Трещины при сварке алюминия причины: Как предотвратить проблемы при сварке алюминия?

Содержание

Как предотвратить проблемы при сварке алюминия?

Проблемы при сварке алюминия часто становятся больной темой для неопытных сварщиков. Чтобы в ваших алюминиевых сварных швах не появлялись дефекты, первым делом узнайте, как предотвратить их появление – и примите превентивные меры.

Сварка алюминияБыстрое и эффективное устранение проблем в ваших сварочных работах может сослужить вам хорошую службу в минимизации простоев и излишних затрат. Однако еще более полезно – узнать, как с самого начала предотвратить эти проблемы, независимо от того, какой материал вы используете при сварке.

Сварка алюминия предполагает решение специфических задач. Обладая низкой температурой плавления и высокой теплопроводностью, алюминий к тому же особо склонен к прожёгу на тонких участках металла, в то время как на толстых участках может наблюдаться непровар. Серьезной проблемой также являются дефекты сварки алюминия, такие как трещины, нагар и копоть, пористость в сварных швах.

Свойства алюминия оптимальны для многих областей примененияТем не менее, коррозионная стойкость алюминия, высокое отношение предела прочности к весу в сочетании с высокой электропроводностью делают его отличным материалом для многих областей применения – от аэрокосмической промышленности до теплообменников, изготовления прицепов и, в последнее время, автомобильных кузовных панелей и рам.

Во избежание негативных воздействий на производительность и качество сварки, важно понять причины дефектов сварки алюминия, принять меры для их предотвращения и найти способы Сварной раскос из алюминиевого сплава для космического корабля "Буран"

быстрого устранения оплошностей, если таковые возникают. Вот ответы на некоторые распространенные вопросы, которые помогут вам разрешить проблемы при сварке алюминия, возникающие на производстве.

Проблемы при сварке алюминия — причина появления шовных трещин

Горячая трещина в кратере

Горячее растрескивание и растрескивание под действием напряжения может произойти при автоматической дуговой сварке в среде инертного газа плавящимся электродом (GMAW) и неплавящимся электродом (GTAW). При наличии любого вида трещин, даже маленьких, сварной шов не отвечает требованиям стандартов и, в конечном счете, может разрушиться. Горячее растрескивание – это преимущественно химическое явление, в то время как растрескивание под напряжением – следствие механических нагрузок.

Существует три основных фактора, повышающих вероятность образования горячих трещин при сварке алюминия. Первый фактор – чувствительность основного металла к растрескиванию. К примеру, некоторые сплавы, такие как серия 6000, более склонны к растрескиванию, чем другие. Второй фактор – это присадочный металл, который вы используете. Третьим фактором является Трещина шва под действием напряжения

конструкция сварного соединения – некоторые конструкции ограничивают добавление присадочного металла.

Растрескивание под действием напряжения может произойти, когда сварной шов на алюминии охлаждается, и во время затвердевания присутствует чрезмерное напряжение усадки. Это может быть связано с вогнутым профилем наплавленного валика, слишком медленной скоростью перемещения электрода, жёстким защемлением свариваемых элементов или оседанием металла в конце сварного шва (кратерная трещина).

Как предотвратить появление трещин?

GMAW-сваркаПроблемы при сварке алюминия в виде горячего растрескивания в некоторых случаях можно легко решить. Для этого достаточно выбрать присадочный металл, химические свойства которого обуславливают более низкую чувствительность к растрескиванию при сварке. Каждый присадочный металл на основе алюминия имеет классификацию по стандарту AWS (Американское общество сварщиков), которая соответствует его регистрационному номеру Ассоциации производителей алюминия, а вместе они определяют химические свойства конкретного сплава.

Всегда обращайтесь к проверенным руководствам по выбору присадочного материала, поскольку не все присадочные материалы на основе алюминия подходят для каждого основного металла из алюминиевого сплава. Некоторые руководства по присадочным материалам дают рекомендации, непосредственно касающиеся ряда сварочных характеристик, таких как склонность к растрескиванию, прочность, пластичность, коррозионная стойкость, высокотемпературная прочность, сочетание оттенков цветов после Сварной шов со скошенной кромкой

анодирования, термообработка шва после сварки и ударная вязкость. Если вас беспокоит возможность растрескивания, выберите присадочный материал с самым высоким рейтингом в категории растрескивания.

Помимо этого, используйте такую конструкцию сварного соединения, которая может предотвратить образование горячих трещин. Например, хорошо использовать сварное соединение со скошенными кромками, так как эта конструкция позволяет добавить больше присадочного металла, что приводит к большему разбавлению основного металла и, как следствие, уменьшает его склонность к растрескиванию.

Растрескивание под напряжением можно предотвратить использованием присадочного металла, содержащего кремний. Этот тип присадочного металла снижает усадочные напряжения, когда это возможно, особенно в трещиноопасных зонах, таких как начало и конец сварного шва (или кратеры). Также используйте функцию автоматического заполнения кратера или другие надежные GTAW-сварка

методы заполнения кратера. Увеличение скорости движения электрода также уменьшает вероятность появления трещин в алюминии путем сужения зоны термического влияния (ЗТВ) и снижения количества расплавленного основного металла.

Еще один вариант борьбы с растрескиванием – предварительный подогрев. Он сводит к минимуму уровень остаточных напряжений в основном металле при сварке и после нее. Внимательный контроль количества подводимой теплоты имеет ключевое значение в этом деле. Для некоторых сплавов излишний подогрев может неприемлемо снизить предел прочности на растяжение основного металла.

Как лучше всего избежать прожёга и непровара

ewmИспользование импульсной GMAW-сварки – хорошая защита от прожёга алюминия толщиной 1/8 дюйма или тоньше. При этом способе сварки источники питания работают, переключаясь между высоким пиковым током и низким базовым током. В фазе пикового тока от алюминиевой проволоки отрывается капля и движется к сварному соединению, в то время как в фазе низкого базового тока дуга остается стабильной, и перенос металла отсутствует. Сочетание высокого пикового и низкого базового токов снижает подвод теплоты. Таким образом предотвращается прожёг, а образование брызг будет минимальным или нулевым.Перенос металла в разных фазах тока

Проблемы при сварке алюминия значительной толщины весьма часто возникают из-за слабой силы тока. Поэтому учитывайте такие моменты во время работы. Обязательно установите достаточно высокую силу тока, это поможет полноценно проварить соединение. Хороший практический метод – использовать 250А дляГелий и аргон

сварки материала толщиной 1/4 дюйма и 350А для сварки материала толщиной 1/2 дюйма. В некоторых случаях есть смысл добавить гелий в защитную газовую смесь, чтобы обеспечить более горячую дугу с лучшим проваром шва на более толстых участках. Для процесса GMAW-сварки хорошо использовать смесь 75% гелия с 25% аргона. При GTAW-сварке толстых участков алюминия используйте смесь 25% гелия и 75% аргона, чтобы улучшить провар.

Почему на сварном шве появились цвета побежалости?

Цвета побежалости на алюминии

Цвета побежалости и сажа появляются, если на основном металле и сварном шве скопились оксиды алюминия или магния. Это явление наиболее распространено при GMAW-сварке, поскольку при прохождении сварочной проволоки через дугу и плавлении некоторая её часть нагревается до температуры парообразования и конденсируется на более холодном основном металле, который недостаточно защищен средой инертного газа.

Выбор подходящего присадочного металла – к примеру, из алюминиевого сплава серии 4000, который практически не содержит магния (по сравнению с 5000 серией алюминиевой присадки, которая содержит около 5% магния) – снижает вероятность того, что материал проволоки испарится в дуге и конденсируется на сварном шве в виде сажи.Сварка углом назад

Уменьшение расстояния от контактного наконечника до свариваемого изделия (CTWD), правильный угол наклона сварочного пистолета и скорость истечения защитного газа также препятствуют появлению цветов побежалости. Используйте сварку углом назад, которая помогает совершать очищающие движения от дуги в передней части сварного шва с целью удаления сажи. Увеличение размера сопла пистолета для GMAW-сварки или горелки для GTAW-сварки способствует защите дуги от сквозняков, из-за которых в зону сварки может попасть кислород. Всегда держите сопло чистым от брызг, чтобы обеспечить постоянный поток газа для защиты сварочной ванны.

Как устранить пористость?

проблемы при сварке алюминия - пористостьПористость – это общая неоднородность, формирующаяся главным образом из-за того, что водород попадает в сварочную ванну во время плавления и остается внутри сварного шва после его затвердения. Вы можете сделать несколько вещей, чтобы её предотвратить. Во-первых, убедитесь, что основной металл и присадочный метал чистые и сухие. Перед сваркой протрите алюминий с помощью растворителя и чистой тряпки, чтобы удалить всю краску, масло, жир либо смазочные материалы, которые могут привести к попаданию углеводородов в сварной шов. Затем почистите сварное соединение щеткой из нержавеющей стали, предназначенной для этой работы. Если основной металл из алюминиевого сплава хранился в прохладном месте, позвольте ему прогреться при температуре цеха в течение 24 часов. Это предотвращает образование конденсата на алюминии.Присадочный металл следует хранить в сухом обогреваемом помещении

Хранение неупакованного присадочного металла в обогреваемом шкафу или помещении также снижает риск возникновения пористости. Это позволяет избежать условий точки росы и сводит к минимуму вероятность образования гидроксида на поверхности проволоки для GMAW-сварки или прутков для GTAW-сварки.

Заказывать присадочные металлы следует у проверенных производителей. Это связано с тем, что такие компании, как правило, тщательно очищают проволоку и прутки от вредных оксидов для GTAW-сварки, а также соблюдают все процедуры, необходимые для минимизации водородосодержащих осадочных соединений.

ac+dc_3typesAC_sampleИ, наконец, рассмотрите возможность приобретения защитного газа с низкой точкой росы. Такие действия помогут предотвратить пористость шва. Соблюдайте все рекомендованные сварочные процедуры, касающиеся расхода защитного газа и цикла продувки.

Как и для любого метода сварки любых материалов, необходимо выполнить ряд рекомендаций, чтобы получить хороший результат. Механические и химические свойства алюминия таковы, что его сварка может оказаться непростой задачей. Всегда используйте самые эффективные методы очистки и хранения материалов и присадки, тщательно выбирайте правильное оборудование. Ведь проблемы при сварке алюминия всегда легче упредить, чем решать их постфактум.

 

 

 

Горячее растрескивание при сварке алюминиевых сплавов

У металлических сплавов известны несколько механизмов растрескивания. К счастью, к алюминиевым сплавам многие из них, например, водородное растрескивание, которое еще называют «холодным растрескиванием», не относятся. Почти все трещины в сварочных швах при дуговой сварке алюминиевых сплавов возникают из-за горячего растрескивания. А именно:  трещины возникают в сварном шве при его затвердевании в результате воздействия усадочных напряжений на его микроструктуру.

Влияние химического состава алюминия

Чтобы понять, почему алюминиевый сварной шов растрескивается и как выбор сварочного сплава (сварочного прутка) влияет на склонность к растрескиванию, очень полезно взглянуть на рисунок.vliyanie-legirovaniya-alyuminiya-na-rastreskivanieЭтот рисунок показывает влияние четырех различных легирующих добавок – Si, Cu и Mg, а также Mg и Si в виде Mg2Si – на склонность алюминиевого сплава к образованию горячих трещин при затвердевании. Важно отметить, что все легирующие добавки влияют на склонность к образованию трещин аналогичным образом. С увеличением концентрации добавки склонность к растрескиванию возрастает, достигает максимума и затем снижается до относительно низкого уровня.

Большинство алюминиевых сплавов, которые считаются не свариваемыми без сварочного прутка, имеют в химическом составе хотя бы одну легирующую добавку с концентрацией вблизи пика склонности к растрескиванию. Сплавы, которые показывают незначительную склонность к образованию трещин, оказывается, имеют химический состав, который далек от этих пиков. Действительно, склонность сплавов к растрескиванию зависит в основном только от их химического состава.

Выбор сварочного материала

Аналогично склонность к растрескиванию в ходе сварки зависит в основном от химического состава сварочной «ванны». Поэтому, принцип выбора сварочного материала заключается в следующем.

1) Для материалов, которые проявляют низкую склонность к образованию трещин нужно применять сварочный материал с аналогичным химическим составом.

2) Для материалов, которые проявляют высокую склонность к образованию трещин нужно применять сварочный материал, который значительно отличается от них по химическому составу, с тем, чтобы

Горячее растрескивание при сварке алюминиевых сплавов — Справочная информация

Горячее растрескивание при сварке алюминиевых сплавов

У металлических сплавов известны несколько механизмов растрескивания. К счастью, к алюминиевым сплавам многие из них, например, водородное растрескивание, которое еще называют «холодным растрескиванием», не относятся. Почти все трещины в сварочных швах при дуговой сварке алюминиевых сплавов возникают из-за горячего растрескивания. А именно:  трещины возникают в сварном шве при его затвердевании в результате воздействия усадочных напряжений на его микроструктуру.

Влияние химического состава алюминия

Чтобы понять, почему алюминиевый сварной шов растрескивается и как выбор сварочного сплава (сварочного прутка) влияет на склонность к растрескиванию, очень полезно взглянуть на рисунок.Этот рисунок показывает влияние четырех различных легирующих добавок – Si, Cu и Mg, а также Mg и Si в виде Mg2Si – на склонность алюминиевого сплава к образованию горячих трещин при затвердевании. Важно отметить, что все легирующие добавки влияют на склонность к образованию трещин аналогичным образом. С увеличением концентрации добавки склонность к растрескиванию возрастает, достигает максимума и затем снижается до относительно низкого уровня.

Большинство алюминиевых сплавов, которые считаются не свариваемыми без сварочного прутка, имеют в химическом составе хотя бы одну легирующую добавку с концентрацией вблизи пика склонности к растрескиванию. Сплавы, которые показывают незначительную склонность к образованию трещин, оказывается, имеют химический состав, который далек от этих пиков. Действительно, склонность сплавов к растрескиванию зависит в основном только от их химического состава.

Выбор сварочного материала

Аналогично склонность к растрескиванию в ходе сварки зависит в основном от химического состава сварочной «ванны». Поэтому, принцип выбора сварочного материала заключается в следующем.

1) Для материалов, которые проявляют низкую склонность к образованию трещин нужно применять сварочный материал с аналогичным химическим составом.

2) Для материалов, которые проявляют высокую склонность к образованию трещин нужно применять сварочный материал, который значительно отличается от них по химическому составу, с тем, чтобы попытаться получить химический состав шва вдали от пика растрескивания.

Выполнение этого принципа можно проследить при рассмотрении сварочных материалов, которые применяют при сварке сплавов серий 5ХХХ и  6ХХХ.

Сварка сплавов алюминий-магний

Большинство сплавов серии 5ХХХ проявляют низкую склонность к растрескиванию. Их можно сваривать вообще без сварочного прутка. Пик склонности к растрескиванию находится примерно при 1,5 % Mg. Все сплавы серии 5ХХХ, кроме сплава 5052 (АМг2,5 по ГОСТ 4784), содержат значительно больше магния, чем 1,5 % и находятся поэтому вдали от пика растрескивания. Однако сплав 5052 лежит по магнию прямо на пике растрескивания и, действительно, проявляет довольно высокую склонность к растрескиванию.

При выборе материала сварочного прутка для сплавов серии 5ХХХ общим правилом (кроме сплава 5052) является применение в качестве сварочного сплава серии 5ХХХ с немного большим содержанием Mg, чем в основном (свариваемом) сплаве. Для сплава 5052 применяют сварочный сплав с намного большим содержанием магния, такой как 5356 с 5 % Mg. Это дает большой «сдвиг» содержания магния в затвердевающем сварном шве в сторону от пика растрескивания.

Сварка сплавов алюминий-магний-кремний

Большинство сплавов серии 6ХХХ – сплавов системы Al-Mg-Si – являются очень чувствительными к растрескиванию. Действительно, их химический состав как раз попадает почти на пик, показанный на нижнем графике рисунка. Ни один из этих сплавов нельзя сваривать без сварочного прутка или со сварочным прутком того же химического состава. Если попытаться сделать это, то они будут растрескиваться каждый раз, если к сварочному шву не приложить значительные сжимающие напряжения, как это делается при контактной точечной сварке.

Поэтому выбор сварочного материала для этих склонных к растрескиванию сплавов 6ХХХ заключается в применении сварочных сплавов с таким химическим составом, чтобы получить сварочный шов с химическим составом вдали от пика растрескивания. Для этого применяют сварочные сплавы или с высоким содержанием Mg, например, 5356, или с высоким содержанием Si, обычно – сплав 4043. По этой причине не бывает сварочного прутка из сплава 6061. А если бы он был и мы применили бы его для сварки сплава 6061, то сварочный шов неизбежно бы растрескался.

Только со сварочным прутком!

Важно помнить, что большинство сплавов серии 6ХХХ нельзя сваривать без сварочного прутка. Более того, даже при сварке со сварочным прутком, если подавать его в недостаточном количестве, также возможно возникновение трещин.

Источник: Aluminum and Aluminum Alloys, ed. J.R. Davis

Возникновения трещин

Склонность к трещинообразованию

Существенным затруднением при сварке алюминиевых сплавов является склонность их к образованию трещин. Некоторые сплавы склонны к образованию горячих трещин, возникающих в период кристаллизации металла сварочной ванны, в других образуются холодные трещины, обнаруживаемые иногда спустя несколько месяцев после сварки.

Трещины всех типов чрезвы­чайно опасны для конструкций, так как могут привести к внезап­ному и полному их разрушению.

Горячие трещины выявлять несколько проще, так как все сварные швы при изготовлении конструкций подвергают различ­ным методам контроля. Холодные трещины особенно опасны тем, что возникают в конструкциях, эксплуатируемых или находя­щихся на хранении как бездефектные. Разрушения от холодных трещин наступают неожиданно. В некоторых случаях растрески­вание протекает в коррозионной среде. Поэтому все алюминиевые сплавы, прежде чем использовать для изготовления конструкций, необходимо тщательно исследовать на склонность к образованию горячих и холодных трещин.

Склонность алюминиевых сплавов к образованию трещин уве­личивается с увеличением количества в них легирующих элемен­тов, с повышением их прочности. Это относится к таким сплавам, как В95, В96, М40, 01915, 01911, 01063, ВАД23 и др.

Трещины при сварке возникают при достижении предельной деформации в металле шва или в зоне взаимной кристаллизации. В результате неравномерного распределения температур при сварке также в отдельных зонах металла возникают растягиваю­щие напряжения. При остывании шва растягивающие напряжения возникают в зоне, где при нагреве была максимальная температура. В высоколегированных сплавах по границам зерен образуются эвтектики, которые в момент кристаллизации зерен остаются жидкими, имеют низкую прочность и при приложении растягиваю­щих напряжений легко разрушаются.

Возникновение трещин 

Возможность возникновения трещин помимо химического со­става сплава определяется также другими факторами, задающими величину и темп развития деформации в определенные промежутки времени. Величина и темп развития деформации металла на различных этапах нагрева и охлаждения зависят от режима сварки, условий охлаждения и жесткости закрепления.

Холодные трещины в алюминиевых сплавах могут быть не только металлургического происхождения, но и возникать от не­правильного применения некоторых технологических операций. Например, проковка сварных швов может приводить к образова­нию трещин, иногда не выходящих на поверхность металла. Выяв­ление таких дефектов затруднительно, поэтому в случае необхо­димости проведения подобных операций требуется тщательное предварительное исследование.

Чистый алюминий марок AB0000, АВ000, АВОО не склонен к образованию горячих трещин. Стойкость к образованию трещин снижается при увеличении содержания кремния, а также может снижаться или повышаться в зависимости от содержания железа. Алюминий других марок проявляет склонность к образованию трещин особенно при сварке листов и плит большой толщины. Подавление склонности к образованию горячих трещин в сплавах, содержащих до 0,35% Si, достигается таким содержа­нием железа, что выдерживается отношение Fe: Si>= 0,5. При более высоком содержании кремния соединение без трещин может быть получено при соотношении указанных элементов больше единицы.

Сплавы системы А1—Мп применяют только с содержанием 1,2—1,6% Мп (сплав АМц). Этот сплав относится к числу хорошо сваривающихся. Тонкие листы (до 3 мм) свариваются без трещин. При сварке листов большей толщины склонность к образованию горячих трещин зависит также от содержания железа и кремния. У сплавов типа АМц, содержащих более 0,2% Fe, при соотноше­нии Fe: Si> 1 склонность к образованию трещин близка к нулю. При содержании более 0,2% Siдолжно сохраняться соотношение Fe: Si> 1.

Сплавы системы А1—Mgобладают меньшей склонностью к об­разованию горячих трещин, чем сплавы систем А1—Си и А1—Si. Наибольшая склонность к образованию трещин наблюдается при сварке тавровых проб сплава, содержащего 1—2% и 2,5 — 3,9% Mgпри испытаниях на образцах крестовой пробы [17, 121]. Для предотвращения образования трещин необходимо применять при­садочный материал с большим содержанием магния.

К термически упрочняемым сплавам системы А1—Mg—Siотносятся применяемые в СССР сплавы АВ, АК6-1 и АКВ. Упроч­нение этих сплавов достигается за счет выделения фазы Mg2Siпри старении. Особенностями свариваемости таких сплавов яв­ляются повышенная склонность к образованию горячих трещин в процессе сварки и разупрочнение в околошовной зоне. Наиболь­шую склонность к образованию горячих трещин проявляют сплавы, содержащие 0,2—2% Siи 0,2—1,5% Mg. Склонность к образованию горячих трещин определяется наличием легкоплавкой трой­ной эвтектики А1—Mg—Mg2Si, а также двойных эвтектик А1—Mg2Siи А1—Si, расширяющих интервал твердожидкого состояния сплава.

Использование присадочных материалов 

В сварных соединениях сплавов типа авиаль значительное уменьшение склонности к образованию горячих трещин может быть достигнуто при использовании присадочных материалов с со­держанием 4,5—6,0% Si. При этом склонность к образованию трещин, определяемая по крестовой пробе, уменьшается с 60% до 0. Таким присадочным материалом может быть проволока СвАК5.

Применение присадочных проволок, содержащих не­сколько процентов магния, например, АМг6, также исключает образование трещин в шве, но одновременно с этим интенсивно развиваются околошовные трещины. Это связано с более широким интервалом твердо-жидкого состояния и большей линейной усад­кой металла шва, выполненного таким присадочным материалом. При сварке сплава такого типа с применением присадочной про­волоки, содержащей 5% Si, получаются швы, пониженные меха­нические свойства которых не могут быть повышены термической обработкой.

При сварке деталей из сплава типа АВ хорошие результаты получены при использовании присадочного материала, содержа­щего 0,9% Mg, 2,3—3,5% Si, а также 0,25% Ті, 0,4% Мп или 0,2% Сг. Испытаниями на крестовой пробе трещины не обнару­жены. Швы, выполненные с помощью этой присадки, имеют один цвет с основным металлом после анодирования в отличие от швов, выполненных с присадкой СвАК5. Сплавы АК6 и АК8, со­держащие 2,2 и 4,3% Cu, склонны к образованию горячих трещин при сварке крестовой пробы. Эта склонность уменьшается при вве­дении в них 0,08—0,15% Ті.

 

К сплавам системы А1—Си относятся литейные АЛ7, АЛ 12 и деформируемый Д20. Сваривающийся сплав Д20 содержит 0,4— 0,8% Мп и 0,1—0,2% Ті. Последний значительно измель­чает зерно металла шва. Для повышения стойкости против трещин в сплаве должно быть не более 0,3% Fe, 0,2% Siи 0,05% Mg.

Дуралюмины относятся к системам Аl—Cu—Mg—Mn и Аl— Cu—Mg—Mn—Si. Основные марки дуралюмина Д1, Д6, Д16, 3125, АК8, ВД17. При сварке эти сплавы обладают повышенной склонностью к образованию трещин, а их сварные соединения имеют пониженные значения механических свойств в зоне сплавле­ния со швом.

Применением присадочных проволок типа СвАК5 и В61 можно снизить вероятность образования трещин при любом способе сварки. Существенное значение при этом имеет правильный подбор режимов сварки. Низкая пластичность шва и зоны сплавления обусловлена тем, что по границам оплавленных зерен распола­гаются хрупкие прослойки интерметаллидов.

Одним из наиболее распространенных сплавов системы Аl— Zn—Mg—Cu является сплав В95. Для повышения коррозионной стойкости листы из спла­вов В95 плакированы сплавом, содержащим 3,5% MgZn2.

Сплав В95 склонен к образованию горячих и холодных тре­щин. Последние наблюдаются только при газовой сварке. Для сварки сплава В95 применяют присадочный материал химического состава: 6% Mg, 3% Zn, 1,5% Cu, 0,2% Mn, 0,2% Ті, 0,25% Cr или 5% Mg, 0,2—1,5% Cu, 10% Zn, 0,2% Mn, 0,2% Ті, 0,25% Cr, остальное Аl. Можно также использовать сплавы, содержащие 3% Mg, 6% Zn, 0,5—1% Ті или 8—10% Mg, остальное Аl.


Также по теме:

причины образования и методы предотвращения

При соединении металлов методом сваривания, сварной шов и прилегающие к нему зоны вовлекаются в сложные термические процессы. В этих местах могут образоваться холодные трещины после сварки. Они могут проявиться как в самом сварном шве, так и в зонах, примыкающих к нему.

1 / 1

Здесь говорится о холодных трещинах, которые получили такое название в связи с тем, что их возникновение происходит при относительно низких температурах. Это температуры ниже 120 Со. Это могут быть комнатные температуры и даже отрицательные.

Такие дефекты в металлах возникают в различных зонах сварного соединения и имеют различную геометрию. Наиболее часто встречаются следующие виды:

  • одиночные трещины вдоль оси шва;
  • трещины в зоне сплавления;
  • многочисленные поперечные трещины.

Знание видов трещин поможет нам разобраться в их сущности, но более важным является вопрос о причинах их возникновения.

Причины образования

Над вопросом о причинах образования разрушений такого вида работают институты, и изложить его в полной мере в этой статье невозможно. Но есть основные процессы, влияющие на вероятность образования холодных трещин в процессе остывания сварочного шва:

  • низкая деформационная способность свариваемых металлов;
  • накопление пластических деформаций в процессе остывания;
  • неравномерность охлаждения и фазовых превращений;
  • наличие водорода, растворенного в околошовной зоне.

Интересной особенностью холодных трещин является возможность их образования спустя несколько суток после образования шва. Такая отсрочка разрушения связана с суммированием собственных (сварочных) напряжений в металле с напряжениями от внешних сил, приложенных к конструкции.

Если сумма этих усилий превосходит определенную граничную величину, то в уже остывшем металле продолжаются микроскопические разрушения на уровне границ отдельных зерен металла. Сдвиги вдоль границ металла приводят к еще большим напряжениям. В дальнейшем концентрация этих напряжений, на фоне ослабленных границ, вызывает образование холодных трещин.

Известная способность водорода диффундировать в металлы, накапливаясь там, в значительных количествах, помогает создавать зоны неравномерных физико-химических свойств, как в самом шве, так и в соседних слоях металла. Эти неравномерности создают дополнительные предпосылки для возникновения деформаций и дефектов соединения.

Контроль сварных швов

Появившиеся в местах сварки визуально определяемые холодные трещины не могут быть оставлены без внимания и применения к ним специальных методов, направленных на их устранения и усиление сварных соединений. Но большую опасность представляет собой появление холодных трещин в глубине металла. Их не видно и как будто бы нет, но они сильно ослабляют шов, создавая опасность его разрушения.

Для борьбы с этим явлением ученые и конструкторы разработали целый ряд методов контроля сварных соединений:

  • радиационная дефектоскопия;
  • магнитный контроль;
  • ультразвуковая дефектоскопия;
  • капиллярная дефектоскопия;
  • контроль на проницаемость.

При радиационной дефектоскопии происходит процесс просвечивание соединения рентгеновскими или гамма-лучами с фиксацией изображения на специальных пластинах. Это самый надежный способ контроля, но, из-за дороговизны и опасности для здоровья, применяется только на самых ответственных изделиях.

Магнитный контроль осуществляется специальными источниками магнитного поля. Магнитный поток, созданный ними, направляется на соединение и искажается в местах с неравномерной плотностью. Результат фиксируется либо с помощью магнитного порошка, либо с помощью специальной магнитной ленты. Метод очень специфический и используется крайне редко.

Ультразвуковая дефектоскопия очень удобный, недорогой и широко используемый метод. Ультразвук, создаваемый специальным удобным и компактным прибором, направляется на шов и отражается от границ разных сред. Отраженный сигнал принимается датчиком и отображается на приборном дисплее. Этот метод мог бы стать универсальным, если бы не некоторые ограничения по списку контролируемых металлов.

Как избежать появления холодных трещин

Методы борьбы всегда органично вытекают из условий образования. Для того чтобы воспрепятствовать образованию холодных трещин в сварных швах, необходимо: во-первых, устранить факторы, способствующие закалке металла при сварных работах; во-вторых, добиться максимального снижения содержания водорода в металле шва и околошовной зоне; в-третьих, обеспечить равномерное охлаждение шва.

Как показывает практика, учет перечисленных выше особенностей и соблюдение рекомендаций по проведению тех или иных сварочных работ, позволяют соединять широкий спектр металлов швами высочайшего качества.

 

разновидности, причины их образования. Контактная стыковая сварка

Трещиной называют несплошном, которая вызывается резким охлаждением или воздействием нагрузок. Разновидность этого дефекта, которую можно обнаружить только оптическими приборами с увеличением, не менее пятидесятикратного, называют микротрещины.

Продольные трещины располагаются вдоль сварного соединения и могут располагаться:

  • в металле шва;
  • в основном материале;
  • на границе сплава;
  • в области температурного воздействия.

  продольная трещина

Трещины в основном металле, причиной которых является высокое напряжение, называют скрытыми. Внешне они напоминают ступени. Этот дефект присущ сварных соединений значительной толщины. Высокие напряжения вызываются слишком жесткими соединениями или некорректным выбором сварочной технологии. Уменьшение сварочных напряжений снижает вероятность образования скрытых продольных трещин.

Конфигурация продольных трещин определяется линиями сплава шва и основного металла.

Эти трещины разделяют на:

  • горячие, их причиной является высокотемпературная хрупкость сплавов;
  • холодные — возникают при медленном разрушении металла.

Поперечные трещины ориентированы перпендикулярно оси сварного шва. Они могут возникать, как в основном материале и металле сварного соединения, так и в зоне температурного воздействия.

Радиальные трещины расходятся из одной точки и иначе называются звездообразными. Места их расположения аналогичные локализаций поперечных трещин. Причины образования поперечных и радиальных трещин такие же, как и в продольных.

В месте отрыва дуги на поверхности шва образуется углубление. Дефекты, возникающие в этом месте, называют трещинами в кратере. Они делятся на продольные, поперечные, звездоподобные. Конфигурацию этого дефекта определяют: микроструктура зоны сварного соединения, фазовые, термические и механические напряжения.

Если возникает группа не связанных друг с другом трещин, то они называются раздельными. Места и причины их возникновения аналогичные этим характеристикам поперечных и радиальных трещин.

Если с одной трещины образуется группа трещин, то такой брак носит название разветвленных трещин. Места их расположения — основной материал, металл шва, область термического воздействия. Причины возникновения такие же, как и в продольных трещин.

  Поры: их форма, места расположения и причины появления

Дефекты сварных соединений и соединений в виде полостей в сварном соединении называют порами. Эти полости заполнены газом, который не успел выделиться наружу.

Различают следующие разновидности пор:

  • Газовая полость — это образование произвольной формы, не имеет углов, причиной появления которого появились газы, которые не успели покинуть расплавленный материал.
  • Газовой иногда называют газовую полость, имеет сферическую форму.
  • Группа газовых пор, которая располагается в металле сварного соединения, называется равномерно распределенной пористостью.
  • Скопление пор — это три или более газовых полостей, расположенных кучно на расстоянии между собой, не превышает тройной диаметр максимальной поры.
  • Цепочкой пор называют ряд газовых полостей, которые располагаются линией вдоль сварного соединения с расстоянием между ними, не превышает трех диаметров наибольшей из времени.
  • Если дефектом является несплошном, вытянутая вдоль оси сварного шва и имеет высоту, которая гораздо меньше длины, то она называется продолговатой полостью.
  • Свищом называют трубчатую полость, которая располагается в металле сварного шва. Свищ вызывается выделением газа. Его форма и положение определяются источником газа и режимом твердения. Как правило, свищи образуют скопления в форме елок.
  • Газовая полость, нарушает целостность поверхности сварного соединения, называется поверхностной время.
  • Если во время затвердевания вследствие усадки образуется полость — она ​​носит название усадочной раковины. А усадочная раковина, расположенная в конце валика и не заваренный при следующих проходах, называется кратером.

Время — дефекты сварных соединений, фото которых приведены ниже, появляются из-за наличия вредных примесей, как в основном металле, так и в присадочный. Времени могут образовываться из-за ржавчины и других загрязнений, которые не были удалены перед проведением сварки с кромок материала, повышенного содержания углерода, высокой скорости сварочного процесса , Нарушений защиты сварочной ванны. Наиболее частой причиной возникновения пор является отсыревших покрытие плавится электрода.

Наличие одиночных пор не представляет опасности, а вот их цепочка может негативно сказаться на прочности сварного соединения. участок сварочного шва , Потрясенный этими дефектами, переваривают, предварительно механически его зачистив.

   Времени и шлаковые включения

  Виды твердых включений в сварном шве

Твердые посторонние включения, как металлического, так и неметаллической характера, имеющие в своей конфигурации хотя бы один острый угол, недопустимо дефектами в сварном соединении, поскольку играют роль концентраторов напряжений. Дополнительная опасность этих дефектов заключается в том, что они не видны снаружи. Выявить их можно только методами неразрушающего контроля.

   Шлаковые включения в сварном соединении

Твердые включения делятся на следующие виды:

  • Шлаковые включения — это шлаки, попавшие в сварочный шов. В зависимости от того, в каких условиях они были образованы, они бывают линейными, разобщенными, другими. Причины их образования — большие скорости сварочного процесса, загрязненные кромки, многослойная сварка, если швы между слоями очищенные некачественно. Форма этих бракованных включений очень разнообразна, поэтому они могут быть гораздо опаснее округлых пор.
  • Флюсы, служащие для защиты металла от окисления, является причиной образования флюсовых включений. Также, как и шлаковые, флюса включения делят на линейные, разобщены и другие.
  • Причинами образования оксидных включений могут быть: недостаточно чистая поверхность основного или присадочного металлов, вытягивания горячего сварочной проволоки из области защиты, неправильная подготовка кромок — слишком сильное их затупления.
  • Частицы посторонних металлов — вольфрама, меди или других образуют металлические включения. Причиной их образования может стать эрозия вольфрамового электрода   или случайное попадание металлических частиц снаружи, а также при использовании для поджога медной стружки.

 

  Несплавление и непровар: причины возникновения

   Непровар и несплавление

Дефекты — несплавление и непровар — это отсутствие соединения основного материала и металла сварного соединения.

Несплавление возникает при высоких скоростях сварочного процесса и силе тока более 15000С. Для предотвращения несплавления необходимо уменьшить скорость сварки, снизить временной разрыв между образованием и заполнением канавки, тщательно очищать сварочную зону от масел и загрязнений. Несплавления могут располагаться:

  1. в корне сварного шва;
  2. на боковой стороне;
  3. между валиками.

Непровар возникает из-за невозможности расплавленного металла достичь корня шва. Причин непровара может быть несколько:

  1. недостаточный сварочный ток;
  2. слишком высокая скорость перемещения электрода;
  3. увеличена длина дуги;
  4. слишком маленький угол скоса кромок;
  5. перекос свариваемых кромок;
  6. недостаточный зазор между кромками;
  7. неправильно выбран — увеличен — диаметр электрода.
  8. попадания шлака в зазоры между кромками;
  9. неадекватный выбор полярности для данного типа электродов.

Непровар — очень опасный и недопустимый сварочный дефект.

  Виды отклонений формы наружной поверхности шва от заданных значений

К нарушениям формы сварочного шва относят следующие дефекты:

  • Подрезы непрерывные — представляют собой непрерывные углубления, расположенные на внешней части валика шва. Если подрезы располагаются со стороны корня одностороннего шва и образуются из-за усадки вдоль границы, их называют усадочными канавками. Подрезы являются широко распространенными поверхностными дефектами, которые возникают из-за слишком высокого напряжения дуги при сварке угловых швов   или за неточного ведения электрода. В этом случае одна из кромок проплавляя более глубоко, что приводит к стекания металла на находящийся в горизонтальном положении   деталь. Для заполнения канавки металла не хватает. при сварке стыковых швов   подрезы образуются редко. При слишком высоких значениях скорости сварки и напряжения дуги, как правило, возникают двусторонние подрезы. Такого же типа дефект получается и при автоматической сварке   в случае повышения угла обработки.
  • Превышение выпуклостей стыковой или углового шва является избыток наплавленного металла с лицевой стороны швов сверх положенного значения.
  • Если избыток наплавленного металла сверх установленного значения располагается на обратной стороне стыкового шва, то такой дефект называют превышением проплавить. Разновидность — местный избыточный проплав.
  • Если избыток наплавляемого металла натекает на основной металл, но не сплавляется с ним, то такой дефект называют наплавом.
  • Линейное смещение возникает, если свариваются поверхности расположены параллельно, но не на одном уровне.
  • Угловым называют смещение между двумя поверхностями при их расположении под углом, который отличается от необходимого.
  • Натик образуется из металла сварного шва который оседает под действием силы тяжести. Натик образуется при горизонтальном, потолочном, нижнем положениях   сварки, в угловом соединении   и шве нахлесточные соединения.
  • При прожогам металл сварочной ванны следует, образуя сквозное отверстие. Причинами прожога могут стать загрязненность поверхности основного металла или электрода.
  • Неполное заполнение разделки кромок возникает из-за недостатка присадочного материала.
  • Если в угловом соединении один катет значительно превышает другой, то возникает дефект чрезмерной асимметрии.
  • Неравномерное ширина сварного шва.
  • Неровная поверхность — это неравномерность формы усиления шва по его длине.
  • Вогнутость корня шва представляет собой неглубокую канавку со стороны корня шва, которая образовалась из-за усадки.
  • Из-за возникновения пузырей в период затвердевания металла образуется пористость в корне шва.
  • Восстановления. Этот дефект является местную неровность поверхности в зоне восстановления сварочного процесса.

   Наплыв и подрез

  Другие дефекты сварных швов

Все дефекты сварных швов и соединений, которые не были перечислены выше, относятся к категории «другие». К ним относятся следующие типы дефектов:

  • Случайная дуга. В результате возникновения случайного горения дуги возникает местное повреждение поверхностного слоя основного металла, который примыкает к области сварного шва.
  • Брызги металла — капли, образовавшиеся от наплавляемого или присадочного металла при сварочного процесса. Они прилипают к поверхности остывшего металла сварного шва или основного металла, расположенного в околошовной области.
  • Вольфрамовые брызги — создаются частицами вольфрама, выброшенного из расплавленного электрода на основной металл или на сварной шов.
  • Поверхностные задиры — это дефекты, которые возникают из-за удаления временно приваренного приспособления.
  • Утонение металла образуется при механической обработке. При этом толщина металла имеет значение, меньше допустимой величины.

Допустимые дефекты сварных соединений — это отклонение, наличие которых не снижает эксплуатационные свойства сварного соединения и их присутствие разрешено нормативной документацией. Все другие дефекты, как правило, исправляются с помощью подварки. Исправлять качество сварки более двух раз не допускается, так как может произойти перегрев или перерасход металла.

К внешним дефектам относятся:
   наплывы;
   подрезы;
   незаваренные кратеры;
   поры, выходящие на поверхность сварного шва;
   пропали;
   внешние трещины и др.
   Наплывы образуются в результате стекания расплавленного металла электрода на нерасплавленный основной металл или ранее выполнен валик без сплава с ним (рис. 4).

Наплывы могут быть местными, в виде отдельных зон, а также значительными по длине.

Рис. 4. Наплывы в швах: a — горизонтальном; б — нaхлесточном; в — тавровом; г — стыковом или при наплавке валиков.

Наплывы возникают из-за: чрезмерной силы тока при длинной дуге и большой скорости сварки; увеличенного наклона плоскости, на которую накладывают сварные швы; неправильного ведения электрода или неверного смещения электродной проволоки при сварке кольцевых швов под флюсом; неудобного пространственного положения (вертикальное, потолочное), а также недостаточный опыт сварщика.

подрезы   представляют собой углубления (канавки) в основном металле, идущие по краям шва (рис. 5). Глубина подреза может колебаться от десятых долей миллиметра до нескольких миллиметров. Причинами, по которым образуются эти дефекты сварных соединений являются: значительной силы тока и повышенное напряжение дуги; неудобное пространственное положение   при сварке; небрежность сварщика.


Рис. 5. Подрезы: a — в стыковом шве; б — в горизонтальном шве, расположенном на вертикальной плоскости; в — в угловом шве таврового соединения.

Подрезы в шве уменьшают рабочую толщину металла, вызывают местную концентрацию напряжений от рабочих нагрузок и могут быть причиной разрушения швов в процессе эксплуатации. Подрезы в стыковых и угловых швах , расположенные поперек действующих на них сил, приводят к резкому снижению вибрационного прочности; даже довольно большие подрезы, проходящих вдоль действующей силы, отражаются на прочности в значительно меньшей степени, чем подрезы, расположенные поперек.

  кратер   — углубление, образующееся в случае резкого обрыва дуги в конце сварки (рис. 6). Особенно часто кратеры возникают при выполнении коротких швов. Размеры кратера зависят от величины сварочного тока. при ручной сварки его диаметр колеблется от 3 до 20 мм, при автоматической он имеет удлиненную форму в виде канавки. Незаваренные кратеры снижают прочность сварного соединения, так как концентрируют напряжения. Кроме того, они уменьшают сечение шва и могут появиться очагами образования трещин.


Рис. 6. Кратеры: a, б — вид сверху; в — в продольном разрезе сварного шва.

При наличии кратера в сварном шве   снижение прочности соединения при вибрационной нагрузке для изделий из малоуглеродистой стали достигает 25%, а для изделий из низколегированных сталей — 50%.

стремглав   — дефект в виде проплавления или наплавленного металла с возможным образованием сквозных отверстий (рис. 7). Пропали возникают вследствие недостаточного притупления кромок, большого зазора между ними, завышенного сварочного тока или мощности горелки при невысоких скоростях сварки. Особенно часто пропали наблюдаются в процессе сварки тонкого металла и при выполнении первого прохода многослойного шва. Кроме того, пропали могут иметь место в результате плохого поджатия флюсовой подушки или медной подложки (автоматическая сварка), а также при увеличении продолжительности сварки, малом усилии сжатия и наличии загрязнений на поверхностях свариваемых деталей или электродах (точечная и шовная контактные сварки). Во всех случаях отверстие, возникающее при пропали, хотя и заваривается,

 

Качество сварных соединений можно обеспечить только постоянным контролем производства, причем контроля должны подлежать все элементы, начиная от самого свариваемого материала, проволоки и электродов, флюса, и заканчивая контролем самого процесса и качества готового изделия.

Общие правила контроля.

К работам нужно допускать только тех сварщиков, имеющих опыт и прошли контрольные испытания. Контролем обычно занимается специальный отдел, который называют отделом технического контроля. Существование этого отдела нисколько не снимает из самых сварщиков ответственности за качество своих работ, так как именно они в первую очередь отвечают за качество изделия и несут ответственность за возникшие дефекты.

Классификация дефектов.

С разным причинам могут возникать дефекты сварных соединений, которые оказывают существенное влияние на качество и прочность сварных конструкций. Все дефекты сегодня принято делить на несколько групп, а именно:

  1. Внешние дефекты: к внешним дефектам относятся различные трещины, подреза и кратеры, которые значительно снижают прочность конструкции.
  2. Внутренние: до внутренних дефектов принято относить различные включения, пористость шва, а также непровар.
  3. Сквозные: трещины и различные пропали.

Очень часто дефекты возникают из-за прямого нарушения технологии сварки или низкой квалификации самого сварщика или неправильного подбора материалов. Также хочется заметить, что часто причиной может послужить неисправность оборудования или низкое качество самих материалов. Поэтому, в причинах возникновения дефекта нужно разбираться подробно, это поможет исключить возможность их возникновения в будущем.

Основные дефекты при сварке, почему они возникают и как их можно исправить.

Основные дефекты при сварке — это:

  • трещины;
  • подрезы;
  • наплывы;
  • пропали;
  • кратеры;
  • свищи;
  • посторонние включения;
  • пористость;
  • перегрев и перерасход металла.

Сами распространения и опасные дефекты.

Трещины является самым опасным дефектом сварки, так как они сводят на нет все проведенные работы и могут привести к разрушению конструкции, что может привести к весьма трагическим последствиям. В настоящее время различают небольшие (микро) и крупные (макро) трещины, а также их классифицируют по времени их возникновения, а именно непосредственно во время работы или после ее выполнения.

Основными причинами появления дефекта является неверная технология выполнения работы, а также в корне неверный подбор материалов. Трещины могут образоваться и в результате повышенного содержания углерода и различных примесей в области шва. Также, причиной может стать очень резкое охлаждение.

Исправление дефекта возможно только рассверловкой данной области и вырезанием места трещины, после чего сварочные работы   производятся снова.

Таким дефектом, как подрезы сварных швов, называют явление, возникающее при дуговой сварки и характеризуется уменьшением толщины шва в его пределы. Подрез является основной причиной возникновения излишнего напряжения в области сварного шва, причем особенно опасно данное явление в тех случаях, когда шов расположен перпендикулярно основной напряжении. Если конструкция работает при вибрационных нагрузках, то подрез сварного шва является главной причиной значительного снижения ее прочности. Чаще всего они возникают при сварке первых слоев стыковых швов, а также часто такой дефект возникает и при сварке угловых швов. Куда реже подрезы случаются при варке однослойных стыковых швов, которые производятся как с разделкой кромок, так и без них.

Подрезы классифицируют:

  • односторонние (по одной стороне сварочного шва)
  • двусторонние (по двум сторонам).

Чаще всего встречаются именно двусторонние подрезы, правда при сварке угловых швов наиболее частым явлением является подрез односторонний с тем, что происходит наплывом металла на кромку, расположенной горизонтально.

Основными причинами подреза чаще всего является недостаточное напряжение при сварке, или же электрод был не совсем точно проведено по оси соединения элементов.

Конечно, есть и методы устранения этого очень распространенного дефекта. Устранение подреза проводится, прежде всего, наплавкой небольшого тонкого шва по линии этого дефекта. Отметим, что подрезы сварных швов — дефект также очень опасен, так как он снижает устойчивость конструкции к напряжению.

Дефекты сварных швов   является следствием неправильного выбора или нарушения технологического процесса изготовления сварной конструкции, применение некачественных сварочных материалов и низкой квалификации сварщика.

Дефекты делятся на внешние и внутренние. К внешним дефектам относятся: нарушение размеров и формы шва, непровар, подрез зоны сплава, поверхностное окисление, пропал, наплыв, поверхностные поры, не заверенные кратеры и трещины продольные и поперечные. К внутренним дефектам относятся: внутренние поры, неметаллические включения, непровары и микротрещины.

Нарушение размеров и «формы шва Выражается в неполномерного ширины и высоты шва, в чрезмерном усилении и резких переходах от основного металла к наплавленного. Эти дефекты при ручной сварке является результатом низкой квалификации сварщика, плохой подготовки свариваемых кромок, неправильного выбора сварочного тока, низкого качества сборки под сварку. Дефекты формы шва могут быть и следствием колебаний напряжения в сети. При автоматической сварке нарушения формы и размеров шва является следствием неправильной обработки шва или наруше я режима в процессе сварки (скорости сварки, скорости подачи электродной проволоки, сварочного тока).

непровар -местное несплавление свариваемых кромок основного и наплавленного металлов-е следствием низкой квалификации сварщика, некачественной подготовки свариваемых кромок (малый угол скоса, отсутствие зазора, большая притупление), смещения электрода к одной из кромок, быстрого перемещения электрода по шву.

подрез -Узкие углубления в основном металле вдоль края сварного шва-образуется при сварке большим током или удлиненной дугой, при повышенной мощности горелки, неправильном положении электрода или горелки и присадочного прутка.

поверхностное окисление -окисление металла шва и прилегающего к нему основного металла. Причинами являются сильно окисляющая среда, большая длина дуги, чрезмерно большая мощность сварочной горелки или слишком большой сварочный ток, замедленное перемещение электрода или горелки вдоль шва.

Стремглав -сквозное отверстие в сварном шве. Основными причинами прожога является большой сварочный ток, повышенная мощность сварочной горелки, малая толщина основного металла, малое притупление свариваемых кромок и неравномерный зазор между ними по длине.

наплыв -результат натекания металла шва на непрогретую поверхность основного металла или ранее выполненного валика без сплава с ним. Такие дефекты могут быть при низкой квалификации сварщика, некачественных электродах и несоответствие скорости сварки и сварочного тока разделке шва.

Поверхностные и внутренние порыВозникают в результате попадания в металл шва газов (водород, азот, углекислый газ и др.). образовавшихся при сварке. Водород образуется из влаги, масла и компонентов покрытия электродов. Азот в металл шва попадает из атмосферного воздуха при недостаточно качественной защиты расплавленного металла шва. Оксид углерода образуется в процессе сварки стали при выгорании углерода, содержащегося в металле. Если свариваемая сталь и электроды имеют повышенное содержание углерода, to при недостатке в сварочной ванне раскислителей и при большой скорости сварки оксид углерода не успевает выделиться и остается в металле шва. Таким образом, пористость является результатом плохой подготовки свариваемых кромок (загрязненность, ржавчина, замаслены), применение электродов с сырым покрытием, влажного флюса, недостатка раскислителей, больших скоростей сварки.

неметаллические включения   образуются при сварке малым сварочным током, применении некачественных электродов, сварочной проволоки , флюса, загрязненных кромках и плохой очистки шва от шлака при многослойной сварке. При неправильно выбранном режиме сварки шлаки и оксиды не успевают всплыть на поверхность и остаются в металле шва в виде неметаллических включений.

Трещины внешние и внутренние (микротрещины)   опасны и недопустимы дефектами сварных швов. Они образуются в результате напряжений, возникающих в металле от его неравномерного нагрева, охлаждения и усадки. Высокоуглеродистые и легированные стали после сварки при охлаждении закаляются, в результате чего могут образоваться трещины. Причиной возникновения трещин служит также повышенное содержание в стали вредных примесей (серы и фосфора).

Методы устранения дефектов ссор них   швов.   Ли стать номер ность швов устраняется наплавкой дополнительного слоя металла. При этом наплавляемый поверхность необходимо тщательно очистить до металлического блеска абразивным инструментом или металлической щеткой. Чрезмерное усиление шва устраняют с помощью абразивного инструмента или пневматического зубила.

Непровар, кратеры, поверхностные и внутренние поры и неметаллические включения устраняют вырубкой пневматическим зубилом или расчисткой абразивным инструментом всего дефектного участка с последующей заваркой. Часто применяют выплавку дефектного участка с помощью поверхностной кислородной или воздушно-дуговой резки.

Подрезы заваривают тонкими Беликова швами. Наплывы устраняют обработкой абразивным инструментом или с помощью пневматического зубила. Внешние трещины устраняют обработкой и последующей заваркой. Для предупреждения распространения трещины по концам ее засвер — ливают отверстия. Обработка трещины выполняют зубилом или резаком. Края обработки зачищают от шлака, брызг металла, окалины и заваривают. Швы с внутренними трещинами вырубают и заваривают заново. При наличии сетки трещин дефектный участок вырезают и сваркой накладывают заплатку.

ДЕФЕКТЫ сварных соединений

Дефекты сварных соединений образуются в результате неправильно предназначенных режимов сварочного процесса и несоблюдение технологии выполнения сварки. Основные дефекты сварных соединений, приведены в табл. 3С

Контроль сварных соединений.

Сварные соединения подвергают проверке для определения возможных отклонений от технических условий, предъявляемых к данному виду изделий. Внешние дефекты обнаруживаются внешним осмотром Внутренние — ультразвуковым или рентгеновским просвечиванием. Изделие считается качественным, если отклонения не превышают допустимые нормы.

Устранение дефектов сварки

Выявленные в процессе контроля дефекты сварки, не соответствующих техническим условиям, должны быть устранены, а если это невозможно, изделие бракуют.

В стальных конструкциях снятия бракованных сварных швов осуществляют плазменно-дуговой резкой или строганием обработкой абразивным кругом. Затем дефекты завариваются. Все исправления сварных соединений должны выполняться по той же технологии и теми же материалами, что применялись при наложении основного шва.

Наплывы и прочие неровности формы шва исправляют механической обработкой шва по всей длине, не допуская занижение общего сечения.

Исправлены швы подвергают повторному контролю, по методикам, которые соответствуют требованиям к данному виду сварного соединения.

причины образования и методы борьбы

Трещины – виды брака сварки, нарушение целостности металла. Разрывы шва или в околошовной области (зона термовлияния – ЗТВ) образуются из-за одновременного снижения пластичности, связанного с кристаллизацией, и внутренних напряжений.

Горячие трещины при сварке

Трещины, разрывы условно делят на две группы. Холодные возникают после остывания. Горячий дефект сварного шва или в ЗТВ формируется:

  • в процессе кристаллизации;
  • твердожидкой структуре;
  • твердом металле, нагретом до высокой температуры.

Горячие трещины при сварке узнаваемы по сильному окислению, они темного цвета. Разрушения чаще выявляют по границам структурных зерен. Несплошности формируются под действием нескольких факторов:

  • из-за неравномерности линейной и объемной усадок;
  • образования неорганических пленок;
  • формирования жидких прослоек при кристаллизации.

Способность к горячему растрескиванию зависит от величины и скорости нарастания кристаллитов, формирующих растягивающие напряжения, длительности процесса сварки.

Виды горячих трещин при сварке

Все виды несплошностей относятся к дефектам, отрицательно отражающихся на прочности соединений. Природа холодных и горячих трещин при сварке различная. Холодные появляются при остывании в результате возникающих внутренних напряжений. Горячие – следствие межкристаллических разрушений. Обычно имеют вид надрезов или несплошностей, различают макро- и микродефекты. Горячие трещины темного цвета (за счет окислов), извилистой формы. По локализации разделяются на две группы:

  • растрескивания в зоне термического влияния;
  • дефекты в металле сварного шва.
Виды горячих трещин при сварке

Виды горячих трещин при сварке

Околошовные бывают нескольких видов:

  • Кристаллизационные длинные, обычно раскрытые, не имеют заметных ответвлений. Зависят от двух параметров, влияющих на структуру стали:

формы затвердевания ванны расплава, с краев обычно образуются мелкие зерна, затем крупные столбчатые растут перпендикулярно оси;

размера угла между кристаллитами в поликристаллической структуре, они постепенно смыкаются.

Кристаллизационные горячие ратсрескивания бывают внутренними (выявляются методами неразрушающего контроля) и выходящими на поверхность, определяемыми визуально.

  • Ликвиационные горячие трещины связаны с неоднородностью химического состава. По виду мелкие, образуются в местах, где близко расположены столбчатые кристаллы. Зависят от химического состава, наличия тугоплавких легирующих элементов. Деформационная способность структуры также снижается за счет миграции примесей и загрязнений в пространство между зернами, формируются неметаллические включения. При кристаллизации легированных сталей тугоплавкие частицы становятся центром образования кристаллов.
  • Деформацонные, связанные с неравномерностью усадки.

Причины образования

Определить природу образования любых горячих трещин при сварке можно, зная механизм затвердевания металлов, способы формирования металлической структуры. Рассмотрим от чего появляются разрывы и несплошности.

Наглядно горячие трещины в сварных соединениях

Наглядно горячие трещины в сварных соединениях

Ликвиационные часто появляются при сварке:

  • Конструкционных сплавов, содержащих сульфиты. Растворяясь, неорганические соли формируют пленки в зоне термического влияния в районе границы зерен. Особенно склонны к формированию горячих трещин марки стали, содержащие S (серу), P (фосфор). Эти вредные примеси при сварке ухудшают качество швов.
  • Сплавы, в состав которых входит Ti (титан), Nb (ниобий), V (ванадий), W (вольфрам), Cr (хром), Mo (молибден) и другие легирующие металлы с низкой температурой отвердевания, при кристаллизации образуют дендриты разной формы. Легкоплавкие элементы кристаллизуются на стыке границ дендритов в последнюю очередь. Нарушаются межкристаллические связи, возникают структурные напряжения.

От величины первичных кристаллитов металлов зависит способность к образованию горячих трещин в процессе сварки. Скорость растягивающих напряжений зависит от температуры.

Из-за низкого относительного удлинения горячие трещины формируются при сварке аустенитных легированных сталей. При жесткой фиксации заготовок для сварки затрудняется структурная деформация.

Кристаллизационные формируются при неправильном выборе технологии, если не учитывается высокое содержание неметаллов и легирующих элементов. Когда превышены значения сварочного тока, возникают крупнозернистые области, приводящие к формированию внутренних напряжений между растущими кристаллитами.

К внешним причинам горячих растрескиваний относятся примеси, появляющиеся в структуре металла в процессе сваривания. Внутренние связаны с сегрегацией – неравномерным распределением микрофаз, легирующих присадок, примесей.

Методы предотвращения появления горячих трещин

Предупреждая образование горячих трещин, при разработке технологии учитывают особенности кристаллизации металлов. Основные способы снижения риска дефектов:

  • исключить жесткие соединения;
  • увеличить размер шовного валика при соединении толстостенных заготовок;
  • варить металл короткими участками, делая широкий шов;
  • при круговой сварке, соединении длинных заготовок оставлять детали подвижными максимальное время, заделывать концевые стыки в последнюю очередь;
  • не завышать ампераж;
  • делать много проходов с промежуточным отжигом;
  • внимательно проваривать корневую область, дефекты формируются именно там.

Важно фиксировать заготовки минимально, без зажима, следить за положением электрода. Детали должны быть хорошо подготовлены, чтобы исключить окалину, ржавчину, неметаллические включения. Электроды выбирают по типу металла, режиму сварки.

Для предотвращения дефектов, нужно строго следовать технологии

Для предотвращения дефектов, нужно строго следовать технологии

Как снизить вероятность возникновения

Чтобы снизить риск горячего растрескивания, важно проверять качество сварных заготовок. Некоторые внутренние дефекты формируются при кристаллизации расплава, нарушении технологии раскисления. Избежать горячих трещин при сварке можно, соблюдая температурный режим, следить за кристаллизацией шовного валика. Большое значение имеет соотношение концентрации серы и кислорода. Чем оно выше, тем лучше качество соединений. При снижении соотношения S/О на границе формирующихся зерен образуются пленки, которые, проникая в жидкую фазу, приводят к внутренним дефектам.

К способам устранения вредных факторов относятся:

  • Отжиг готовых соединений, изменяется структура зерен в шве, зоне термического влияния, становится однородной, устраняются внутренние напряжения;
  • некоторые металлы в процессе кристаллизации прогревают, чтобы снизить скорость охлаждения, минимизируется риск образования областей жидкой фазы внутри шва;
  • электроды предварительно прокаливают, детали предварительно нагревают (температура зависит от вида металла).

Требуется соблюдать требования, правила и нормативы, токовые режимы, скорость формирования шовного валика. При выборе оптимальной температуры нагрева технологи учитывают особенности химического состава сталей, алюминиевых и цветных сплавов.

Устранение трещины

Единственно возможный метод борьбы с горячими трещинами – снова проварить металл. До этого дефект вырезается. Технология регламентируется ГОСТ 5264-80 (ММА, MIG/MAG, TIG сварка), ГОСТ 1153-75 (сварка полуавтоматами и автоматами).

Реставрации подлежат участки, где обнаружены внутренние или внешние дефекты. Некоторые структурные нарушения в области термического влияния и сварного соединения устранить невозможно. Явный брак приходится вырезать участками полностью.

Зная причины образования горячих растрескиваний, специалисты тщательно подбирают электроды или присадочную проволоку, следят за технологией. Гораздо проще избежать дефектов, чем устранять их.

Предотвращение трещин в сварных швах алюминия

Почему в алюминии появляются кратерные трещины и как их предотвратить?

Кратерные трещины возникают по трем причинам:

1. Высокая теплопроводность

2. Относительно большое изменение объема при затвердевании алюминия

3. Вогнутая форма кратера

Алюминий охлаждается так быстро, что не дает достаточно времени для расплющивания валика сварного шва или заполнения кратера. Глубокая впадина кратера быстро застывает, приобретая вогнутую форму, оказывая высокие растягивающие напряжения на окружающий металл.Именно в этой области по металлу шва будет распространяться трещина. По мере остывания сварного шва обычно происходит растрескивание кратера, если не принять надлежащих мер для минимизации проблемы.

Предотвращение кратерных трещин при сварке газо-вольфрамовой дугой (например, TIG)
Обычно заполнить кратер при сварке TIG довольно просто. Только не оставляйте кратер вогнутым. Он должен быть плоским или выпуклым. Это достигается плавным уменьшением сварочного тока. При этом добавьте в сварной шов две-три небольших капли присадочного металла, пока кратер не заполнится.

Предотвращение кратерных трещин при сварке металлическим электродом в газовой среде (т. Если вы просто уберете палец со спускового крючка в конце сварного шва, вы получите вогнутый кратер и, возможно, трещину. Даже если источник питания для сварки имеет функцию «Заливка кратера», она часто оказывается не полностью эффективной.Самый простой способ предотвратить появление кратерных трещин в сварных швах алюминия MIG — это сделать шаг назад в конце сварного шва. Вместо того, чтобы отпускать спусковой крючок в конце сварного шва, измените направление движения обратно в уже сваренный материал. Продолжайте приваривать уже сваренный материал примерно на ½ дюйма (12 мм), а затем отпустите спусковой крючок, чтобы завершить сварку. Это сделает осадок в области кратера толще, изменив его форму с вогнутой на выпуклую.

Посмотреть продукты Lincoln Electric для сварки алюминия MIG и TIG

Посмотреть больше Статьи по сварке алюминия

Просмотр Статьи о процессах и теории алюминия

Политика поддержки клиентов
Линкольн Электрик занимается производством и продажей высококачественного сварочного оборудования, расходных материалов и режущего оборудования.Наша задача — удовлетворить потребности наших клиентов и превзойти их ожидания. Иногда покупатели могут обращаться к Lincoln Electric за информацией или советом по использованию нашей продукции. Наши сотрудники в меру своих возможностей отвечают на запросы, основываясь на информации, предоставленной им клиентами, и на знаниях, которые они могут иметь о приложении. Однако наши сотрудники не могут проверить предоставленную информацию или оценить инженерные требования к конкретной сварной конструкции.Соответственно, Lincoln Electric не гарантирует и не принимает на себя никаких обязательств в отношении такой информации или советов. Более того, предоставление такой информации или советов не создает, не расширяет и не изменяет никаких гарантий на наши продукты. Любая явная или подразумеваемая гарантия, которая может возникнуть из информации или совета, включая любую подразумеваемую гарантию товарного состояния или любую гарантию пригодности для какой-либо конкретной цели клиента, особо не признается.

Lincoln Electric — ответственный производитель, но выбор и использование конкретных продуктов, продаваемых Lincoln Electric, находится под исключительным контролем и остается исключительной ответственностью покупателя.Многие переменные, не зависящие от Lincoln Electric, влияют на результаты, полученные при применении этих методов производства и требований к обслуживанию.

.

Лучшие практики сварки алюминия

Наши сайты

  • FMA
  • The FABRICATOR
  • Гайки, болты и Thingamajigs Foundation
  • FABTECH
  • Canadian Metalworking
  • 50 лет FMA
Категории Аддитивное производство Сварка алюминия Дуговая сварка Сборка и соединение Автоматизация и робототехника Гибка / фальцовка Расходные материалы для резки и сварки Подготовка En Español Окончательная обработка Гидроформование Лазерная резка Лазерная сварка Механическая обработка Производство Программное обеспечение Обработка металлов / материалов Газокислородная резка Плазменная резка Электроинструменты Пробивка и прочее формирование отверстий в валках Безопасность Пиление Управление цехом резки Штамповка Испытание и измерение Производство труб и труб Производство труб и труб Гидроабразивная резка Торговая витрина Электронный бюллетень Цифровое издание Реклама Подписка Поиск Поиск
Наши публикации
  • The FABRICATOR
  • The WELDER
    • Подписка
    • E -newsletter
    • Digital Edition
    • Advertise
  • The Tube & Pipe Journal
  • STAMPING Journal
  • The Additive Report
  • The Fabr icator en Español
Категории
  • Аддитивное производство
  • Сварка алюминия
  • Дуговая сварка
  • Сборка и соединение
  • Автоматизация и робототехника
  • Гибка / фальцовка
  • Расходные материалы 9000pañ7
  • Español
  • Резка и сварка
  • Чистовая обработка
  • Гидроформование
  • Лазерная резка
  • Лазерная сварка
  • Механическая обработка
  • Производственное программное обеспечение
  • Обработка материалов
  • Металлы / материалы
  • Газокислородная резка
  • 000 9000 9000 9000 Другие инструменты для плазменной резки
  • Формование
  • Безопасность
  • Распиловка
  • Резка
  • Управление цехом
  • Штамповка
  • Испытания и измерения
  • Производство труб и труб
  • Производство труб
  • Waterjet C utting
Отраслевой справочник
  • Поиск в справочнике (выставочные залы)
  • Справочники и каталоги покупателей
  • Витрины продуктов
  • Глоссарий
  • Доска объявлений
  • Зарегистрируйтесь в Справочнике

  • Торговля Витрина

    FAB 40

    Реклама

    Подписка

    Наши дочерние веб-сайты
    • Ассоциация производителей и производителей, Intl.
    • Nuts, Bolts & Thingamajigs Foundation
    • FABTECH
    • Canadian Metalworking
    Вход в учетную запись
    Поиск
    • Наши публикации
    • The FABRICATOR
    • The FABRICATOR
    • The WELPICATOR
    • Журнал WEL
    • The Additive Report
    • The Fabricator en Español
    • The FABRICATOR
    • From The FABRICATOR

    Дорожная карта для шлифования и чистовой обработки нержавеющей стали

    Отказ от продажи модели воронки для защиты рынка

    In стена между продажами и производством в металлообработке

    Роль бережливого производства в развитии бизнеса

    • Подписка
    • Электронный бюллетень
    • Digital Edition
    • Рекламировать
    • Около 90 007
    • Подробнее
    • STAMPING Journal
    • Из журнала STAMPING

    Электромобили готовы к изменениям в штамповочной промышленности

    Спросите эксперта по штамповке: Как штамповщики могут поддерживать надлежащую силу зажима съемника?

    Обновление НИОКР: оценка пластичности сварных заготовок по индивидуальному заказу, часть II

    Наука о штампах: потеря искусства штамповки и штамповки металла

    • Подписка
    • Электронный бюллетень
    • Цифровое издание
    • Реклама
    .

    Алюминиевая мастерская: Советы по ремонту трещин

    Наши сайты

    • FMA
    • The FABRICATOR
    • Гайки, болты и Thingamajigs Foundation
    • FABTECH
    • Canadian Metalworking
    • 50 лет FMA
    Категории Аддитивное производство Сварка алюминия Дуговая сварка Сборка и соединение Автоматизация и робототехника Гибка / фальцовка Расходные материалы для резки и сварки Подготовка En Español Окончательная обработка Гидроформование Лазерная резка Лазерная сварка Механическая обработка Производство Программное обеспечение Обработка металлов / материалов Газокислородная резка Плазменная резка Электроинструменты Пробивка и прочее формирование отверстий в валках Безопасность Пиление Управление цехом резки Штамповка Испытание и измерение Производство труб и труб Производство труб и труб Гидроабразивная резка Торговая витрина Электронный бюллетень Цифровое издание Реклама Подписка Поиск Поиск
    Наши публикации
    • The FABRICATOR
    • The WELDER
      • Подписка
      • E -newsletter
      • Digital Edition
      • Advertise
    • The Tube & Pipe Journal
    • STAMPING Journal
    • The Additive Report
    • The Fabr icator en Español
    Категории
    • Аддитивное производство
    • Сварка алюминия
    • Дуговая сварка
    • Сборка и соединение
    • Автоматизация и робототехника
    • Гибка / фальцовка
    • Расходные материалы 9000pañ7
    • Español
    • Резка и сварка
    • Чистовая обработка
    • Гидроформование
    • Лазерная резка
    • Лазерная сварка
    • Механическая обработка
    • Производственное программное обеспечение
    • Обработка материалов
    • Металлы / материалы
    • Газокислородная резка
    • 000 9000 9000 9000 Другие инструменты для плазменной резки
    • Формование
    • Безопасность
    • Распиловка
    • Резка
    • Управление цехом
    • Штамповка
    • Испытания и измерения
    • Производство труб и труб
    • Производство труб
    • Waterjet C utting
    Отраслевой справочник
    • Поиск в справочнике (выставочные залы)
    • Справочники и каталоги покупателей
    • Витрины продуктов
    • Глоссарий
    • Доска объявлений
    • Зарегистрируйтесь в Справочнике

  • Торговля Витрина

    FAB 40

    Реклама

    Подписка

    Наши дочерние веб-сайты
    • Ассоциация производителей и производителей, Intl.
    • Nuts, Bolts & Thingamajigs Foundation
    • FABTECH
    • Canadian Metalworking
    Вход в учетную запись
    Поиск
    • Наши публикации
    • The FABRICATOR
    • The FABRICATOR
    • The WELPICATOR
    • Журнал WEL
    • The Additive Report
    • The Fabricator en Español
    • The FABRICATOR
    • From The FABRICATOR

    Дорожная карта для шлифования и чистовой обработки нержавеющей стали

    Отказ от продажи модели воронки для защиты рынка

    In стена между продажами и производством в металлообработке

    Роль бережливого производства в развитии бизнеса

    • Подписка
    • Электронный бюллетень
    • Digital Edition
    • Рекламировать
    • Около 90 007
    • Подробнее
    • STAMPING Journal
    • Из журнала STAMPING

    Электромобили готовы к изменениям в штамповочной промышленности

    Спросите эксперта по штамповке: Как штамповщики могут поддерживать надлежащую силу зажима съемника?

    Обновление НИОКР: оценка пластичности сварных заготовок по индивидуальному заказу, часть II

    Наука о штампах: утрата искусства изготовления штампов и штамповки металла

    • Подписка
    • Электронный бюллетень
    • Цифровое издание
    • Реклама
    • Подробнее
    .

    A Руководство по сварке алюминия

    Газ-металл-дуговая сварка

    Подготовка основного металла: Для сварки алюминия операторы должны позаботиться о том, чтобы очистить основной материал и удалить любые загрязнения оксида алюминия и углеводороды из масел или режущих растворителей. Оксид алюминия на поверхности материала плавится при 3700 F, в то время как алюминий основного материала под ним будет плавиться при 1200 F. Следовательно, оставление любого оксида на поверхности основного материала будет препятствовать проникновению присадочного металла в заготовку.Для удаления оксидов алюминия используйте проволочную щетку из нержавеющей стали или растворители и травильные растворы. При использовании щетки из нержавеющей стали чистите только в одном направлении. Следите за тем, чтобы не чистить щеткой слишком грубо: грубая чистка щеткой может еще больше накапливать оксиды в заготовке. Кроме того, используйте щетку только для обработки алюминия — не чистите алюминий щеткой, которая использовалась для обработки нержавеющей или углеродистой стали. При использовании растворов для химического травления обязательно удалите их из работы перед сваркой. Чтобы минимизировать риск попадания углеводородов из масел или режущих растворителей в сварной шов, удалите их обезжиривающим средством.Убедитесь, что обезжириватель не содержит углеводородов.

    Предварительный нагрев: Предварительный нагрев алюминиевой детали может помочь избежать растрескивания сварных швов. Температура предварительного нагрева не должна превышать 230 F — используйте индикатор температуры, чтобы предотвратить перегрев. Кроме того, выполнение прихваточных швов в начале и в конце свариваемой области поможет усилить предварительный нагрев. Сварщикам следует также предварительно нагреть толстый кусок алюминия при его приваривании к тонкому. если происходит холодная притирка, попробуйте использовать вкладки для притирки и притирки.

    Метод выталкивания: В случае алюминия отталкивание пистолета от сварочной ванны, а не его вытягивание, приведет к лучшему очищающему эффекту, уменьшению загрязнения сварных швов и улучшенному покрытию защитным газом.

    Скорость перемещения: Сварка алюминия должна выполняться «горячим и быстрым». В отличие от стали, высокая теплопроводность алюминия требует использования более высоких значений силы тока и напряжения, а также более высоких скоростей сварки.Если скорость движения слишком низкая, сварщик рискует получить чрезмерный ожог, особенно на тонкостенных алюминиевых листах.

    Защитный газ: Аргон, благодаря хорошему очищающему эффекту и профилю проплавления, является наиболее распространенным защитным газом, используемым при сварке алюминия. Сварка алюминиевых сплавов серии 5XXX в смеси защитного газа, содержащей аргон и гелий — максимум 75 процентов гелия — минимизирует образование оксида магния.

    Сварочная проволока: Выберите алюминиевую присадочную проволоку, имеющую температуру плавления, аналогичную температуре плавления основного материала.Чем больше оператор может сузить диапазон плавления металла, тем легче будет сваривать сплав. Возьмите проволоку диаметром 3/64 или 1/16 дюйма. Чем больше диаметр проволоки, тем легче она подается. Для сварки тонкостенных материалов хорошо подходит проволока диаметром 0,035 дюйма в сочетании с импульсной сваркой при низкой скорости подачи проволоки — от 100 до 300 дюймов / мин.

    Сварные швы выпуклой формы: При сварке алюминия кратерные трещины вызывают большинство отказов.Растрескивание возникает из-за высокой скорости теплового расширения алюминия и значительных сжатий, возникающих при остывании сварных швов. Риск растрескивания наиболее высок в случае вогнутых кратеров, поскольку поверхность кратера сжимается и разрывается при охлаждении. Поэтому сварщики должны создавать кратеры, чтобы они образовали выпуклую форму или холмик. По мере охлаждения сварного шва выпуклая форма кратера компенсирует силы сжатия.

    Выбор источника питания: При выборе источника питания для GMAW алюминия сначала рассмотрите метод переноса — дуговой распылением или импульсный.Аппараты постоянного тока (cc) и постоянного напряжения (cv) могут использоваться для дуговой сварки с распылением. Распылительная дуга берет крошечный поток расплавленного металла и распыляет его поперек дуги от электродной проволоки к основному материалу. Для толстого алюминия, для которого требуется сварочный ток, превышающий 350 А, оптимальные результаты дает cc.

    Импульсный перенос обычно осуществляется от инверторного источника питания. Новые блоки питания содержат встроенные импульсные процедуры в зависимости от типа и диаметра присадочной проволоки.Во время импульсной GMAW капля присадочного металла переходит от электрода к заготовке в течение каждого импульса тока. Этот процесс обеспечивает положительный перенос капель и приводит к меньшему разбрызгиванию и более высокой скорости следования, чем при сварке с переносом распылением. Использование импульсного процесса GMAW на алюминии также позволяет лучше контролировать подвод тепла, упрощая сварку в нестандартном положении и позволяя оператору сваривать тонкостенные материалы при низких скоростях и токах подачи проволоки.

    Механизм подачи проволоки: Для подачи мягкой алюминиевой проволоки на большие расстояния предпочтительным методом является двухтактный метод, в котором используется закрытый шкаф подачи проволоки для защиты проволоки от воздействия окружающей среды.Двигатель с регулируемой скоростью с постоянным крутящим моментом в шкафу подачи проволоки помогает проталкивать и направлять проволоку через пистолет с постоянной силой и скоростью. Двигатель сварочной горелки с высоким крутящим моментом протягивает проволоку и поддерживает постоянную скорость подачи проволоки и длину дуги.
    В некоторых цехах сварщики используют одни и те же устройства подачи проволоки для подачи стальной и алюминиевой проволоки. В этом случае использование пластиковых или тефлоновых футеровок поможет обеспечить плавную и стабильную подачу алюминиевой проволоки. Для направляющих трубок используйте отходящие и пластиковые входящие трубки зубильного типа, чтобы поддерживать проволоку как можно ближе к приводным роликам, чтобы предотвратить спутывание проволоки.Во время сварки держите кабель горелки как можно прямее, чтобы минимизировать сопротивление подаче проволоки. Проверьте правильность совмещения между ведущими роликами и направляющими трубками, чтобы предотвратить стружку алюминия.

    Используйте приводные ролики, предназначенные для алюминия. Настройте натяжение приводных роликов, чтобы обеспечить равномерную скорость подачи проволоки. Чрезмерное натяжение приведет к деформации проволоки и вызовет грубую и беспорядочную подачу; слишком маленькое натяжение приводит к неравномерной подаче. Оба условия могут привести к нестабильной дуге и пористости сварного шва.

    Сварочные пистолеты: Используйте отдельный вкладыш для сварочного пистолета для сварки алюминия.Во избежание истирания проволоки старайтесь удерживать оба конца лайнера, чтобы устранить зазоры между лайнером и диффузором газа на пистолете. Часто меняйте лайнеры, чтобы свести к минимуму вероятность того, что абразивный оксид алюминия вызовет проблемы с подачей проволоки. Используйте контактный наконечник примерно на 0,015 дюйма больше, чем диаметр используемого присадочного металла — при нагревании наконечник расширится до овальной формы и, возможно, ограничит подачу проволоки. Как правило, если сварочный ток превышает 200 А, используйте пистолет с водяным охлаждением, чтобы минимизировать тепловыделение и уменьшить трудности с подачей проволоки.

    .
  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *