что соединение состоит из нескольких частей. Каждый кабель подключен к узел концевой «скобкой», которая соединена с большим штифтом. Это буквально «закрепленное соединение». Из-за природы геометрии кронштейна и штифта, определенное количество вращательного движения будет разрешено вокруг оси каждого штифта.

Далее следует одно из соединений пирамиды Лойувра И.М. Пея. ниже. Обратите внимание, как он также использует закрепленные соединения.

Закрепленные соединения встречаются ежедневно. Каждый раз, когда распашная дверь открытое штифтовое соединение позволило вращаться вокруг определенной оси; и помешал перевод на два. Петля двери предотвращает вертикальное и горизонтальное положение перевод. На самом деле, если не создается достаточный момент для создания вращения дверь вообще не будет двигаться.

Вы когда-нибудь рассчитывали, сколько времени требуется, чтобы открыть конкретный дверь? Почему одну дверь открыть легче, чем другую?


ФИКСИРОВАННЫЕ ОПОРЫ
Фиксированные опоры могут выдерживать вертикальные и горизонтальные силы, а также момент. Поскольку они ограничивают вращение и перемещение, их также называют жесткие опоры. Это означает, что конструкции требуется только одна фиксированная опора. чтобы быть стабильным. Все три уравнения равновесия могут быть выполнены.Флагшток, установленный в бетонное основание, является хорошим примером такой опоры. Изображение неподвижных опор всегда включает две силы (горизонтальные и вертикальный) и момент.

ФИКСИРОВАННЫЕ СОЕДИНЕНИЯ
Фиксированные подключения очень распространены. Составляются стальные конструкции разных размеров. элементов, которые свариваются. Монолитная бетонная конструкция автоматически становится монолитным и становится серией жестких соединений при правильном размещении арматурной стали.Спрос на фиксированные соединения больше внимания во время строительства и часто являются источником строительства неудачи.

Позвольте этому маленькому стулу проиллюстрировать, как два типа «фиксированных» соединения могут быть созданы. Один сварен, а другой состоит из два винта. Оба соединения считаются фиксированными из-за того, что что оба они могут выдерживать вертикальные и боковые нагрузки, а также развивать сопротивление моменту. Таким образом, было обнаружено, что не все фиксированные соединения должны быть сварными или монолитными по своей природе.Пусть петли в точках A и B следует рассмотреть более подробно.



ПРОСТЫЕ ОПОРЫ

Некоторые идеализируют простые опоры как опоры поверхности без трения. Это правильно, поскольку результирующая реакция всегда является единственной сила, направленная перпендикулярно поверхности и от нее. Однако есть также аналогичен роликовым опорам в этом. Они не похожи тем, что опора не может противостоять боковым нагрузкам любой величины.Созданная реальность часто зависит от силы тяжести и трения, чтобы развить минимальное количество трения устойчивость к умеренной боковой нагрузке. Например, если уложена доска поперек зазора, чтобы обеспечить мост, предполагается, что доска останется на своем месте. Он будет делать это до тех пор, пока его не пинает или не сдвигает нога. В тот момент доска будет двигаться, потому что простое соединение не может вызвать никакого сопротивления к боковой локации. Простая опора может рассматриваться как разновидность опоры. для длинных мостов или пролета кровли.Простые опоры часто встречаются в зонах частой сейсмической активности.


ПОСЛЕДСТВИЯ
Следующие фильмы иллюстрируют значение типа поддержки условие на поведение прогиба и на место максимального изгиба напряжения балки, поддерживаемой на концах.

Простые балки с шарнирами слева и роликовыми опорами справа.

Простые балки, шарнирно закрепленные слева и закрепленные на право.

Простые балки, закрепленные на обоих концах.


Вопросы для размышления

хммм …..

Домашние задания

Дополнительное чтение

TBA


Авторские права © 1995 Крис Х. Любкеман и Дональд Peting
Авторские права © 1996, 1997, 1998 Крис Х. Любкеман .

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *