Управление igbt транзистором: Управление изолированным затвором IGBT. Основные положения, Часть 1.

Содержание

Основные параметры и аспекты применения дискретных IGBT

1 октября 2018

Инструкция по особенностям практического применения дискретных транзисторов IGBT с экскурсом в основы теории и результатами практических испытаний для трех моделей IGBT производства Infineon: IRG7PC35SD для резонансных приложений с мягкими переключениями, IRGB20B50PD1 для работы на высоких частотах и IRGP4069D для высокочастотных приложений с жесткими переключениями.

Требования к схеме управления затвором

Влияние импеданса цепи затвора на потери при переключениях

Эквивалентная схема биполярного транзистора с изолированным затвором (БТИЗ, IGBT) состоит из биполярного PNP-транзистора, управляемого N-канальным МОП-транзистором (MOSFET) (рисунок 1). Вывод, называемый коллектором, фактически является эмиттером для внутреннего PNP-транзистора. MOSFET управляет базой PNP-транзистора и определяет скорость включения и падение напряжения на IGBT в открытом состоянии. Таким образом, выход внешнего драйвера подключается напрямую к затвору MOSFET, ток стока которого становится базовым током PNP-транзистора. Поскольку характеристики включения IGBT сильно зависят от параметров входного МОП-транзистора, то потери на включение определяются величиной импеданса цепи затвора. С другой стороны, характеристики выключения в основном зависят от скорости рекомбинации неосновных носителей, а значит, параметры встроенного МОП-транзистора значительно меньше влияют на уровень потерь IGBT при выключении.

Рис. 1. Эквивалентная схема IGBT

В результате, в отличие от силовых МОП-транзисторов, заряд затвора IGBT не полностью определяет уровень динамических потерь. В то же время заряд затвора остается важным параметром при расчете цепей управления IGBT.

Увеличение импеданса в цепи затвора продлевает плато Миллера и уменьшает скорость спадания тока. В то же время влияние импеданса на общие потери коммутации зависит от конструкции IGBT и его динамических характеристик. При этом потери на включение для всех без исключения IGBT сильно зависят от величины импеданса. Однако влияние импеданса на потери при выключении зависит от скорости IGBT и его технологии. Например, trench-IGBT и высокоскоростные IGBT отличаются большей чувствительностью к импедансу в цепи затвора. Однако, в любом случае верно, что входной импеданс затвора IGBT имеет большое значение, а дополнительный импеданс, вносимый цепью управления, оказывает меньшее влияние на уровень потерь.

На практике импеданс в цепи затвора часто увеличивают, чтобы ограничить выбросы тока, вызванные восстановлением обратного диода, при включении. Такой подход во многих случаях способен значительно снизить динамические потери. При этом негативное влияние от увеличения импеданса можно минимизировать с помощью дополнительного обратного диода, включенного параллельно затворному резистору. Это позволит сократить потери при выключении.

Зависимость энергии переключения от величины сопротивления в цепи затвора, как правило, всегда приводится в документации на современные силовые ключи.

Влияние импеданса цепи затвора на чувствительность к шуму

В биполярных транзисторах с изолированным затвором любое изменение напряжения dv/dt на коллекторе оказывает влияние на напряжение на затворе из-за наличия паразитной емкостной связи. Эта связь определяется делителем, образованным емкостью Миллера C

RES и емкостью «затвор-эмиттер» CGE (рисунок 2а). При определенном соотношении этих двух емкостей и импеданса затвора (ZG) выброс напряжения может оказаться достаточным для включения IGBT.

Если затвор не имеет жесткой связи с эмиттером, то определенный высокий уровень dv/dt на коллекторе может вызвать на затворе значительный выброс напряжения, превышающий пороговое напряжение, что приведет к переходу IGBT в открытое состояние. По мере перехода IGBT в проводящее состояние происходит ограничение dv/dt, спад напряжения на затворе и окончательное закрывание транзистора (рисунок 2б). В результате описанного выше процесса  через IGBT протекает короткий импульс сквозного тока, который вызывает дополнительные потери мощности.

Обратите внимание, что сквозной ток, протекающий через IGBT, сложно отделить от тока перезаряда выходной емкости (рисунок 2б). Сквозной ток начинает преобладать только после того, как напряжение затвора превысит пороговое значение (приблизительно от 3 до 5 В), а емкостный ток перезаряда начинает протекать сразу же, как только начинается изменение dv/dt на коллекторе.

Чтобы уменьшить чувствительность к помехам и снизить риск паразитного включения IGBT, импеданс в цепи затвора в выключенном состоянии транзистора должен быть минимальным, а напряжение затвора близким к нулю. Для решения этой задачи иногда применяют дополнительный PNP-транзистор в цепи затвора IGBT (рисунок 2а).

В приложениях с высокой мощностью для включения и выключения IGBT часто используют уровни  управляющего напряжения затвора от +15 В до -5…-15 В соответственно. Это обеспечивает дополнительный уровень помехоустойчивости и улучшает характеристики переключения. Однако такой подход требует создания дополнительного изолированного источника питания для IGBT верхнего плеча, что увеличивает стоимость схемы управления. Важно отметить, что если в приложении необходимо только лишь обеспечить защиту от dv/dt, то для решения проблемы может быть достаточно дополнительного конденсатора, включенного между затвором и истоком, или рассмотренного выше варианта с PNP-транзистором (рисунок 2а).

Рис. 2. Изменение напряжения dv/dt на коллекторе нижнего IGBT приводит к изменению напряжения на затворе и появлению сквозного тока

Таким образом, бывают случаи, когда увеличение рассеиваемой мощности из-за эффекта dv/dt оказывается меньшим из зол по сравнению с необходимостью создания сложной схемы управления с отрицательным напряжением для управления затвором. В любом случае индуктивность в цепи затвора должна быть минимизирована, например, за счет подключения затвора с помощью нескольких параллельных дорожек на печатной плате или применения нескольких скрученных проводов.

Компания Infineon предлагает большой выбор драйверов, отвечающих требованиям самих разных приложений. Например, схема, представленная на рисунке 3, обеспечивает простое, недорогое и эффективное решение для управления затвором IGBT. В качестве еще одного примера можно привести схему, изображенную на рисунке 4. В ней драйвер контролирует напряжение затвора, что позволяет ему при необходимости ограничивать ток и обеспечивать защиту от короткого замыкания.

Рис. 3. IR2110 обеспечивает простое, высокопроизводительное и недорогое решение для управления полумостовой схемой

Рис. 4. Схема управления IGBT с защитой от короткого замыкания

Вклад общей индуктивности эмиттера в импеданс цепи затвора

Под понятием «общая индуктивность эмиттера» понимается индуктивность, которая является общей для тока коллектора и тока затвора (рисунок 5а). Эта индуктивность определяет дополнительную обратную связь между коллектором и затвором, которая пропорциональна L·diC/dt. Не сложно заметить, что падение напряжения на этой индуктивности вычитается из напряжения затвор-исток при включении транзистора, и добавляется к нему при выключении. Таким образом, общая индуктивность замедляет процесс переключения IGBT.

Это явление похоже на эффект Миллера, за исключением того, что оно пропорционально скорости изменения тока коллектора di/dt, а не его напряжения dv/dt. В обоих случаях обратная связь пропорциональна крутизне передаточной характеристики IGBT, которая определяется размером кристалла и используемой технологией. Значение di/dt на уровне 0,7 A/нс является распространенным для схем с IGBT. В таком случае при наличии паразитной индуктивности 10 нГн, на ней можно ожидать падения напряжения 7 В. Стоит отметить, что обратная связь замедляет процесс включения, тем самым ограничивая di

C/dt.

Простые меры предосторожности могут снизить общую индуктивность эмиттера до минимального значения, которое определяется паразитной индуктивностью корпуса транзистора. Для этого следует разделить проводники, используемые для протекания тока коллектора, и проводники, относящиеся к схеме управления затвором (рисунок 5б). При этом, чтобы дополнительно уменьшить индуктивность, необходимо свить прямой и обратный проводники в цепи затвора или разместить их параллельно, если речь идет о печатной плате. Эти методы повышают стойкость к изменению di/dt и уменьшают звон в цепи затвора.

Рис. 5. Общая индуктивность эмиттера может быть уменьшена за счет использования отдельных проводников для протекания тока коллектора и для управления затвором

Траектории переключения и область безопасной работы ОБР

При работе с большими токами и напряжениями неосновные носители могут быть неравномерно распределены по кристаллу IGBT, что в случае выхода из области безопасной работы (ОБР) приводит к отказу силового ключа. В разделе 6 руководства AN-983 от Infineon/International Rectifier рассматриваются условия, при которых это происходит.

Распределение тока внутри кристалла может быть различным и зависит от знака связанного с ним di/dt. Поэтому область безопасной работы представляется в виде двух графиков: ОБР с прямым смещением и ОБР с обратным смещением.

ОБР с прямым смещением относится к работе транзисторов в линейных режимах A и B, а также в режиме короткого замыкания, который можно рассматривать как предельный случай режима B. Данные о тепловых ограничениях при работе IGBT с импульсными токами часто включаются в график ОБР, хотя на кривой теплового отклика (Transient Thermal Response) эта же информация представляется более полно и точно. Из-за ограниченного использования IGBT в линейном режиме график ОБР с прямым смещением обычно не приводится в документации.

ОБР с обратным смещением относится к случаю выключения индуктивной нагрузки и к случаю выключения при коротком замыкании (рисунок 6). На первом этапе при отключении индуктивной нагрузки напряжение на коллекторе транзистора увеличивается от низкого значения VCE(sat) до полного напряжения питания, при этом ток коллектора остается постоянным. После этого напряжение на коллекторе продолжает нарастать и превышает напряжение питания. Когда напряжение на коллекторе превышает напряжение питания на величину прямого падения p-n-перехода, диод, включенный параллельно индуктивности, открывается, тем самым отводя ток от транзистора. Таким образом, рабочая точка движется вдоль линии постоянного тока до тех пор, пока напряжение коллектор-эмиттер не превысит напряжение питания (рисунок 6б). Дальнейшее увеличение напряжения коллектора зависит от величины паразитной индуктивности LS и скорости выключения.

Рис. 6. Отключение индуктивной нагрузки и траектория рабочей точки во время переходного процесса

Очевидно, что для обеспечения безопасной коммутации вся траектория переключения должна лежать внутри ОБР. Таким образом, ОБР накладывет ограничения на величину коммутируемой индуктивной нагрузки.

Вторичный пробой IGBT происходит при токах и напряжениях, которые значительно превышают типовые значения, встречающиеся в реальных приложениях. Обратите внимание, что значения, приведенные в документации, как правило, указаны для предельных температур. Это значит, что дополнительные снабберные цепи не требуются до тех пор, пока траектория переключения не выходит за границы ОБР. Снабберные цепи часто используются для ограничения помех и повышения качества ЭМС, но это уже не связано с безопасностью работы ключа и ОБР.

Потери проводимости

В любой момент времени энергия, рассеиваемая в IGBT, определяется выражением:

$$E=\int_{0}^{t}{V_{CE}(i)\times i(t)dt},$$

где t — длина импульса. Зная энергию, можно рассчитать рассеиваемую мощность, для чего следует умножить энергию на частоту. При этом полагается, что потери оказываются незначительными, когда транзистор выключен i(t) ≈ 0. К сожалению, не существует простых выражений для определения напряжений и токов для IGBT в момент, когда он проводит ток. Следовательно, для упрощения мы будем разделять потери на две составляющие: статические потери проводимости и динамические потери при переключениях.

К потерям проводимости относятся потери, возникающие между окончанием интервала включения и началом интервала выключения. Обычно энергия включения измеряется в интервале времени между моментом, когда ток коллектора превышает значение 5% от номинального значения, до момента, когда напряжение «коллектор-эмиттер» падает до 5% от испытательного напряжения. Аналогично, энергия выключения измеряется с момента, когда напряжение «коллектор-эмиттер» превышает 5% от испытательного напряжения. Таким образом, потери проводимости следует отсчитывать с момента, когда напряжение «коллектор-эмиттер» составляет менее 5% от испытательного или питающего напряжения (см. руководство AN-983 от  Infineon/International Rectifier, раздел 8.4). Зависимость VCE(i) в приведенной выше формуле определяет поведение IGBT в открытом состоянии. Эта информация представлена в документации в виде графиков и табличных значений.

Как правило, в таблицах приводится информация только для нескольких конкретных рабочих точек. Однако, используя дополнительные данные, получаемые из графиков, можно выполнить расчет потерь проводимости. Поиск максимального напряжения VCE при любом токе и температуре делается за три шага:

  1. Определите типовое значение напряжения коллектор-эмиттер VCE из графика типовой зависимости VCE от тока коллектора iC для заданных значений тока и температуры кристалла.
  2. Определите коэффициент разброса прямого падения напряжения VCE. Для этого разделите максимальное значение VCE на типовое значение VCE, взятые из табличных данных.
  3. Умножьте значение VCE, полученное на первом шаге, на коэффициент разброса.

Умножая полученное максимальное значение VCE на величину номинального тока и на длительность импульса, получаем энергию потерь проводимости. Если же требуется рассчитать мощность потерь, то произведение тока и напряжения следует умножать на коэффициент заполнения.

Описанный алгоритм расчета относится к случаю, когда ток коллектора имеет постоянное значение в течение интервала проводимости. Если форма сигнала в течение интервала проводимости непостоянна, то интервал следует разделить на части, и рассчитать потери проводимости для каждой из частей с последующим суммированием. В идеале самым универсальным способом является построение математической модели с аппроксимацией зависимости тока и напряжения, а также формы рабочего сигнала с дальнейшим выполнением интегрирования.

Потери при жестких переключениях

При определении динамических потерь при жестких переключениях следует отдельно рассчитывать потери при включении и потери при выключении.

Как и в случае с потерями проводимости, потери при жестких переключениях рассчитываются с учетом графиков и табличных данных, приведенных в документации.

Как поясняется в разделе 8.4 руководства AN-983 от Infineon/International Rectifier, значение энергии переключения, указанное в документации, приводится для конкретных тестовых условий и для конкретной схемы испытаний. Важно помнить, что энергия переключения значительно изменяется с температурой, и все вычисления должны проводиться с учетом данных, приведенных для заданной температуры.

Потери на включение и выключение могут быть рассчитаны с использованием методики, описанной в предыдущем разделе, с некоторыми дополнительными изменениями:

  • Показатели потерь энергии должны быть масштабированы с учетом рабочего напряжения. Как уже было сказано, данные, представленные в документации, были получены при определенном значении напряжения, которое может иметь другое значение в рассчитываемой схеме.
  • Точно так же сопротивление в цепи затвора тестовой схемы, применяемой в документации, может отличаться от сопротивления, используемого в фактическом приложении. В последнее время в документации приводится зависимость энергии переключения от сопротивления в цепи затвора.
  • чтобы получить значение потерь мощности, следует умножить энергию переключения на частоту.

Переходной процесс при включении транзистора осложняется из-за восстановления диода, подключенного параллельно индуктивной нагрузке (рисунок 6а). Когда IGBT включается, через него начинает протекать не только ток нагрузки, но и ток восстановления обратного диода. Данные о потерях из-за встроенного диода также приводят в современной документации.

Ранее при тестировании IGBT использовалась другая тестовая схема с «идеальным диодом». Поэтому в документации приводились данные о потерях на включение без потерь на диоде. Таким образом, при необходимости эти составляющие потерь следует рассчитать по отдельности и сложить.

На рисунке 7 показана типовая форма сигналов при включении. Обратите внимание, что обратное восстановление диода увеличивает динамические потери за счет двух механизмов:

Рис. 7. Обратное восстановление диода увеличивает ток нагрузки (IRGP4066D, 400 В, 75 А, 175°C)

  • из-за того, что ток восстановления диода добавляется к току транзистора, когда напряжение коллектора все еще близко к напряжению питания;
  • из-за того, что уменьшение напряжения происходит с задержкой.

Как и в случае с расчетом потерь проводимости, потери при переключениях можно рассчитать с помощью относительно простых алгоритмов.

Компромисс между потерями проводимости и потерями при переключениях: оптимизация транзисторов

Для повышения эффективности преобразовательных схем компания Infineon предлагает использовать специализированные IGBT, предназначенные для работы в составе конкретных приложений. Например, существуют транзисторы, оптимизированные для питания двигателей, для индукционного нагрева, для плазменных дисплеев и т.д.

В результате номенклатура IGBT разрастается и становится достаточно разнообразной. По этой причине  поиск оптимального транзистора превращается в сложный итерационный процесс, который практически невозможно формализовать. Кроме того, разработчикам силовых схем приходится искать компромисс между потерями на переключения, потерями проводимости и требованиями устойчивости к короткому замыканию. Чтобы продемонстрировать необходимость компромисса, приведем пример сравнения различных транзисторов в рамках типовой импульсной схемы с учетом тепловых показателей.

Для сравнения различных моделей IGBT была выбрана популярная полумостовая схема, коммутирующая индуктивную нагрузку. Условия проведения испытаний приведены на рисунке 8, и могут быть изменены в соответствии с конкретным приложением. Вместо полумоста можно использовать обратноходовые или резонансные схемы. Из рисунка 8 становится видно, что изменение рабочей частоты по-разному влияет на значение максимального коммутируемого тока для разных транзисторов.

Рис. 8. Зависимость максимального коммутируемого тока от частоты переключений для трех разных IGBT

На рисунке 8 изображены результаты испытаний для следующих моделей IGBT:

  • IRG7PC35SD – IGBT-транзистор, выполненный по trench-технологии с высокой плотностью и разработанный с целью получения минимального падения напряжения. Этот транзистор является идеальным выбором для резонансных приложений (с мягкими переключениями). Как и следовало ожидать, в результате испытаний IRG7PC35SD продемонстрировал отличные показатели на низких частотах.
  • IRGB20B50PD1 – планарный транзистор технологии Gen 5. Несмотря на то, что IRGB20B50PD1 был разработан в конце девяностых годов, он по-прежнему остается одним из лучших транзисторов для работы на высоких частотах, несмотря на то, что падение напряжения у него выше, чем у транзисторов, выполненных по trench-технологии.
  • IRGP4069D – IGBT-транзистор, производимый по trench-технологии, предназначенный для высокочастотных приложений с жесткими переключениями.

Тепловой анализ

IGBT, как и силовые МОП-транзисторы и тиристоры, имеют ограничения, связанные с тепловым режимом эксплуатации. Грамотно выполненный тепловой анализ становится ключом к их эффективному использованию. Эта тема подробно освещена в руководстве AN-1057 от Infineon/International Rectifier.

В общем случае целью теплового анализа является выбор оптимального радиатора. Для этого может потребоваться ряд расчетов, как указано в руководстве AN-949 от Infineon/International Rectifier.

Чтобы значение теплового сопротивления «корпус-радиатор» соответствовало значению, указанному в документации, следует при монтаже использовать то же самое усилие затяжки. Стоит помнить, что чрезмерное усилие затяжки приводит к деформации корпуса и может повредить кристалл. С другой стороны, недостаточный момент затяжки приводит к ухудшению теплоотвода.

Повышение температуры при работе с короткими импульсами тока может быть рассчитано с помощью кривой теплового отклика (thermal response curve), которая приводится в документации. Этот расчет рассматривается в разделе «Peak Current Rating» руководства AN-949 от Infineon/International Rectifier.

Для коротких импульсов (5 мс или менее) повышение температуры, рассчитанное с помощью кривой теплового отклика, как правило, оказывается неточным. В таких случаях требуется выполнение подробного моделирования.

Замена MOSFET-транзисторов на IGBT

Во многих высоковольтных приложениях не удается использовать МОП-транзисторы, несмотря на их отличные динамические характеристики. Причиной этого является их невысокая устойчивость к помехам и наличие значительных паразитных индуктивностей. В таких случаях IGBT становятся наиболее привлекательной альтернативой по целому ряду причин. К преимуществам IGBT можно отнести:

  • минимальные потери проводимости, которые слабо зависят от температуры.
  • меньшая площадь кристалла по сравнению с MOSFET, что приводит к уменьшению входной емкости, упрощению управления затвором и снижению стоимости.
  • отсутствие резких перепадов di/dt и dv/dt, что обеспечивает минимальный уровень генерируемых помех и хорошие показатели ЭМС.
  • высокие динамические характеристики встроенных диодов, которые значительно превосходят показатели встроенных диодов MOSFET, благодаря чему при переключениях генерируются меньшие импульсы тока. Это является большим плюсом для приложений, в которых обратный диод является обязательным элементом схемы.

Поскольку корпусные исполнения и назначение выводов у MOSFET и IGBT совпадает, то при их замене друг на друга никаких механических изменений или модификаций печатной платы не требуется.

Требования к управлению затворами IGBT и МОП-транзисторов в значительной степени совпадают. В большинстве случаев для нормального включения будет достаточно 12…15 В, а при выключении можно обойтись без отрицательных запирающих напряжений. Так как входная емкость у IGBT меньше, чем у MOSFET, то чтобы избежать звона, в ряде схем может потребоваться увеличение сопротивления резистора в цепи затвора.

Рекомендации по параллельному включению IGBT

При параллельном включении нескольких IGBT удается уменьшить потери проводимости и снизить тепловое сопротивление. В то же время потери при переключениях, наоборот, увеличиваются. Таким образом, если основной вклад в общие потери вносит динамическая составляющая, то использование параллельного включения позволит улучшить только тепловые характеристики.

Параллельное включение МОП-транзисторов можно выполнить без особых проблем из-за положительного температурного коэффициента их потерь проводимости, в то время как потери на переключения для MOSFET в значительной степени не зависят от температуры. У IGBT наблюдается обратная картина – потери проводимости слабо зависят от температуры, зато потери на переключение имеют значительный положительный температурный коэффициент. По этой причине использование параллельного включения IGBT оказывается не таким простым, как для МОП-транзисторов.

Вопросы параллельного включения МОП-транзисторов были подробно рассмотрены в руководстве AN-941 от Infineon/International Rectifier. Большинство выводов, сделанных в AN-941, справедливы и для IGBT. При необходимости читатель может ознакомиться с ними самостоятельно. Далее будут рассмотрены только те вопросы, которые характерны для IGBT.

Напряжение насыщения VCE(on) в IGBT слабо зависит от тока и температуры, в то время как для МОП-транзисторов падение напряжения на открытом канале сильно зависит от обоих параметров. Когда два IGBT работают параллельно, напряжение VCE(on) для обоих транзисторов будет одинаковым в «принудительном» порядке. Таким образом, при заданной нагрузке через один IGBT может протекать больше тока, чем через другой. Эта разбалансировка для малых значений токов очень часто оказывается достаточно значительной и достигает 75…100%. Само по себе неравномерное распределение токов не является чем-то критическим, однако это оказывает значительное влияние на перегрев и потери на переключения. Рассмотрим эти вопросы подробнее.

Температура перехода: Поскольку падение напряжения одинаково для обоих IGBT, то транзистор, через который протекает больше тока, рассеивает большую мощность и имеет больший перегрев кристалла. Это смягчается тремя факторами:

  1. Обширные испытания показали, что неравномерное распределение нагрузки имеет тенденцию к уменьшению по мере увеличения тока. Это связано с тем, что разница в напряжениях насыщения сокращается с ростом тока. Таким образом, значительная разбалансировка при малых токах оказывается не такой значительной при больших токах.
  2. Обеспечение хорошей тепловой связи между кристаллами транзисторов гарантирует, что, несмотря на значительный дисбаланс токов, температурный перепад будет находиться в пределах нескольких градусов.
  3. Существуют IGBT с небольшим положительным температурным коэффициентом. Они становятся оптимальным выбором, если требуется параллельное включение транзисторов.

Потери коммутация при рассогласовании токов: вполне очевидно, что IGBT, который проводит больше тока, переключается также при большем токе. Следовательно, на него будет приходиться не только большая часть потерь проводимости, но большая часть динамических потерь на переключения.

Казалось бы, существует лавинообразный процесс, который должен привести к тому, что из-за более высоких потерь температура перегруженного IGBT превысит допустимое значение. Однако аналитический и экспериментальный анализ показал, что с увеличением тока дисбаланс между транзисторами уменьшается, а отличие температур сокращается до нескольких градусов. Это, как было сказано выше, связано с выравниванием напряжений насыщения при увеличении токовой нагрузки.

Стоит отметить, что наиболее эффективным методом борьбы с неравномерным распределением токов при параллельном включении является отбор транзисторов. Еще одной важной причиной разбалансировки являются различия в пороговых напряжениях, что особенно заметно у trench-IGBT. Таким образом, подбор транзисторов с согласованными значениями VCE(on) и VGS(th) является эффективным способом защиты от неравномерного распределения токов.

В дополнение к совету, озвученному в предыдущем абзаце, рекомендуется следовать рекомендациям, упомянутым в руководстве AN-941:

  • Используйте отдельные резисторы затвора для устранения риска паразитных колебаний.
  • Убедитесь, что транзисторы, включенные параллельно, имеют сильную тепловую связь.
  • Выравнивайте значения общей индуктивности эмиттера и уменьшайте ее до величины, которая не оказывает большого влияния на общие потери коммутации на заданной частоте.
  • Минимизируйте индуктивность рассеяния до значения, которое обеспечивает допустимое значение выбросов напряжения при максимальном рабочем токе.
  • Убедитесь, что схема управления имеет минимальное собственное сопротивление.
  • Защитные стабилитроны в цепи затвора могут вызывать колебания. Если без них не обойтись, то следует размещать их между выходом драйвера и резистором затвора.
  • Помните, что конденсаторы в цепи затвора замедляют коммутацию, тем самым увеличивая рассогласование между устройствами, а также могут вызывать колебания.
  • Паразитные составляющие должны быть минимизированы. Проводящий рисунок и электрические соединения должны быть максимально симметричными для всех транзисторов.

Оригинал статьи

•••

Наши информационные каналы

Схемы управления MOSFET и IGBT – Полупроводниковая силовая электроника

Разработчику энергосберегающей аппаратуры, который использует современную элементную базу силовой электроники, необходимо уметь правильно организовывать структуру управления мощными силовыми полупроводниковыми приборами. Ниже рассмотрим наиболее часто встречающиеся на практике случаи организации такого управления. В зависимости от конкретной ситуации можно использовать управление КМОП-логикой, эмитгерными повторителями, схемами управления с разделением цепей заряда и разряда входной емкости. Рассмотрим особенности организации управления с помощью КМОП-логики. На рис. 3.97 показан КМОП инвертор, образованный рМОП и пМОП транзисторами с индуцированным каналом.

Рис. 3.97. КМОП инвертор

Напряжение питания КМОП инвертора может изменяться в широких пределах. В статическом состоянии и без нагрузки такой элемент потребляет очень малый ток, поскольку один из транзисторов в статическом состоянии всегда закрыт. Если на входе инвертора напряжение логического нуля UQ, то Т1 открыт, а Т2 — закрыт, если напряжение логической единицы ί/, то Т2 открыт, а Т1 — закрыт.

На рис. 3.98 показан пример организации управления MOSFET-транзистором Т с помощью стандартного КМОП-инвертора. Схема управления мощным MOSFET с помощью КМОП логики является одной из самых простых, но такая схема эффективно работает при медленном переключении MOSFET. Оценим время переключения, например, для типовых выходных токов КМОП-инвертора, которые составляют ~24 мА (или 0,024 А). Время заряда емкости затвора MOSFET определим из выражения:

Для стандартных значений Um = 5 В, С и = 4 нФ получаем, что время переключения At = 4 · 10-9 · 5/0,024 = 833 · 10-9 с = 833 нс.

Эффективным способом сокращения времени включения и выключения мощного полевого транзистора ТЗ является применение эмиттерных повторителей между логической схемой, ШИМ-контроллером и затвором транзистора, как показано на рис. 3.99 [15].

Рис. 3.99. Управление MOSFET и IGBT при помощи эмиттерных повторителей

При отпирании MOSFET включается транзистор Т1 верхнего плеча эмитгерного повторителя, который обеспечивает протекание входного тока транзистора ТЗ, величина которого определяется выражением:

>

Следовательно, поступающий через резистор R1 с выхода контроллера ток усиливается в β + 1 раз, что позволяет существенно уменьшить время включения MOSFET

При запирании MOSFET значение его входного тока будет определяться следующим выражением:

)

Резистор R3, включаемый между общей шиной и затвором мощного транзистора, необходим для устранения выхода из строя MOSFET (ТЗ) в случае, когда напряжение питания +Un не подано, а транзистор ТЗ уже запитан. Емкость С необходима для снижения уровня помех на затворе транзистора ТЗ.

Необходимо соблюдать следующее обязательное условие — элементы ΤΙ, Т2, R2, R3 должны быть расположены на плате в непосредственной близости с транзистором ТЗ.

При большой мощности, переключаемой MOSFET (в нагрузке 1,5 кВт и более), цепи заряда и разряда входной емкости С и транзистора ТЗ следует полностью разделить, как это показано на рис. 3.100, причем при выборе резисторов R2, R3 эмитгерного повторителя необходимо обеспечивать условие: R3 много меньше R2,

Рис. 3.100. Управление MOSFET с разделением цепей заряда и разряда входной емкости

Рис. 3.101. Управление стойкой (полумостом) MOSFET и IGBT

Отдельного внимания требует рассмотрение особенностей организации управления стойкой (полумостом) MOSFET и IGBT, которая достаточно часто встречается на практике. Специальные устройства для управления MOSFET и IGBT могут непосредственно подавать напряжение на затвор, обеспечивая при этом необходимую величину тока заряда входной емкости. Дополнительный транзистор требуется в затворной цепи для обеспечения режима быстрого для быстрого запирания MOSFET (рис. 3.101) [15].

Схема работает следующим образом. Два выходных сигнала от управляющего драйвера находятся в противофазе. При высоком напряжении на выводе DRV1A (по отношению к DRV1B) на выводе DRV2A имеет место низкое напряжение (по отношению к DRV2B), и наоборот. Резисторы R2 и R4 обеспечивают поддержание закрытого состояния транзисторов Т1 и Т2 при отсутствии сигналов на выходе драйвера.

Низкоомные резисторы R1 и R3 ограничивают значения токов выходных каскадов драйвера. При отпирании одного из транзисторов (например, Т1) высокое напряжение с выхода 1 (DRV1A) драйвера через диод D1 поступает на затвор Т1. Транзистор ТЗ в интервале открытого состояния Т1 оказывается запертым. Если напряжение на данном выходе драйвера близко к нулю, биполярный транзистор открывается, а входная емкость быстро разряжается через открытый р-п-р транзистор.

В отдельных случаях применяется схема управления с помощью трансформатора, когда использование драйвера по каким-то причинам невозможно или когда нужна гальваническая развязка между ШИМ-контроллером и силовым ключом.

Рис. 3.102. Управление стойкой (полумостом) MOSFET и IGBT с помощью трансформатора

На представленной схеме нижний MOSFET управляется непосредственно от ШИМ-контроллера, а верхний — от трансформатора. Такой способ применим, когда используются полевые транзисторы не очень большой мощности, а частота их переключения в устройстве достаточно высокая, что не позволяет использовать ИМС драйвера.

Источник: Белоус А.И., Ефименко С.А., Турцевич А.С., Полупроводниковая силовая электроника, Москва: Техносфера, 2013. – 216 с. + 12 с. цв. вкл.

Управление мощной нагрузкой · Вадим Великодный

06 Jan 2017

На практике часто возникает необходимость управлять при помощи цифровой схемы (например, микроконтроллера) каким-то мощным электрическим прибором. Это может быть мощный светодиод, потребляющий большой ток, или прибор, питающийся от электрической сети. Рассмотрим типовые решения этой задачи.

Будем считать, что нам нужно только включать или выключать нагрузку с низкой частотой. Части схем, решающие эту задачу, называют ключами. ШИМ-регуляторы, диммеры и прочее рассматривать не будем (почти).

Условно можно выделить 3 группы методов:

  1. Управление нагрузкой постоянного тока.
    • Транзисторный ключ на биполярном транзисторе.
    • Транзисторный ключ на МОП-транзисторе (MOSFET).
    • Транзисторный ключ на IGBT.
  2. Управление нагрузкой переменного тока.
    • Тиристорный ключ.
    • Симисторный ключ.
  3. Универсальный метод.

Выбор способа управления зависит как от типа нагрузки, так и от вида применяемой цифровой логики. Если схема построена на ТТЛ-микросхемах, то следует помнить, что они управляются током, в отличие от КМОП, где управление осуществляется напряжением. Иногда это важно.

Простейший ключ

Простейший ключ на биполярном транзисторе проводимости n-p-n выглядит следующим образом.

Вход слева подключается к цифровой схеме. Если у нас цифровая схема построена на основе КМОП-логики с двухтактным («push-pull») выходом, то логическая «1» фактически означает подключение этого входа к питанию, а логический «0» — к земле.

Таким образом, при подаче «1» на вход нашей схемы ток от источника питания потечёт через резистор R1, базу и эмиттер на землю. При этом транзистор откроется (если, конечно, ток достаточно большой), и ток сможет идти через переход коллектор — эмиттер, а значит и через нагрузку.

Резистор R1 играет важную роль — он ограничивает ток через переход база — эмиттер. Если бы его не было, ток не был бы ничем ограничен и просто испортил бы управляющую микросхему (ведь именно она связывает линию питания с транзистором).

Максимальный ток через один выход микроконтроллера обычно ограничен значением около 25 мА (для STM32). В интернете можно встретить утверждения, что микроконтроллеры AVR выдерживают ток в 200 мА, но это относится ко всем выводам в сумме. Предельное допустимое значение тока на один вывод примерно такое же — 20-40 мА.

Это, кстати, означает, что подключать светодиоды напрямую к выводам нельзя. Без токоограничивающих резисторов, микросхема просто сгорит, а с ними светодиодам не будет хватать тока, чтобы светить ярко.

Обратите внимание, что нагрузка (LOAD) подключена к коллектору, то есть «сверху». Если подключить её «снизу», у нас возникнет несколько проблем.

Допустим, мы хотим при помощи 5 В (типичное значение для цифровых схем) управлять нагрузкой в 12 В. Это значит, что на базе мы можем получить максимум 5 В. А с учётом падения напряжения на переходе база — эмиттер, на эмиттере будет напряжение ещё меньше. Если падение напряжения на переходе равно 0,7 В,то получаем, что на нагрузку остаётся только 4,3 В, чего явно недостаточно. Если это, например, реле, оно просто не сработает. Напряжение не может быть выше, иначе тока через базу вообще не будет. Наличие падения напряжения на нагрузке также приведёт к уменьшению тока через базу.

Для расчёта сопротивления R1 нужно вспомнить соотношение для упрощённой модели транзистора:

Коэффициент — это коэффициент усиления по току. Его ещё обозначают или . У разных транзисторов он разный.

Зная мощность нагрузки и напряжение питания , можно найти ток коллектора, а из него и ток базы:

По закону Ома получаем:

Коэффициент не фиксированная величина, он может меняться даже для одного транзистора в зависимости от режима работы, поэтому лучше брать значение тока базы при расчёте чуть больше, чтобы был запас по току коллектора. Главное помнить, что ток базы не должен превышать предельно допустимое для микросхемы.

Также важно при выборе модели транзистора помнить о предельном токе коллектора и напряжении коллектор — эмиттер.

Ниже как пример приведены характеристики некоторых популярных транзисторов с проводимостью n-p-n.

Модель
КТ315Г50…350100 мА35 В
КТ3102Е400…1000100 мА50 В
MJE1300225…401,5 А600 В
2SC4242107 А400 В

Модели выбраны случайно, просто это транзисторы, которые легко найти или откуда-то выпаять. Для ключа в рассматриваемой схеме, конечно, можно использовать любой n-p-n-транзистор, подходящий по параметрам и цене.

Доработка схемы

Если вход схемы подключен к push-pull выходу, то особой доработки не требуется. Рассмотрим случай, когда вход — это просто выключатель, который либо подтягивает базу к питанию, либо оставляет её «висеть в воздухе». Тогда для надёжного закрытия транзистора нужно добавить ещё один резистор, выравнивающий напряжение между базой и эмиттером.

Кроме того, нужно помнить, что если нагрузка индуктивная, то обязательно нужен защитный диод. Дело в том, что энергия, запасённая магнитным полем, не даёт мгновенно уменьшить ток до нуля при отключении ключа. А значит, на контактах нагрузки возникнет напряжение обратной полярности, которое легко может нарушить работу схемы или даже повредить её.

Совет касательно защитного диода универсальный и в равной степени относится и к другим видам ключей.

Если нагрузка резистивная, то диод не нужен.

В итоге усовершенствованная схема принимает следующий вид.

Резистор R2 обычно берут с сопротивлением, в 10 раз большим, чем сопротивление R1, чтобы образованный этими резисторами делитель не понижал слишком сильно напряжение между базой и эмиттером.

Для нагрузки в виде реле можно добавить ещё несколько усовершенствований. Оно обычно кратковременно потребляет большой ток только в момент переключения, когда тратится энергия на замыкание контакта. В остальное время ток через него можно (и нужно) ограничить резистором, так как удержание контакта требует меньше энергии.

Для этого можно применить схему, приведённую ниже.

В момент включения реле, пока конденсатор C1 не заряжен, через него идёт основной ток. Когда конденсатор зарядится (а к этому моменту реле перейдёт в режим удержания контакта), ток будет идти через резистор R2. Через него же будет разряжаться конденсатор после отключения реле.

Ёмкость C1 зависит от времени переключения реле. Можно взять, например, 10 мкФ.

С другой стороны, ёмкость будет ограничивать частоту переключения реле, хоть и на незначительную для практических целей величину.

Пример расчёта простой схемы

Пусть, например, требуется включать и выключать светодиод с помощью микроконтроллера. Тогда схема управления будет выглядеть следующим образом.

Транзистор IGBT-принцип работы, структура, основные характеристики

Силовой транзистор IGBT управляется с помощью напряжения, подаваемого на управляемый электрод-«затвор», который изолирован от силовой цепи. Полное название прибора: биполярный транзистор с изолированным затвором.

Характерная черта для этого транзистора – очень малое значение управляющей мощности, использованной для коммутационных операций существенных токовых значений силовых цепей.

Рис. №1. Эффективность использования технологий на основе мощных IGBT-транзисторов

Преобладающее значение приобрело его использование в цепях силового предназначения для частотных преобразователей, для двигателей переменного тока, мощность, которых может доходить до 1 МВт. По своим вольтамперным характеристикам он считается аналогом биполярному транзистору, однако качественные энергетические показатели и чистота коммутационных действий намного выше, чем качество работы других полупроводниковых элементов.

Постоянно совершенствующиеся технологии позволяют улучшить качественные характеристики транзисторов. Созданы элементы, рассчитанные на большую величину напряжения, выше 3 кВ и большие значения тока до нескольких сотен ампер.

Основные характеристики мощных IGBT-транзисторов

 

  • Напряжение управления – это разрешенная проводимость, которая отпирает или запирает прибор.
  • Открытое проводящее состояние характеризуется падением напряжения, определяемым пороговым напряжением и внутренним сопротивлением, величина максимально допустимого тока.

Для применения в конструкции регуляторов скорости используются транзисторы, рассчитанные на рабочие частоты в пределах до нескольких десятков килогерц.

Преимущества IGBT транзисторов

  • Высокая плотность тока.
  • Практически отсутствие потерь статического и динамического типа.
  • Отсутствие управляющего тока позволяет не прибегать к использованию гальванически изолированных схем для работы и управления с применением дискретных элементов и предоставляет возможность создания интегральных схем – драйверов.
  • Стойкость к воздействию короткого замыкания.
  • Относительная простота параллельного соединения.

При разработке схем включения с транзисторами IGBT необходимо обращать внимание на ограничение значения максимального тока. Для этой цели используются следующие методы – это: правильный выбор параметров тока защиты и подбор резистора затвора Rg, а также применение цепей, которые формируют траекторию переключения.

Структура IGBT

Закрытое состояние прибора характеризуется напряжением, приложенным к области n-, она находится между коллектором и эмиттером. Проводящий канал появляется при воздействии на затвор положительно заряженного потенциала в p-области, он обозначается как пунктирная линия. Ток из балласта идет из области n- (с минусом) в область n+. При этом происходит открытие МОП-транзистора, что делает возможным открытие биполярного транзистора с p-n-p перехода транзистора.

Рис. №2. Структура транзистора IGBT.

Эквивалентом структуре транзистора IGBT можно считать схему подключения транзистора, где n-канальный полевой транзистор выполнит роль промежуточного звена (динамического сопротивления), уменьшаемого в открытом состоянии IGBT. Он пропускает через базовую область биполярного транзистора с p-n-p-переходом, при этом происходит уменьшение остаточного напряжения в области n-. Опасность для схемы может представлять так называемый «паразитный биполярный транзистор», он может перейти в открытое состояние, называемое эффектом защелкивания, что влечет потерю управляемости.

Рис. №3. Схема включения транзистора IGBT эквивалентная структуре транзистора.

Применение IGBT-транзистора

Одной из важных сфер использования солового транзистора – это использование в сетях с напряжением 6,5 кВ для создания безопасной и гарантированно надежной работы электроустановок в режиме короткого замыкания.

Для ограничения токов к. з. и приближению их к величине, которая не приведет к повреждениям оборудования. Они выполняют ограничение напряжения на затворе до уровня, не превышающем U = 15,3В. Это достигается с помощью применения следующих мер:

  1. Ограничение величины напряжения на затворе с помощью привязки к фиксированному уровню напряжения. Это возможно в том случае, если драйвер затвора обладает источником стабильного напряжения. Основной способ -добавление в схему диода с малым падением напряжения, например, диод Шотки. Высокая эффективность меры достигается снижением индуктивности цепи между клеммами источника и затвора.
  2. Ограничение значения напряжения на затворе с помощью присоединения в цепь между эмиттером и затвором — стабилитрона. Эффективность метода достигается максимально приближенным монтажом диодов к вспомогательным клеммам модуля. Для этой цели должны использоваться диоды с очень маленьким температурным дрейфом и разбросом, примером могут служить диоды ограничивающие переходные напряжения (диоды типа: 1,5КЕ6,8Са и 1,5КЕ7,5СА двунаправленные).
  3. Включение в схему отрицательной эмиттерной обратной связи. Этот метод возможен после подключения эмиттера драйвера затвора к основным клеммам эмиттера модуля. Эмиттерная связь обратного действия способствует эффективному ограничению напряжения на затворе.

Примеры расчета IGBT-транзистора

Выбор транзистора производится по следующим условиям, например, для преобразователей напряжения с резонансным контуром.

  • Транзистор должен переключался при значении нулевого тока.
  • Форма токовой синусоиды относительно силовых ключей должна быть аналогична к собственной частоте контура и составляет 100 кГц.
  • Амплитуда тока должна соответствовать средней мощности, например, как 40 А к 2000 Вт.
  • Определение максимального значения напряжения и максимальной частоты переключения транзисторов при условии, что плечи транзисторов должны работать в противофазе.

Для подбора драйвера IGBT транзистора руководствуются параметрами управления затвора, необходимого для коммутирования отпиранием и запиранием силового полупроводника. Для определения мощности управления нужно знать величину заряда затвора Q gate, частоту коммутации (fin) и реальный замеренный размах напряжения на выходе драйвера ΔVgate

 

Формула заряда затвора:

где время интегрирования должно не превышать время на управление выходных напряжений драйвера до их окончательных показателей, или при достижении выходного токового значения драйвера близкого к нулю.

Выбор максимальной величины тока управления  затвором определяется по упрощенной формуле:

Зависит от осцилляции величины тока на выходе. Если осцилляция тока управления затвором есть, то значение пикового тока должно быть очень большим, а его величина должна определяться исключительно с помощью измерения.

Не менее важны условия учета размаха выходного напряжения. Наихудший случай – это максимальное значение размаха на затворе, измеряется по реально существующей схеме.

Необходим учет максимальной рабочей температуры, руководствуются значением характерным для условия естественной конверсии без использования принудительного охлаждения.

Максимальная частота коммутации, она должна быть максимально-допустимая. На выбор оказывает влияние результирующая выходная мощность и рассеиваемая мощность резистора, используемого в цепи затвора.

Максимальный ток управления зависит от величины пикового тока, который может протекать через реальный контур управления затвором без появления осцилляций.

Проверка мощных IGBT-транзисторов

Проверка силового транзистора возникает при необходимости ревизии сгоревшего транзистора, например, при ремонте сгоревшего сварочного аппарата или с целью подбора пары для устройства, с тем, чтобы убедится, что это не «перемаркер». Проверку осуществляем с помощью мультиметра: прозваниваем вывода коллектора и эмиттера в обоих направлениях, так мы убедимся в отсутствии короткого замыкания. Входную емкость затвор-эмиттер заряжаем отрицательным напряжением. Осуществляется с помощью кратковременного и одновременного прикосновения щупом «СОМ» мультиметра затвора и щупом от гнезда «V/Ω/f» — эмиттера.

Рис. №4. Проверка транзистора IGBT.

Для проверки необходимо убедиться в рабочей функциональности транзистора. Заряжаем емкость на входе затвор-эмитер положительным напряжением. Это можно сделать, коротко прикоснувшись щупом мультиметра «V/Ω/f» — затвора, к щупу«СОМ» — эмиттера. Проверяем напряжение между коллектором и змиттером, оно должно быть не больше 1,5В, меньшая величина напряжения характерна для низковольтных транзисторов. Если напряжения мультиметра не хватает для открытия и проверки транзистора, входная емкость может заряжаться от источника постоянного напряжения со значением до 15 в.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Поделиться ссылкой:

Похожее

IGBT транзисторы. Устройство и работа. Параметры и применение

В настоящее время в электронике имеют большую популярность IGBT транзисторы. Если расшифровать эту аббревиатуру с английского языка, то это биполярный транзистор с изолированным затвором. Он применяется в виде электронного мощного ключа для систем управления приводами механизмов, в источниках питания.

Этот силовой транзистор сочетает в себе свойства биполярного и полевого транзистора. Он управляется путем подачи напряжения на затвор, изолированный от цепи. Характерным свойством этого транзистора является низкая величина мощности управления, которая применяется для переключений мощных силовых цепей.

Наибольшей популярностью пользуются IGBT в силовых цепях преобразователей частоты и электродвигателей переменного тока мощностью до 1 мегаватта. По вольтамперным свойствам эти транзисторы аналогичны биполярным моделям полупроводников, но качество и чистота коммутации у них намного больше.

Современные технологии изготовления дают возможность оптимизировать транзисторы по функциональным характеристикам. Уже разработаны полупроводники, способные работать при большем напряжении и величине тока.

Основные параметры
  • Управляющее напряжение – это разность потенциалов, способная управлять работой затвора.
  • Наибольший допустимый ток.
  • Напряжение пробоя между эмиттером и коллектором.
  • Ток отсечки эмиттер-коллектор.
  • Напряжение насыщения эмиттер-коллектор.
  • Входная емкость.
  • Выходная емкость.
  • Паразитная индуктивность.
  • Период задержки подключения.
  • Период задержки выключения.
  • Внутреннее сопротивление.

В регуляторах скорости применяются IGBT транзисторы с рабочей частотой в несколько десятков кГц.

Достоинства
  • Простая параллельная схема.
  • Отсутствие потерь.
  • Повышенная плотность тока.
  • Устойчивость к замыканиям.
  • Малые потери в открытом виде.
  • Возможность функционирования при повышенной температуре (выше 100 градусов).
  • Эксплуатация с высоким напряжением (выше 1 кВ) и мощностями (более 5 кВт).
При проектировании схем подключения с транзисторами нужно иметь ввиду, что существует ограничение по наибольшему току. Для этого применяют некоторые способы:
  • Правильный подбор тока защиты.
  • Выбор сопротивления затвора.
  • Использование обходных путей коммутации.
Устройство и работа

Внутреннее устройство IGBT транзисторов включает в себя каскад двух электронных ключей, управляющих конечным выходом.

 

Принцип действия транзистора заключается в двух этапах:
  • При подаче напряжения положительного потенциала между истоком и затвором полевой транзистор открывается, появляется n-канал между стоком и истоком.
  • Начинается движение заряженных электронов из n-области в р-область, вследствие чего открывается биполярный транзистор. В результате этого от эмиттера к коллектору протекает электрический ток.

 

IGBT транзисторы служат для приближения токов замыкания к безопасному значению. Они ограничивают напряжение затвора следующими методами:
  • С помощью привязки к определенному значению напряжения. Это достигается тогда, когда драйвер затвора имеет постоянное напряжение. Главным способом является добавление в схему диода, имеющего малое падение напряжения (диод Шоттки). Значительный эффект получается путем уменьшения индуктивности цепи затвора и питания.
  • Ограничение значения напряжения затвора путем использования стабилитрона в схеме затвора и эмиттера. Неплохая эффективность получается за счет установки диодов к дополнительным клеммам модуля. Диоды применяются с малым разбросом и температурной зависимостью.
  • Подключение в цепь отрицательной обратной связи эмиттера. Такой способ доступен, когда подключен эмиттер драйвера затвора к клеммам эмиттера модуля.
Сфера использования

IGBT транзисторы чаще всего работают в сетях высокого напряжения до 6,5 киловольт для надежной и безопасной работы электроустановок в аварийном режиме при коротких замыканиях.

Вышеперечисленные свойства транзисторов дают возможность использовать их в частотно-регулируемых приводах, инверторах, импульсных регуляторах тока, а также в сварочных аппаратах.

Также IGBT применяются в системах мощных приводов управления электровозов, троллейбусов. Это повышает КПД и создает повышенную плавность хода.

Силовые транзисторы широко используются в цепях высокого напряжения. Они входят в состав схем посудомоечных машин, бытовых кондиционеров, автомобильного зажигания, блоков питания телекоммуникационного оборудования.

Проверка исправности

IGBT транзисторы проверяются в случаях ревизии при неисправностях электрического устройства. Проверку проводят с помощью мультитестера путем прозвонки электродов эмиттера и коллектора в двух направлениях, чтобы проверить отсутствие замыкания. Емкость входа эмиттер-затвор необходимо зарядить отрицательным напряжением. Это делается кратковременным касанием щупа мультиметра «СОМ» затвора и щупа «V/Ω/f» эмиттера.

Чтобы произвести проверку, нужно убедиться, работает ли в нормальном режиме транзистор. Для этого зарядим емкость на входе эмиттер-затвор положительным полюсом.  Это делается коротким касанием щупа «V/Ω/f» затвора, а щупа «СОМ» эмиттера. Контролируется разность потенциалов эмиттера и коллектора, которая не должна превышать 1,5 вольта. Если напряжения тестера не хватит для открывания транзистора, то входную емкость можно зарядить от питания напряжением до 15 вольт.

Условное обозначение
Транзисторы имеют комбинированную структуру, то и обозначения у них соответствующие:

IGBT модули

Силовые транзисторы производятся не только в виде отдельных полупроводников, но и в виде модулей. Такие модули входят в состав частотных преобразователей для управления электромоторами.

Схема преобразователя частоты имеет технологичность изготовления выше, если в состав входят модули IGBT транзисторов. На изображенном модуле выполнен мост из двух силовых транзисторов.

IGBT транзисторы нормально функционируют при рабочей частоте до 50 кГц. Если частоту повышать, то повышаются и потери. Свои возможности силовые транзисторы проявляют максимально при напряжении выше 400 В. Поэтому такие транзисторы часто встречаются в мощных электрических приборах высокого напряжения, а также в промышленном оборудовании.

Из истории возникновения

Полевые транзисторы стали появляться в 1973 году. Затем разработали составной транзистор, который оснастили управляемым транзистором с помощью полевого полупроводника с затвором.

Первые силовые транзисторы имели недостатки, выражавшиеся в медленном переключении, низкой надежностью. После 90 годов и по настоящее время эти недостатки устранены. Силовые полупроводники имеют повышенное входное сопротивление, малый уровень управляющей мощности, малый показатель остаточного напряжения.

Сейчас существуют модели транзисторов, способных коммутировать ток до нескольких сотен ампер, с рабочим напряжением в тысячи вольт.

Похожие темы:

MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT

Когда дело доходит до импульсных преобразователей, оба типа транзисторов имеют свои преимущества и недостатки. Но какой из них лучше для данного устройства? В этой статье сравним MOSFET с модулями IGBT чтобы понять, что и где лучше ставить. 

Предполагается что в схемах с низким напряжением, низким током, но высокой частотой переключения, предпочтительно использовать полевые транзисторы (MOSFET), а в схемах с высоким напряжением, высоким током, но с низкой частотой — лучше IGBT. Но достаточно ли такой общей классификации? У каждого есть свои дополнительные предпочтения в этом отношении и правда в том, что не существует общего, жесткого стандарта, который позволял бы оценивать параметры данного элемента с точки зрения его использования в импульсных преобразователях. Все зависит от конкретного применения и широкого спектра факторов, таких как частота переключения, размер, стоимость и т. д. Поэтому, вместо того чтобы пытаться решить какой элемент лучше, нужно внимательно изучить различия между этими деталями. 

Кратко о MOSFET

MOSFET — это управляемый переключатель с тремя контактами (затвор, сток и исток). Сигнал затвора (управления) подается между затвором и истоком, а контактами переключения являются сток и исток. Сам затвор выполнен из металла и отделен от истока оксидом металла в качестве диэлектрика. Это позволяет снизить энергопотребление и делает этот транзистор отличным выбором для использования в качестве электронного переключателя или усилителя в схеме с общим истоком. 

Для правильной работы МОП-транзисторы должны поддерживать положительный температурный коэффициент. Потери во включенном состоянии малы и теоретически сопротивление транзистора в этом состоянии не ограничено — может быть близко к нулю. Кроме того, поскольку МОП-транзисторы могут работать на высоких частотах, они могут работать в устройствах с быстрым переключением и с низкими потерями на переключение.

Существует много различных типов МОП-транзисторов, но наиболее сопоставимыми с IGBT являются мощные MOSFET. Они специально разработаны для работы со значительными уровнями мощности и используются чаще всего только во включенном или выключенном состояниях, что делает их наиболее используемым ключом для низковольтных схем. По сравнению с IGBT, мощные полевые МОП-транзисторы имеют преимущества — более высокую скорость коммутации и более высокую эффективность при работе при низких напряжениях. Более того, такая схема может выдерживать высокое напряжение блокировки и поддерживать высокий ток. Это связано с тем что большинство мощных МОП-структур являются вертикальными (а не плоскими). Номинальное напряжение является прямой функцией легирования и толщины эпитаксиального слоя с примесью N-типа, а ток зависит от ширины канала (чем шире канал, тем выше ток).

Кратко о IGBT

Модуль IGBT также является полностью управляемым коммутатором с тремя контактами (затвор, коллектор и эмиттер). Его управляющий сигнал подается между затвором и эмиттером и нагрузкой между коллектором и эмиттером. 

IGBT сочетает в себе простые характеристики управления затвором, как в транзисторе MOSFET, с сильноточным характером биполярного транзистора с низким напряжением насыщения. Это достигается с помощью изолированного полевого транзистора для управляющего входа и биполярного силового транзистора в качестве сильноточного ключа. 

Модуль IGBT специально разработан для быстрого включения и выключения. Фактически частота повторения импульсов достигает УЗ диапазона. Эта уникальная способность делает IGBT часто используемыми в усилителях класса D для синтеза сложных сигналов с широтно-импульсной модуляцией и фильтрами нижних частот. Они также используются для генерации импульсов большой мощности в таких областях, как физика элементарных частиц и плазма, а также играют важную роль в современных устройствах — электромобили, электровелосипеды, поезда, холодильники с регулируемой скоростью вращения компрессора, кондиционеры и многое другое. 

Сравнение IGBT с MOSFET

Структуры обоих транзисторов очень похожи друг на друга. Что касается протекания тока, важным отличием является добавление слоя подложки P-типа под слой подложки N-типа в структуре модуля IGBT. В этом дополнительном слое дырки вводятся в слой с высоким сопротивлением N-типа, создавая избыток носителей. Это увеличение проводимости в N-слое помогает уменьшить общее напряжение во включенном состоянии в IGBT-модуле. К сожалению, это также блокирует поток электроэнергии в обратном направлении. Поэтому в схему добавлен специальный диод, который расположен параллельно с IGBT чтобы проводить ток в противоположном направлении. 

MOSFET может переключаться на более высоких частотах, однако есть два ограничения: время переноса электронов в области дрейфа и время, необходимое для зарядки / разрядки входного затвора и его емкости. Тем не менее эти транзисторы, как правило, достигают более высокой частоты переключения, чем модули IGBT.

Подведем итог

Многие из вышеупомянутых фактов касаются исторической основы обоих устройств. Достижения и технологические прорывы в разработке нового оборудования, а также использование новых материалов, таких как карбид кремния (SiC), привели к значительному улучшению производительности этих радиодеталей за последние годы. 

 

МОП-транзистор: 

  • Высокая частота переключения.
  • Лучшие динамические параметры и более низкое энергопотребление драйвера. 
  • Более низкая емкость затвора.
  • Более низкое термосопротивление, которое приводит к лучшему рассеиванию мощности.
  • Более короткое время нарастания и спада, что означает способность работать на более высоких частотах.

IGBT модуль: 

  • Улучшенная технология производства, которая приводит к снижению затрат.
  • Лучшая устойчивость к перегрузкам.
  • Улучшенная способность распараллеливания схемы.
  • Более быстрое и плавное включение и выключение.
  • Снижение потерь при включении и при переключении.
  • Снижение входной мощности.

В любом случае модули MOSFET и IGBT быстро заменяют большинство старых полупроводниковых и механических устройств, используемых для управления током. Силовые устройства на основе SiC демонстрируют такие преимущества как меньшие потери, меньшие размеры и более высокая эффективность. Подобные инновации будут продолжать расширять пределы использования MOSFET и IGBT транзисторов для схем с более высоким напряжением и большей мощностью.

   Форум по теории электроники

   Обсудить статью MOSFET ТРАНЗИСТОРЫ ПРОТИВ IGBT


Igbt транзисторы принцип работы

Принцип работы силовых IGBT транзисторов

Биполярные транзисторы с изолированным затвором широко используются в силовой электронике. Это надежные и недорогие компоненты, управляющиеся путем подачи напряжения на изолированный от цепи элемент. IGBT — транзистор, принцип работы которого чрезвычайно прост. Используется он в инверторах, системах управления электроприводами и импульсных источниках питания.

Принцип работы транзисторов и их характеристики будут напрямую зависеть от типа устройства и его конструкции.

К основным параметрам полупроводников можно отнести следующее:

  • Максимально допустимый ток.
  • Показатель управляющего напряжения.
  • Внутреннее сопротивление.
  • Период задержки подключения и выключения.
  • Паразитная индуктивность.
  • Входная и выходная емкость.
  • Напряжение насыщения у эмиттера и коллектора.
  • Ток отсечки эмиттера.
  • Напряжение пробоя коллектора и эмиттера.

Широкое распространение получили сегодня мощные IGBT транзисторы, которые применяются в блоках питания инверторов. Такие устройства одновременно сочетают мощность, высокую точность работы и минимум паразитной индуктивности. 

Преимущества и недостатки

Сегодня в продаже можно подобрать различные модели полупроводников, которые будут отличаться своими показателями рабочей частоты, емкостью и рядом других характеристик.

Популярность IGBT транзисторов обусловлена их отличными параметрами, характеристиками и многочисленными преимуществами:

  • Возможность эксплуатации с высокой мощностью и повышенным напряжением.
  • Работа при высокой температуре.
  • Минимальные потери тока в открытом виде.
  • Устойчивость к короткому замыканию.
  • Повышенная плотность.
  • Практически полное отсутствие потерь.
  • Простая параллельная схема.

К недостаткам IGBT относят их высокую стоимость, что приводит к некоторому увеличению расходов на изготовление электроприборов и мощных блоков питания. При планировании схемы подключения с транзисторами этого типа необходимо учитывать имеющиеся ограничения по показателю максимально допустимого тока.

Чтобы решить такие проблемы, можно использовать следующие конструктивные решения:

  • Использование обходного пути коммутации.
  • Выбор сопротивления затвора.
  • Правильный подбор показателей тока защиты.

Электросхемы устройств должны разрабатывать исключительно профессионалы, что позволит обеспечить правильность работы техники, отсутствие коротких замыканий и других проблем с электроприборами. При наличии качественной схемы подключения, реализовать ее не составит труда, выполнив своими руками силовой блок, питание и различные устройства.

Устройство и принцип работы

Внутреннее устройство IGBT транзистора состоит из двух каскадных электронных ключей, которые управляют конечным выходом. В каждом конкретном случае, в зависимости от мощности и других показателей, конструкция прибора может различаться, включая дополнительные затворы и иные элементы, которые улучшают показатели мощности и допустимого напряжения, обеспечивая возможность работы при температурах свыше 100 градусов.

Полупроводники IGBT типа имеют стандартизированную комбинированную структуру и следующие обозначения:

  • К — коллектор.
  • Э — эмиттер.
  • З — затвор.

Принцип работы транзистора чрезвычайно прост. Как только на него подается напряжение положительного потенциала, в затворе и истоке полевого транзистора открывается n-канал, в результате чего происходит движение заряженных электронов. Это возбуждает действие биполярного транзистора, после чего от эмиттера напрямую к коллектору начинает протекать электрический ток.

Основным назначением IGBT транзисторов является их приближение к безопасному значению токов замыкания. Такие токи могут ограничивать напряжение затвора различными методами.

Привязкой к установленному показателю напряжения. Драйвер затвора должен иметь постоянные параметры, что достигается за счёт добавления в схему устройства диода Шоттки. Тем самым обеспечивается уменьшение индуктивности в цепи питания и затвора.

Показатели напряжения ограничиваются за счёт наличия стабилитрона в схеме эмиттера и затвора. Отличная эффективность таких IGBT транзисторов достигается за счёт установки к клеммам модуля дополнительных диодов. Используемые компоненты должны иметь высокую температурную независимость и малый разброс.

В цепь может включаться эмиттер с отрицательной обратной связью. Подобное возможно в тех случаях, когда драйвер затвора подключён к клеммам модуля.

Правильный выбор типа транзистора позволит обеспечить стабильность работы блоков питания и других электроприборов. Только в таком случае можно гарантировать полностью безопасную работу электроустановок при коротких замыканиях и в аварийных режимах эксплуатации техники.

Сфера использования

Сегодня IGBT транзисторы применяются в сетях с показателем напряжения до 6,5 кВт, обеспечивая при этом безопасную и надежную работу электрооборудования. Имеется возможность использования инвертора, частотно регулируемых приводов, сварочных аппаратов и импульсных регуляторов тока.

Сверхмощные разновидности IGBT используются в мощных приводах управления троллейбусов и электровозов. Их применение позволяет повысить КПД, обеспечив максимально возможную плавность хода техники, оперативно управляя выходом электродвигателей на их полную мощность. Силовые транзисторы применяются в цепях с высоким напряжением. Они используются в схемах бытовых кондиционеров, посудомоечных машин, блоков питания в телекоммуникационном оборудовании и в автомобильном зажигании.

ВИДЕО В ПОМОЩЬ:

//www.youtube.com/embed/WKtaOiLwIWQ

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

IGBT-транзистор

— основы, характеристики, схема переключения и приложения

IGBT — это сокращенная форма биполярного транзистора с изолированным затвором , комбинация биполярного транзистора (BJT) и Металлооксидный полевой транзистор (MOS-FET) . Это полупроводниковое устройство, используемое для переключения приложений.

Поскольку IGBT представляет собой комбинацию полевого МОП-транзистора и транзистора , он имеет преимущества обоих транзисторов и полевого МОП-транзистора.MOSFET имеет преимущества высокой скорости переключения с высоким импедансом, а с другой стороны, BJT имеет преимущество в виде высокого усиления и низкого напряжения насыщения, оба присутствуют в транзисторе IGBT. IGBT — это полупроводник с регулируемым напряжением , который обеспечивает большие токи коллектора-эмиттера с почти нулевым током затвора.

Как уже говорилось, IGBT имеет преимущества как MOSFET, так и BJT, IGBT имеет такой же изолированный затвор, как и типичные MOSFET, и такие же выходные характеристики передачи. Хотя BJT — это устройство с управлением по току, но для IGBT управление зависит от MOSFET, поэтому это устройство с управлением напряжением, эквивалентное стандартным MOSFET.

Эквивалентная схема IGBT и символ

На изображении выше показана эквивалентная схема IGBT. Такая же структура схемы используется в транзисторе Дарлингтона, где два транзистора соединены одинаковым образом. Как мы можем видеть на изображении выше, IGBT объединяет два устройства, N-канальный MOSFET и PNP-транзистор . N-канальный MOSFET управляет PNP-транзистором. Выводы стандартного BJT включают коллектор, эмиттер, базу, а стандартный вывод MOSFET включает затвор, сток и исток.Но в случае контактов IGBT транзистора , это Gate , который поступает от N-канального MOSFET, а Collector и Emitter исходят от PNP-транзистора.

В транзисторе PNP коллектор и эмиттер являются проводящими путями, а когда IGBT включен, они проводят ток через него. Этот путь контролируется N-канальным MOSFET.

В случае BJT, мы вычисляем коэффициент усиления, который обозначается как Beta ( ), путем деления выходного тока на входной.

  β = выходной ток / входной ток  

Но, как мы знаем, полевой МОП-транзистор не является устройством, управляемым током; это устройство, управляемое напряжением, входной ток через затвор полевого МОП-транзистора отсутствует. Таким образом, та же формула, которая применяется для расчета усиления BJT, не применима для технологии MOSFET. Затвор полевого МОП-транзистора изолирован от пути прохождения тока. Напряжение затвора полевого МОП-транзистора изменило проводимость выходного тока. Таким образом, коэффициент усиления представляет собой отношение изменений выходного напряжения к изменениям входного напряжения.Это верно для IGBT. Коэффициент усиления IGBT — это отношение изменений выходного тока к изменениям входного напряжения затвора .

Из-за возможности высокого тока высокий ток BJT контролируется напряжением затвора MOSFET.

На изображении выше символа IGBT показано . Как мы видим, символ включает часть коллектора-эмиттера транзистора и часть затвора полевого МОП-транзистора. Эти три терминала показаны как Gate, Collector и Emitter.

В проводящем или включенном режиме « ON » ток протекает от коллектора к эмиттеру . То же самое происходит с транзистором BJT. Но в случае с IGBT вместо базы стоит Gate. Разница между напряжением затвора и эмиттера называется Vge , а разница напряжений между коллектором и эмиттером называется Vce .

Ток эмиттера (Ie) почти такой же, как ток коллектора (Ic) , Ie = Ic .Поскольку ток в коллекторе и эмиттере относительно одинаков, у Vce очень низкий ток.

Узнайте больше о BJT и MOSFET здесь.

Приложения IGBT:

IGBT в основном используется в приложениях, связанных с питанием. Стандартные силовые BJT обладают очень медленным откликом, тогда как MOSFET подходит для приложений с быстрым переключением, но MOSFET — дорогостоящий выбор там, где требуется более высокий номинальный ток. IGBT подходит для замены силовых BJT и силовых MOSFET .

Кроме того, IGBT предлагает более низкое сопротивление «ВКЛ» по сравнению с BJT, и благодаря этому свойству IGBT является термически эффективным в приложениях, связанных с высокой мощностью.

IGBT широко применяются в области электроники. Из-за низкого сопротивления , очень высокого номинального тока, высокой скорости переключения, привода с нулевым затвором, IGBT используются в системах управления двигателями большой мощности, инверторах, импульсных источниках питания с областями высокочастотного преобразования.

На приведенном выше изображении показано базовое коммутационное приложение с использованием IGBT. RL представляет собой резистивную нагрузку, подключенную через эмиттер IGBT к земле. Разница напряжений на нагрузке обозначается как VRL . Нагрузка также может быть индуктивной. А справа показана другая схема. Нагрузка подключена к коллектору, а резистор для защиты по току подключен к эмиттеру. В обоих случаях ток будет течь от коллектора к эмиттеру.

В случае BJT нам необходимо обеспечить постоянный ток через базу BJT.Но в случае IGBT, как и MOSFET, нам нужно обеспечить постоянное напряжение на затворе, и насыщение поддерживается в постоянном состоянии.

В левом случае разность напряжений VIN , которая представляет собой разность потенциалов входа (затвора) с землей / VSS, управляет выходным током, протекающим от коллектора к эмиттеру. Разница напряжений между VCC и GND практически одинакова на нагрузке.

В правой цепи ток, протекающий через нагрузку, зависит от напряжения, деленного на значение RS .

  I  RL2  = V  IN  / R  S   

Биполярный транзистор с изолированным затвором (IGBT) можно переключить « на » и « на », активировав затвор. Если мы сделаем затвор более положительным, подав напряжение на затвор, эмиттер IGBT будет поддерживать IGBT в состоянии « ON », и если мы сделаем затвор отрицательным или нулевым нажатием, IGBT останется в состоянии « OFF ». Это то же самое, что и переключение BJT и MOSFET.

Кривая I-V IGBT и передаточные характеристики

На приведенном выше изображении показаны ВАХ в зависимости от другого напряжения затвора или Вge . Ось X обозначает напряжение коллектора-эмиттера или Vce , а ось Y обозначает ток коллектора . В выключенном состоянии ток, протекающий через коллектор и напряжение затвора, составляет ноль . Когда мы меняем Vge или напряжение затвора, устройство переходит в активную область.Стабильное и постоянное напряжение на затворе обеспечивает непрерывный и стабильный ток через коллектор. Увеличение на Vge пропорционально увеличивает ток коллектора, Vge3> Vge2> Vge3 . BV — напряжение пробоя IGBT.

Эта кривая почти идентична кривой передачи I-V BJT, но здесь показано Vge , поскольку IGBT — это устройство, управляемое напряжением.

На изображении выше показана передаточная характеристика IGBT.Он практически идентичен PMOSFET . IGBT перейдет в состояние « ON » после того, как Vge превысит пороговое значение в зависимости от спецификации IGBT.

Вот сравнительная таблица, которая даст нам четкое представление о разнице между IGBT и POWER BJT и Power MOSFET .

Характеристики устройства

IGBT

МОП-транзистор питания

ПИТАНИЕ BJT

Номинальное напряжение

Более 1 кВ (очень высокое)

Менее 1 кВ (высокое)

Менее 1 кВ (высокое)

Текущий рейтинг

Более 500 А (высокий)

Менее 200 А (высокий)

Менее 500 А (высокий)

Устройство ввода

Напряжение, Вге, 4-8В

Напряжение, Вгс, 3-10В

Ток, hfe, 20-200

Входное сопротивление

Высокая

Высокая

Низкий

Выходное сопротивление

Низкий

Средний

Низкий

Скорость переключения

Средний

Быстро (нС)

Медленно (США)

Стоимость

ВЫСОКИЙ

Средний

Низкий

В следующем видео мы увидим схему переключения транзистора IGBT .

.Базовая структура

и ее преимущества

Insulated-Gate-Bipolar-Transistor Insulated-Gate-Bipolar-Transistor

Биполярный транзистор с изолированным затвором

Термин IGBT — это сокращенная форма биполярного транзистора с изолированным затвором, это трехконтактное полупроводниковое устройство с огромной биполярной токоведущей способностью. Многие разработчики думают, что IGBT имеет биполярное устройство CMOS i / p и биполярное o / p, управляемое напряжением. Таким образом, это устройство разработано, чтобы использовать преимущества как BJT, так и MOSFET устройств в виде монолитного устройства.Он сочетает в себе лучшие качества обоих для достижения характеристик оптимального устройства.

Это устройство подходит для нескольких приложений, таких как использование в силовой электронике, в частности, в ШИМ (широтно-импульсная модуляция), ИБП (источники бесперебойного питания), SMPS (импульсные источники питания) и других цепях питания. Это увеличивает эффективность, динамические характеристики и снижает уровень слышимого шума. Он аналогичным образом устанавливается в цепи преобразователя резонансного режима. Оптимизированный IGBT доступен как для низких потерь переключения, так и для низких потерь проводимости.

Что такое IGBT?

IGBT (биполярный транзистор с изолированным затвором) — это трехконтактный электронный компонент, который называется эмиттером, коллектором и затвором. Два из его вывода, а именно коллектор и эмиттер, связаны с трактом проводимости, а оставшийся вывод «G» связан с его управлением. Сумма усиления, достигаемая IGBT, представляет собой соотношение между его входным и выходным сигналами. Для обычного BJT величина усиления почти равна отношению тока o / p к току i / p, что называется бета-коэффициентом.

IGBT Symbol IGBT Symbol

IGBT Symbol

Для полевого МОП-транзистора (металлооксидного полупроводникового полевого транзистора) отсутствует ток i / p, поскольку вывод затвора изолирован от основного токоведущего канала. Таким образом, коэффициент усиления полевого транзистора равен коэффициенту усиления полевого транзистора, равному отношению изменения тока o / p к изменению i / pv. Тогда IGBT можно рассматривать как силовой BJT, а базовый ток этого транзистора равен IGBT в основном используется в схемах усилителей с малым сигналом, таких как BJT или MOSFET. электроника.

IGBT просто переключается в положение «ВКЛ» и «ВЫКЛ» путем срабатывания и отключения клеммы затвора. Постоянный + Ve сигнал напряжения i / p на «G» и «E» будет удерживать устройство в состоянии «ON», в то время как вычитание сигнала i / p приведет к его выключению, как BJT или MOSFET. .

Базовая структура IGBT

Базовая структура N-канального IGBT показана ниже. Эта структура очевидна, поскольку поперечное сечение кремния IGBT почти такое же, как у вертикального силового MOSFET, за исключением инжектирующего слоя P +.Он имеет ту же структуру MOS gate & P-wells с областями источника N +. В следующей структуре слой N + расположен вверху и называется источником, а нижний слой — стоком или коллектором.

Basic Structure of N-Channel IGBT Basic Structure of N-Channel IGBT

Базовая структура N-канального IGBT

IGBT использует паразитный тиристор, включающий 4-слойные структуры NPN. Есть некоторые IGB, которые изготавливаются без буферного слоя N +, называемые NPT IGBTS без пробивки), тогда как некоторые IGBT изготавливаются с буферным слоем N +, называемые PT IGBT (пробивные).Производительность устройства может значительно увеличиться за счет наличия буферного слоя. IGBT работает быстрее, чем силовой BJT, чем силовой MOSFET.

Принципиальная схема IGBT

На основе базовой структуры IGBT можно нарисовать простую схему с использованием транзисторов PNP и NPN, JFET, OSFET, которые показаны на рисунке ниже. Коллекторный вывод NPN-транзистора соединен с базовым выводом PNP через JFET-транзистор. Эти транзисторы обозначают паразитный тиристор, который создает регенеративный контур обратной связи.Резистор RB означает короткое замыкание выводов база-эмиттер NPN-транзистора, чтобы гарантировать, что тиристор не защелкнется, что приведет к защелкиванию IGBT.

Circuit Diagram of an IGBT Circuit Diagram of an IGBT

Принципиальная схема IGBT

JFET-транзистор означает построение тока b / n любых двух соседних ячеек IGBT. Он позволяет использовать полевой МОП-транзистор и поддерживает большую часть напряжения. Ниже показан символ схемы IGBT, который состоит из трех выводов: эмиттера, затвора и коллектора.Поведение при переключении IGBT

Поведение при переключении IGBT

Эти устройства в основном используются в качестве переключателей, например, в преобразователях частоты и прерывателях, изменение диода является наиболее важным, потому что когда переключение IGBT выключено, тогда ток определяется нагрузкой, которая во многих случаях является индуктивной.

При подключении соответствующих диодов допускается протекание тока. Когда этот транзистор снова включается, ток, протекающий в диоде, сначала работает как короткое замыкание.Напряжение можно заблокировать, сняв накопленное напряжение. Это выглядит как добавленный к току нагрузки избыточный ток, который называется током обратного восстановления диода «Irr». Максимальное значение Irr возникает (di / dt = 0), когда величина внезапных напряжений через IGBT и диод соответствует напряжению питания. Когда IGBT включен, ток изменяется, что приводит к возникновению точки перенапряжения за счет изменения тока в зависимых индуктивностях, согласующегося с ∆VCE = Lσ × di / d

NPT-IGBT и PT-IGBT

NPT и PT-IGBT разработаны IXYS Corporation.Физическая конструкция БТИЗ NPT и PT показана ниже. Структура PT состоит из дополнительного буферного слоя, который выполняет две функции, а именно: 1) Отказ можно избежать путем сквозного действия, так как этот слой контролирует расширение области истощения при приложенном высоком напряжении. 2) .Ток отказа может быть уменьшен, когда он отключается, и сокращает время спада IGBT, потому что отверстия вставляются коллектором P + не полностью рекомбинируют в этом слое.

NPT-IGBT and PT-IGBT NPT-IGBT and PT-IGBT

NPT-IGBT и PT-IGBT

Основы NPT-IGBT, IXYS Corporation 4 IXAN0063 и Abdus Sattar имеют одинаковое напряжение пробоя, и они применимы для приложений переменного тока.PT-IGBT имеют меньшее напряжение пробоя, и это актуально для цепей постоянного тока, где эти устройства не являются необходимыми для поддержки напряжения в обратном направлении.

Разница между NPT-IGBT и PT-IGBT

Это устройство, управляемое напряжением, и ему требуется небольшое напряжение на клемме затвора для поддержания проводимости через устройство.

Это однонаправленное устройство, потому что оно может изменять ток только в прямом направлении, то есть от коллектора к эмиттеру.

Difference between NPT-IGBT and PT-IGBT Difference between NPT-IGBT and PT-IGBT

Разница между NPT-IGBT и PT-IGBT

Принцип работы BJT очень похож на N-канальный MOSFET.Основное отличие состоит в том, что ток, существующий в проводящем канале, когда ток подается через устройство в его состоянии включения, очень мал в IGBT, по этой причине номинальные токи высоки при согласовании с MOSFET.

Преимущества и недостатки IGBT

Основными преимуществами IGBT по сравнению с различными типами транзисторов являются низкое сопротивление в открытом состоянии, высокая емкость по напряжению, быстрая скорость переключения, простота управления и соединение с нулевым током управления затвором, что создает хороший вариант для разумного скорость и различные высоковольтные приложения, такие как ШИМ, SMPS, регулирование скорости, преобразователь переменного тока в постоянный, питаемый от солнечной батареи, и приложения преобразователя частоты, работающие с сотнями кГц.

Основные недостатки: Скорость переключения ниже для силового MOSFET и выше для BJT. Коллекторный ток, следующий из-за неосновных носителей заряда, приводит к низкой скорости выключения. 2. Существует вероятность защелкивания из-за внутренней структуры тиристора PNPN.

Таким образом, речь идет о работе IGBT и приложениях IGBT. Мы заметили, что IGBT — это полупроводниковое переключающее устройство, которое имеет характеристику o / p, как у BJT, но управляется как MOSFET.Мы уверены, что вы лучше понимаете эту концепцию. Кроме того, любые сомнения относительно приложений IGBT или электрических и электронных проектов, пожалуйста, дайте свой отзыв, комментируя в разделе комментариев ниже. Вот вам вопрос, в чем разница между BJT, MOSFET и IGBT?

Фото:

.Цепь индукционного нагревателя

с использованием IGBT (протестировано)

В этом посте мы подробно обсудим, как построить цепь индукционного нагревателя высокой мощности 1000 Вт с использованием IGBT, которые считаются наиболее универсальными и мощными переключающими устройствами, даже превосходящими МОП-транзисторы.

Принцип работы индукционного нагревателя

Принцип работы индукционного нагрева очень прост для понимания.

Магнитное поле высокой частоты создается катушкой, присутствующей в индукционном нагревателе, и, таким образом, вихревые токи, в свою очередь, наводятся на металлический (магнитный) объект, находящийся в середине катушки, и нагревают его.

Чтобы компенсировать индуктивный характер катушки, параллельно катушке размещается резонансная емкость.

Резонансная частота — это частота, на которой должен работать резонансный контур (также известный как катушка-конденсатор).

Ток, протекающий через катушку, всегда намного больше, чем ток возбуждения. Схема IR2153 используется для обеспечения работы схемы в качестве «двойного полумоста» вместе с четырьмя управляемыми IGBT STGW30NC60W.

Двойной полумост передает такую ​​же мощность, что и полный мост, но драйвер затвора в первом случае проще.

IGBT STGW30NC60W

Использование антипараллельных диодов

Двойные диоды большого размера STTh300L06TV1 (2x 120A) используются в виде встречно-параллельных диодов. Даже если для этого хватит диодов поменьше размером 30А.

Если вы используете встроенные диоды IGBT, такие как STGW30NC60WD, то вам не нужно будет использовать диоды меньшего размера или большие двойные диоды.Потенциометр используется для настройки рабочей частоты в резонанс.

Один из лучших индикаторов резонанса — максимальная яркость светодиода. Вы, безусловно, можете создавать более сложные драйверы в зависимости от ваших требований.

Вы также можете использовать автоматическую настройку, которая является одним из лучших способов сделать, как это принято в профессиональных обогревателях; но есть один недостаток, заключающийся в том, что при этом будет потеряна простота схемы.

Вы можете управлять частотой, которая находится в диапазоне приблизительно от 110 до 210 кГц.Адаптер небольшого размера, который может быть трансформаторного типа или smps, используется для обеспечения вспомогательного напряжения 14-15 В, которое требуется в цепи управления.

Разделительный трансформатор

Разделительный трансформатор и согласующий дроссель L1 — это электрическое оборудование, которое используется для подключения выхода к рабочей цепи.

Оба этих индуктора присутствуют в конструкции с воздушным сердечником.

С одной стороны, где дроссель состоит из 4 витков на диаметре 23 см, разделительный трансформатор, с другой стороны, состоит из 12 витков на диаметре 14 см, и эти витки состоят из двухпроводного кабеля (как показано на приведенном рисунке ниже).

Даже когда выходная мощность достигает 1600 Вт, вы обнаружите, что есть еще много возможностей для улучшения.

Рабочая катушка предлагаемого индукционного нагревателя IGBT состоит из проволоки диаметром 3,3 мм.

Использование меди для катушки

Медный провод считается более подходящим для изготовления рабочей катушки, поскольку его можно легко и эффективно подключить к системе водяного охлаждения.

Катушка состоит из шести витков с размерами 23 мм в высоту и 24 мм в диаметре.Змеевик может нагреваться при длительной эксплуатации.

Резонансный конденсатор состоит из 23 конденсаторов небольшого размера, общая емкость которых составляет 2u3. Вы также можете использовать конденсаторы 100 нФ в таких конструкциях, как полипропилен класса X2 и 275 В MKP.

Вы можете использовать их для этой цели, даже если они в основном не предназначены или не созданы для таких целей.

Частота резонанса 160 кГц. Всегда рекомендуется использовать фильтр EMI.Плавный пуск можно использовать для замены вариак.

Я всегда настоятельно рекомендую вам использовать ограничитель, который подключается последовательно к сети, например, галогенные лампы и нагреватели приблизительно 1 кВт, когда он включается в первый раз.

Предупреждение: используемая цепь индукционного нагрева подключена к сети и содержит высокое напряжение, которое может привести к летальному исходу.

Во избежание несчастных случаев из-за этого следует использовать потенциометр с пластмассовой штангой.Электромагнитные поля высокой частоты всегда вредны и могут повредить носители информации и электронные устройства.

Цепь создает значительный уровень электромагнитных помех, что, в свою очередь, может вызвать поражение электрическим током, возгорание или ожоги.

Каждая задача или процесс, которые вы выполняете, вы выполняете на свой страх и риск, и ответственность будет лежать на вас, и я не буду нести ответственности за любой ущерб, который может возникнуть при выполнении этого процесса.

Принципиальная схема

Цепь мостового выпрямителя переменного тока от 220 В до 220 В постоянного тока с предохранительной лампой

Дроссель L1

Конструкция дросселя L1, используемого в приведенной выше схеме индукционного нагревателя с полным мостом IGBT, показана на приведенном ниже изображении:

Это можно сделать, намотав 4 витка диаметром 23 см, используя любой толстый одножильный кабель.

На следующем изображении показан изолирующий трансформатор с двойной спиралью и воздушным сердечником. :

. Его можно построить, свернув 12 витков диаметром 14 см, используя любой толстый двойной проводной кабель.

Рабочая катушка может быть построена в соответствии со следующей инструкцией.

Обратите внимание, что если катушка намотана плотно, то может потребоваться только 5 витков. Если используется шесть витков, вы можете попробовать немного растянуть катушку для достижения оптимального резонанса и эффективности.

ОБНОВЛЕНИЕ

Добавление ограничения тока

На следующей диаграмме показано, как можно добавить простую функцию ограничения тока к описанной выше конструкции индукционного нагревателя.

Описание контактов оптопары TIL111

Здесь резистор рядом с L1 (назовем его Rx) становится резистором, чувствительным к току, который создает небольшое напряжение на себе до желаемой точки, когда ток начинает превышать безопасные пределы.

Это напряжение на Rx используется для срабатывания светодиода внутри подключенного оптопары. Выходной транзистор внутри оптоэлектронной схемы реагирует на срабатывание светодиода и быстро проводит заземление Ct, контакт №3 основной микросхемы драйвера IR2153.

Микросхема немедленно отключается, запрещая дальнейшее повышение тока. Когда это происходит, ток падает, что, в свою очередь, снимает напряжение на Rx, тем самым выключая оптический светодиод. Это возвращает ситуацию к предыдущей нормальной ситуации, и IC снова начинает колебаться.Теперь этот цикл быстро повторяется, обеспечивая постоянное потребление тока нагрузкой в ​​заданных безопасных пределах.

Rx = 2 / Current Limit

Отзыв от одного из специализированных читателей:

Уважаемый сэр! Я успешно сделал индукционный нагреватель 1/2 моста с 4 IGBT, и я хочу знать, что лампа нагревателя мощностью 1000 Вт Предлагаемый должен быть постоянно подключен к цепи или только до тестирования в первый раз.

Изображения результатов теста включены здесь под:

Ожидаем вашего ответа в ближайшее время.С уважением — Маниш.

.

Transistor igbt — Википедия, свободная энциклопедия

Википедия «Транзисторный протокол IGBT».


Busca Transistor igbt en otros proyectos hermanos de Wikipedia:
Wikcionario (diccionario)
Wikilibros (обучающие / руководства)
Викицитатник (цитаты)
Wikisource (biblioteca)
Викинотики (нотиции)
Wikiversidad (contenido académico)
Commons (изображения и мультимедиа)
Wikiviajes (viajes)
Викиданные (данные)
Викивиды (особые)
  • Comprueba si имеет кодовое обозначение правильного художественного оформления, в Википедии и в Википедии, на котором размещена информация о автобусах.Si el título es righto, a la derecha figuran otros proyectos Wikimedia donde quizás podrías encontrarla.
  • Busca «Transistor igbt» en el texto de otras páginas de Wikipedia que ya existen.
  • Проконсультируйтесь по списку произведений искусства, написанному для «Transistor IGBT».
  • Busca las páginas de Wikipedia que tienen объединяет «Transistor igbt».
  • Si ya habías creado la página con este nombre, limpia la caché de tu navegador.
  • También puede que la página que buscas haya sido borrada.

Si el artículo incluso así no existe:

  • Crea el artículo utilizando nuestro asistente o solicita su creación.
  • Puedes traducir este artículo de otras Wikipedias.
  • En Wikipedia únicamente pueden include enciclopédicos y que tengan derechos de autor Compatible con la Licencia Creative Commons Compartir-Igual 3.0. No son válidos textos tomados de otros sitios web o escritos que no cumplan alguna de esas condiciones.
  • Ten en cuenta también que:
    • Artículos vacíos o con información minima serán borrados —véase «Википедия: Esbozo» -.
    • Artículos de publicidad y autopromoción serán borrados —véase «Википедия: Lo que Wikipedia no es» -.
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *