Виды и свойства чугуна таблица: Чугун. Марки, свойства и применение чугунов

Содержание

Чугун. Марки, свойства и применение чугунов

Содержание страницы

Чугун — самый распространенный железоуглеродистый нековкий литейный материал, содержащий свыше 2% углерода, до 4,5% кремния, до 1,5% марганца, до 1,8% фосфора и до 0,08% серы. В практике применяют чугуны, содержащие 3÷3,5% углерода.

Чугун обладает высокими литейными свойствами, поэтому широко используется в литейном производстве в качестве конструкционного материала. Он хорошо обрабатывается резанием. Из чугуна, имеющего невысокий коэффициент трения, изготовляют подшипники скольжения. Специально обработанный чугун (высокопрочный) по показателям качества успешно конкурирует со стальным литьем и кованой сталью.

Недостаточная прочность и большая хрупкость чугуна объясняются наличием в нем крупных включений углерода в виде графита.

Введение в жидкий чугун небольшого количества магния и церия изменили форму графита, он стал шаровидным. Чугун приобрел прочность и утратил хрупкость. Такой чугун (его называют высокопрочным) по-своему качеству не уступает конструкционным углеродистым сталям. Стойкость деталей, изготовленных из этого чугуна, увеличилась почти в три раза.

Чугун

Чугун

Углерод в чугунах может находиться в виде химического соединения — цементита (такие чугуны называют белыми) или частично или полностью в свободном состоянии в виде графита — (такие чугуны называют серыми).

Чугуны состоят из металлической основы (перлита, феррита) и неметаллических включений графита. Они различаются главным образом формой графитовых включений. Белый чугун имеет ограниченное применение. Некоторые отливки, от которых требуется повышенная твердость поверхностного слоя, изготовляют из отбеленного чугуна. Поверхностный слой его состоит из белого чугуна, а сердцевина — из серого. Величину и твердость отбеленного слоя регулируют путем изменения химического состава чугуна и скорости затвердевания отливки.

Чугун серый

Серый чугун широко применяется в машиностроении. Такое название он получил по серому цвету излома, обусловленному наличием в структуре чугуна свободного углерода в виде графита. По виду металлической основы различают серые чугуны перлитные, перлитно-ферритные и ферритные.

Таблица 1. Чугуны серые литейные, их основные свойства и применение

Маркаσв МПаНВСвойства и применение
Сч10275139-274Малоответственные отливки с толщиной стенок до 15 мм (корпуса, крышки, кожухи и др.), детали, для которых прочностная характеристика не является обязательной,- опоки, арматуру, рамки, сковороды, декоративные детали, массивные строительные колонны, фундаментные плиты
СЧ15314160-224Малоответственные отливки с толщиной стенок 10 — 30 мм (трубы, корпуса клапанов, вентили при давлении — до 20 МПа и др.), корпусные малонагруженные детали, подмоторные плиты, рычаги, шкивы, маховики, емкости для масла и охлаждающей жидкости, корпуса фильтров, фланцы, крышки, звездочки цепных передач
СЧ18354167-224Ответственные отливки с толщиной стенок 10 — 20 мм (шкивы, зубчатые колеса, станины, суппорты и др.)
СЧ20397167-236Ответственные отливки с толщиной стенок до 30 мм (блоки цилиндров, поршни, тормозные барабаны, каретки и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются требования герметичности при давлении до 8 МПа (80 кгс/см2), корпусов, коробок передач, шпиндельных бабок, балансиров, планшайб, гильз, кареток, цилиндров, насосов, золотников, арматуры, компрессоров
СЧ25450176-245Ответственные отливки с толщиной стенок до 40 мм (кокильные формы, поршневые кольца и др.), для изготовления базовых корпусных деталей повышенной прочности и износостойкости, деталей, к которым предъявляются повышенные требования к герметичности
СЧ3О490177-250Ответственные отливки с толщиной стенок до 60 мм (поршни, гильзы дизелей, рамы, штампы и др.), для изготовления кронштейнов, салазок столов и суппортов, деталей с поверхностной закалкой, цилиндров, корпусов насосов, дизелей и двигателей внутреннего сгорания, поршневых колец, коленчатых и распределительных валов
СЧ35 СЧ45540193-264Ответственные высоконагруженные отливки с толщиной стенок до 100 мм (малые коленчатые валы, детали паровых двигателей и др.) деталей, для изготовления к которым предъявляются требования герметичности при давлении свыше 8 МПа

Графит обладает низкими механическими свойствами. Он нарушает целостность металлической основы. Располагаясь между зернами металлической основы, графит ослабляет связь между ними. Поэтому серый чугун плохо сопротивляется растяжению и имеет очень низкую пластичность и вязкость. Чем крупнее и прямолинейнее графитовые включения, тем хуже механические свойства чугуна. Твердость серого чугуна, а также его сопротивление сжатию близки к показателям стали, имеющей такую же структуру, как у металлической основы чугуна.

Графит оказывает и некоторое положительное влияние на свойства чугуна, в частности, он повышает его износостойкость, действуя аналогично смазке, повышает обрабатываемость резанием, так как делает стружку ломкой, способствует гашению вибраций изделий, уменьшает усадку при изготовлении отливок.

Механические свойства серого чугуна могут быть улучшены равномерным распределением мелкопластинчатого графита в отливке. Это достигается путем специальной обработки — модифицирования, когда в жидкий чугун перед его разливкой вводят добавки, которые образуют дополнительные центры графитизации, в результате чего получается мелкопластинчатый графит. Чугун с таким графитом называют модифицированным. От обычного серого чугуна он отличается более высоким сопротивлением разрыву, однако пластичность и вязкость его при модифицировании не улучшаются.

По ГОСТ 1412-85 буквы СЧ в обозначении марки чугуна означают — серый чугун. Двузначная цифра соответствует пределу прочности при растяжении σв МПа. Стандарт нормирует предел прочности серых чугунов σв = 274÷637 МПа, твердость — 143÷637 НВ и химический состав.

Основные свойства серого чугуна и его применение приведены в таблице 1.

Чугун высокопрочный с шаровидным графитом

Высокопрочный чугун получают путем введения магния (до 0,9%) и церия (до 0,05%) в жидкий серый чугун перед разливкой его в формы. Основная часть этих модификаторов испаряется, окисляется и переходит в шлак, так что в твердом металле обнаруживается не более 0,01% этих элементов. Магний и церий активно удаляют из чугуна серу. Но главная роль их заключается в том, чтобы изменить чешуйчато-пластинчатую форму графита на шаровидную. После модифицирования чугуна магнием или церием в ковш добавляют 75%-ный ферросилиций (сплав железа с кремнием). В отличие от модифицированного серого чугуна высокопрочный чугун имеет более высокое содержание углерода и кремния и пониженное содержание марганца.

Металлическая основа высокопрочного чугуна состоит из феррита и перлита или только из перлита. В этом чугуне сочетаются ценные свойства стали и чугуна. Он обладает сравнительно высокой прочностью при достаточной пластичности и вязкости. Высокопрочный чугун с успехом заменяет стальное литье и даже стальные поковки, что дает большой экономический эффект. Изделия из высокопрочного чугуна благодаря его повышенной износостойкости могут работать в условиях трения. Высокопрочный чугун лучше, чем серый, сохраняет свою прочность при нагреве, поэтому может применяться для работы при температурах до 400°С (серый чугун выдерживает температуру до 250°С).

ГОСТ 7293-85 нормирует предел прочности σв, предел текучести σт, относительное удлинение δ и твердость НВ высокопрочных чугунов. Требования к отливкам из этих чугунов устанавливаются нормативно-технической документацией. Принцип маркировки высокопрочных чугунов (ВЧ) отличается от маркировки серых чугунов. В обозначение их марки входят два числа — первое указывает предел прочности на разрыв, второе — относительное удлинение. Например, марка чугуна ВЧ 42-12 означает, что данный чугун имеет предел прочности σв = 412 Н/мм2 (42 кгс/мм2) и относительное удлинение δ =12%.

Стандарт предусматривает 10 марок высокопрочных чугунов: ВЧ 38-17, ВЧ 42-12, ВЧ 45-5, ВЧ 50-7, ВЧ 50-2, ВЧ 602, ВЧ 70-2, ВЧ 80-2, ВЧ 100-2, ВЧ 120-2. Стандарт или справочник дает дополнительные сведения об этом чугуне: предел текучести σт = 274 Н/мм2 (28 кгс/мм2), твердость-140÷200 НВ.

Из высокопрочных чугунов изготовляют многие детали (в том числе фасонные), которые ранее получали из стали, базовые и корпусные детали повышенной прочности (корпуса и станины станков, крупные планшайбы, гильзы, каретки, цилиндры, кронштейны, зубчатые колеса, накладные направляющие станков и детали с поверхностной закалкой). Они заменяют стали Сталь 20Л, 25Л, ЗОЛ и 35Л.

Чугун ковкий

В структуре ковкого чугуна графит имеет хлопьевидную форму. Такой графит называют углеродом отжига. По сравнению с серым чугуном ковкий чугун обладает более высокой прочностью, пластичностью и вязкостью. Свое название он получил потому, что имеет повышенную пластичность. Ковке в прямом понимании этого слова чугун не подвергается.

Процесс получения отливок из ковкого чугуна включает две стадии: изготовление фасонных отливок из белого чугуна и отжиг полученных отливок с целью графитизации цементита. При отжиге происходит разложение цементита белого чугуна с образованием графита хлопьевидной формы. В результате этого хрупкие и твердые отливки становятся пластичными и более мягкими. В зависимости от условий и режима отжига структура чугуна может иметь ферритную (Ф), перлитную (П) и ферритно-перлитную металлическую основу. Наибольшее распространение получил пластичный ферритный ковкий чугун. Отжиг ковкого чугуна-весьма продолжительный процесс, занимающий 70-80 ч. Однако его можно ускорить путем закалки отливок из белого чугуна перед графитизацией, а также модифицированием чугуна алюминием, бором, висмутом или титаном. Существуют и другие способы ускорения процесса отжига. Использование указанных способов позволяет сократить продолжительность отжига до 35-40 ч.

Таблица 2. Чугуны ковкие, их основные свойства и применение

МаркаНВСвойства и применение
КЧ 35-10 КЧ37-12160Чугуны ферритного класса используют для производства деталей,

эксплуатируемых при высоких динамических и статических нагрузках

(картеров, редукторов, ступиц, крюков, скоб, задних мостов, кронштейнов)

КЧ 30-6

КЧ 33-8

160Для изготовления менее ответственных деталей

(хомутов, гаек, вентилей, деталей сельскохозяйственных машин,

глушителей, фланцев, муфт, тормозных деталей, педалей,

гаечных ключей, колодок, кронштейнов)

КЧ 4

Чугун. Виды, классификация, характеристики чугунов.

Содержание страницы

1. Классификация чугунов

Чугун, выплавляемый в доменных печах, по своей физико-химической природе может быть различным в зависимости от перерабатываемой железной руды.

Практика показала, что если железная руда в своем составе имеет высокое содержание марганца, то получается чугун со структурой цементита. Этот чугун получил название белого. Белый чугун является основным сырьем в производстве стали. В связи с этим он получил название передельного чугуна.

Если чугун имеет структуру перлит + ледебурит или ледебурит + цементит, то такой чугун называется половинчатым.

Если переплавляется железная руда с низким содержанием марганца, но с высоким содержанием кремния, то выплавляемый в доменных печах чугун будет иметь структуру феррит + перлит. Такие чугуны получили название литейных серых чугунов.

Белый передельный чугун идет на переработку в сталь в конвертерах, дуговых и индукционных печах, а также мартеновских печах. Из половинчатого чугуна путем длительного отжига получают ковкий чугун. Высокопрочные и специальные чугуны получают путем введения в литейный серый чугун модификаторов, находящихся в расплавленном состоянии. Литейный серый чугун используют в основном при производстве отливок для машиностроения и станкостроения.

Кроме указанных групп чугунов в последнее десятилетие XX в. в России (ОАО «Тулачермет») освоен выпуск чугуна с повышенной чистотой по содержанию вредных примесей и других химических элементов. Этот чугун получил название нодулярного чугуна (например, ПВК-Н — чугун повышенного качества нодулярный).

2. Белый чугун

Белый чугун получается при переработке железных руд с повышенным содержанием марганца. В изломе этот чугун имеет мелкозернистое или игольчатое строение матово-белого цвета. Весь углерод, как правило, с массовой долей 6,67 % находится в химически связанном состоянии в форме цементита в поверхностных слоях отливки.

Белый чугун очень хрупкий, практически не поддается обработке резанием, его твердость достигает 700 … 800 НВ. Из-за высокой твердости и хрупкости белый чугун как конструкционный материал прямого применения не имеет. В некоторых случаях свойства высокой твердости и износостойкости структуры белых чугунов (цементита) создают искусственно в поверхностных слоях деталей. Эта операция называется отбеливанием поверхности деталей и отливок. Операция отбеливания достигается высокой скоростью охлаждения. Например, с целью получения высокой твердости на глубину до 5 мм отбеливают поверхность валков прокатных станов, лемехи плугов, шары мельниц, коленчатые валы дизелей и другие детали.

Структура белого чугуна неустойчивая. При высоких температурах цементит распадается на аустенит и свободный углерод (графит). Температура плавления белого чугуна составляет 1 600 °С.

Белый чугун выпускается в виде чушек весом 40 кг, которые идут на производство стали в мартеновских и других печах, или в жидком состоянии (в этом случае чугун хранится в специальных емкостях (миксерах), из которых затем поступает в конвертеры для производства стали).

Половинчатый чугун — это низкосортный белый чугун, в котором часть углерода находится в химически связанном состоянии в виде цементита, а часть — в виде свободного углерода (графита) или механических смесей в зависимости от массовой доли углерода (рис. 1). Так, чугун с массовой долей углерода, равной 4,3 %, — эвтектический, имеет структуру ледебурита (механическая смесь цементита и феррита). Заэвтектический чугун (более 4,3 % углерода) имеет структуру перлит + цементит + графит. Доэвтектический чугун (менее 4,3 % углерода) имеет структуру перлит + ледебурит + графит.

Половинчатый чугун имеет очень высокие механические свойства, но хрупкий, поэтому этот чугун прямого применения в литейном производстве не находит.

Микроструктура половинчатого чугуна

Микроструктура половинчатого чугуна

Рис. 1. Микроструктура половинчатого чугуна: 1 — перлит; 2 — цементит; 3 — ледебурит

Благодаря наличию в структуре свободного углерода, а также неустойчивых структур ледебурита и цементита половинчатый чугун является сырьем для производства ковких и специальных чугунов.

3. Литейный серый чугун

Литейный серый чугун свое название получил благодаря высоким литейным свойствам (жидкотекучесть и низкая усадка), а также из-за темно-серого цвета. В изломе имеет крупнозернистое строение. Мягкий, хорошо подвергается обработке резанием. Твердость литейных серых чугунов составляет 140 … 260 НВ. Предел прочности при растяжении σв  100 … 450 МПа (10 … 45 кгс/мм2). Относительное удлинение δ  0,2 … 0,5 %. В отечественном машиностроении до 74 % всех ответственных отливок получают из литейного серого чугуна. По микроструктуре литейные серые чугуны подразделяются на ферритно-графитные, ферритно-перлитные и перлитные (рис. 2). Углерод в этих чугунах находится в свободном состоянии в виде графита. Чем больше массовая доля углерода, тем больше в сером чугуне структуры графита и ниже его механические свойства, поэтому максимальное содержание углерода ограничено его доэвтектическими пределами, т. е. не более 4 %, а практически до 3,7 %.

Снижение содержания углерода понижает его литейные свойства. В связи с этим устанавливается нижний предел по массовой доле углерода. Он равен примерно 2,2 %. Нижний предел принимается для толстостенных отливок, верхний — для тонкостенных.

Доменные цеха выпускают серый чугун в виде чушек, которые поставляются в литейные цеха машиностроительных заводов.

Литейный серый чугун состоит из железа, углерода, а также других химических элементов, поэтому не является двухкомпонентным сплавом. Кроме углерода в своем составе он содержит кремний, марганец, серу и фосфор. Кремний и марганец влияют на процесс графитизации, образование микроструктуры и механические и технологические свойства отливок из серого чугуна.

Углерод влияет на свойства чугуна в зависимости от формы соединения с железом, т. е. от структуры, которая образуется в сплаве. На образование структур в совокупности влияют условия плавки и охлаждения, а также наличие сопутствующих химических элементов: марганца, кремния и незначительно серы и фосфора. Кремний с массовой долей 3 … 5 % в серых чугунах способствует выделению углерода в виде графита. Изменяя массовую долю кремния, можно получить отливки с различной структурой, а с изменением структуры изменяются и механические свойства чугуна. Например, чугун со структурой в виде пластинчатого графита имеет относительное удлинение δ = 0,2 … 1,1 %, а чугун со структурой графита хлопьевидной формы имеет относительное удлинение δ = 5… 10 %. Кремний способствует образованию микроструктуры графита, придает чугуну ряд ценных механических, технологических и эксплуатационных свойств, улучшает обрабатываемость резанием. Кроме того, графитовые включения (пористые, мягкие) быстро гасят вибрации, колебания и рассеивают по массе несущих деталей ударные нагрузки. Детали из чугуна нечувствительны к механическим повреждениям. Благодаря структуре графита серый чугун обладает высокими антифрикционными свойствами. В этом случае графит действует как смазывающее вещество. Благодаря перечисленным свойствам кремний является постоянным и обязательным элементом в литейных серых чугунах.

Микроструктуры литейных серых чугуновМикроструктуры литейных серых чугунов

Рис. 2. Микроструктуры литейных серых чугунов: а — ферритно-графитная; б — ферритно-перлитная; в — перлитная

Марганец препятствует графитизации чугуна, отбеливает его, способствует образованию структуры измельченного перлита (феррит + цементит), улучшая механические свойства. Массовая доля марганца в серых чугунах колеблется в пределах 0,2 … 1,1 %, при этом прочность, износостойкость и твердость повышаются. При большем содержании марганца происходит уменьшение структуры перлита и феррита, увеличение структуры цементита, и чугун становится твердым, но хрупким.

Сера — вредная примесь. Она оказывает отрицательное действие на механические и литейные свойства серых чугунов, понижает жидкотекучесть, увеличивает усадку, способствует образованию трещин. Массовая доля серы для мелкого литья — 0,08 %, для крупного литья, в котором не требуется повышенная жидкотекучесть, — 0,10 … 0,12 %.

Фосфор в литейных чугунах является полезной примесью, так как он увеличивает жидкотекучесть. Кроме того, фосфор способствует образованию такой структуры, которая повышает общую твердость и износостойкость отливок. Высокое содержание фосфора (до 0,7 %) повышает хладостойкость чугуна, поэтому в отливках, работающих при нагрузках, массовая доля фосфора может достигать 0,3 %, а в отливках, работающих без нагрузок (художественное и бытовое литье), — 0,7 %.

На образование микроструктуры и графитизацию фосфор влияния не оказывает. На практике по структурным диаграммам в зависимости от массовой доли углерода и кремния в чугуне определяют его приблизительную микроструктуру в отливках с толщиной стенок 50 мм.

Согласно ГОСТ 1412—87 существуют следующие марки серого чугуна: СЧ10, СЧ15, СЧ18, СЧ20, СЧ21, СЧ24, СЧ25, СЧ30, СЧ35, СЧ40 и СЧ45, где буквы СЧ означают литейный серый чугун, а цифры — предел прочности при растяжении. Например, чугун марки СЧ15 имеет прочность при растяжении 150 МПа (15 кгс/мм2).

Таким образом, литейные серые чугуны имеют высокие механические свойства (σв — до 450 МПа (45 кгс/мм2) и также высокие технологические свойства (литейные свойства, обрабатываемость резанием и др.). Кроме того, как уже отмечалось, литейный серый чугун обладает способностью гасить и рассеивать вибрации и нагрузки. Это свойство называется демпферным свойством. Оно широко используется в станкостроении. Из литейного серого чугуна, обладающего демпферным свойством, отливают станины станков, машин и другие несущие конструкции, которые позволяют создавать точность и жесткость системы станок—приспособление — инструмент— деталь (СПИД).

Главными технологическими свойствами являются высокая жидкотекучесть и обрабатываемость резанием. Отливки из литейного серого чугуна хорошо поддаются обработке на различных металлорежущих станках: точению, фрезерованию, строганию, сверлению, шлифованию и шабрению. В связи с широким диапазоном механических свойств (прочности и твердости) этот чугун находит применение в различных отраслях экономики. Например, низкосортный серый чугун применяется для изготовления отливок, работающих

2.1. Чугуны | Материаловед

Чугуном называют сплав железа, углерода (более 2,14 %) и других элементов (кремния, марганца, фосфора, серы и др.). В чугуне углерод может находиться в химически связанном состоянии в виде цементита (Fe3C) и в свободном состоянии в виде включений графита.

Серый чугун обладает хорошими технологическими свойствами и низкой стоимостью, в настоящее время является распространенным литейным материалом.

Серым называют такой чугун, в котором весь углерод или большая его часть находится в виде графита, а в связанном состоянии (в форме цементита) углерода содержится не более 0,8 %. Излом такого чугуна имеет серый цвет.

Из серого чугуна изготовляют самые разнообразные литые детали – от простых до сложных. Отливки хорошо обрабатываются на металлорежущих станках. Пример условного обозначения серого чугуна по ГОСТ 1412-85:

СЧ 25.

Буквы «СЧ» означают серый чугун, число (25) – значение временного сопротивления при растяжении (σ

в), МПа·10-1.

Его механические свойства зависят от величины зерна металла, от размеров и характера распределения включений графита и др. В обычном сером чугуне графит кристаллизуется в виде пластинок, которые расчленяют  основную металлическую массу и действуют как внутренние трещины. По этой причине серый чугун с пластинчатым графитом обладает низкой прочностью и малой пластичностью (до   0,3 %).

Серый чугун обладает способностью рассеивать вибрационные колебания при переменных нагрузках. Это свойство называют циклической вязкостью. Серый чугун имеет хорошие литейные свойства, а отдельные марки обладают достаточно высокой прочностью и износостойкостью.

В сером чугуне обычно содержится 2,9–3,6 % С; 1,5–3,5 % Si; 0,4–1 % Mn; 0,2–0,12 % S; в легированном чугуне содержатся и другие элементы.

Элементы, входящие в состав серого чугуна, существенно влияют на его свойства.

Кремний способствует выделению в чугуне углерода в виде графита, понижает температуру его плавления, обеспечивая высокие литейные и технологические свойства.

Марганец действует на свойства чугуна противоположно кремнию: он препятствует выделению в чугуне углерода в виде графита, увеличивая устойчивость цементита. Марганец повышает твердость чугуна и прочность отливок.

Сера, как и марганец, задерживает выделение в чугуне углерода в свободном состоянии. Способствует отбеливанию чугуна, делает его более тугоплавким, снижает жидкотекучесть. Поэтому в чугуне сера считается вредной примесью.

Фосфор в сером чугуне может оказывать и вредное, и полезное влияние. Повышая хрупкость, фосфор снижает механические свойства чугуна. Следовательно, в чугуне для машиностроительных отливок, требующих высокой прочности, значительное содержание фосфора может быть вредной примесью. Фосфор увеличивает жидкотекучесть металла. Следовательно, в чугуне для тонкостенных, со сложной поверхностью отливок, не требующих высокой прочности, повышенное содержание фосфора будет желательным. При изготовлении художественных отливок, особенно ажурных, содержание фосфора в чугуне до 1 % считается полезной примесью, увеличивающей жидкотекучесть расплава и стойкость отливок против коррозии.

Серые чугуны, применяемые в промышленности в качестве конструкционного материала для литых деталей, по физико-механическим характеристикам можно условно разделить на 4 группы: малой прочности, повышенной прочности, высокой прочности и со специальными свойствами.

Применяют серые чугуны с пластинчатым графитом 11 марок. Механические свойства и химический состав серых чугунов указаны в табл. 2.1.

Таблица 2.1. Марки серых чугунов с пластинчатым графитом

Марка чугуна
Значение временного сопротивления при растяжении σв, МПаТвер-дость, НВМассовая доля элементов, %Структура металлической основы
углеродкремниймарганец
СЧ 10100143-2293,5-3,72,2-2,60,5-0,8
Феррит
СЧ 15150163-2293,5-3,72,0-2,40,5-0,8Феррит
СЧ 18180170-2293,4-3,61,9-2,30,5-0,7Феррит+перлит
СЧ 20200170-2413,3-3,51,4-2,20,7-1,0Феррит+перлит
СЧ 21210
170-241
3,3-3,51,4-2,20,7-1,0Феррит+перлит
СЧ 24240170-2413,2-3,41,4-2,20,7-1,0Перлит
СЧ 25250180-2503,2-3,41,4-2,20,7-1,0Перлит
СЧ 30300181-2552,0-3,2
1,4-2,2
0,7-1,0Перлит
СЧ 35350191-2692,9-3,01,0-1,10,7-1,1Перлит
Сч 40400207-2852,5-2,72,5-2,91,2-0,4Перлит
Сч 45450229-2892,2-2,42,5-2,90,2-0,4
Перлит

Детали, получаемые из серого чугуна, со структурой феррита имеют невысокую прочность, прочные – с феррито-перлитной структурой и наиболее прочные – с перлитной структурой.

Из серого чугуна отливают колонны, котлы, радиаторы, ванны, трубы, а также самые разнообразные конструкционные детали для машиностроения.

Высокопрочный чугун имеет металлическую основу и шаровидные включения графита. Из него изготовляют отливки со стенками большой толщины и высокой прочности (коленчатые валы, зубчатые колеса, детали турбин). Высокопрочный чугун получают модифицированием жидкого серого чугуна магнием. В результате модифицирования в чугуне образуется графит шаровидной формы. В отличие от обычного серого чугуна этот чугун обладает повышенной пластичностью и большей прочностью. Высокопрочный чугун, по сравнению с обыкновенным серым, обладает меньшей склонностью к отбелу.

Высокопрочный чугун с графитом шаровидной формы подразделяется в зависимости от механических свойств на следующие марки, приведенные в табл. 2.2.

Таблица 2.2. Марки высокопрочного чугуна для отливок с шаровидным графитом

Марка чугунаЗначение временного сопротивления при растяжении σв, МПа
Относительное удлинение, %Твердость, НВСтруктура металлической основы
ВЧ 3535022140-170Феррит
ВЧ 4040015140-202Феррит
ВЧ 4545010140-225Феррит
ВЧ 505007153-245Феррит+перлит
ВЧ 606003192-277Перлит
ВЧ 707002228-302Перлит
ВЧ 808002248-351Перлит
ВЧ 10010002270-360Перлит

Пример условного обозначения высокопрочного чугуна по ГОСТу 7293-85:

ВЧ 60.

Буквы «ВЧ» обозначают высокопрочный чугун, первые две цифры – значение временного сопротивления при растяжении σв, МПа·10-1.

Ковкий чугун получают путем длительного нагрева при высоких температурах (950–1000 °С) (отжигом) отливок из белого чугуна. При отжиге образуется графит, имеющий компактную хлопьевидную форму. При такой форме графита, отливки перестают быть хрупкими, приобретают способность выдерживать ударные нагрузки (свободный углерод в них имеет форму, промежуточную между пластинчатой и шаровидной – хлопьевидную).

Название «ковкий чугун» условно и указывает лишь на то, что этот материал по сравнению с серым чугуном является пластичным. В действительности же ковкий чугун никогда ковке не подвергают, из него, так же как из серого чугуна, изготовляют лишь фасонные отливки для машиностроения. Ковкий чугун по механическим свойствам занимает промежуточное положение между серым чугуном и сталью. Детали, изготовленные из такого чугуна, хорошо работают в среде влажного воздуха, поточных газов и воды. В зависимости от способа производства ковкого чугуна его подразделяют на группы: ферритный и перлитный.

Ферритный ковкий чугун получают при отжиге отливок из белого чугуна в нейтральной среде. Такой чугун имеет бархатный черный излом и состоит из феррита и графита отжига Fe3C→3Fe+Cотж. Из ферритного ковкого чугуна с повышенной пластичностью изготовляют ответственные детали для автомобилей и сельскохозяйственных машин, для этих целей используют марки КЧ 37-12; КЧ 35-10. Для малоответственных деталей (гайки, фланцы и др.) применяют КЧ 30-6;     КЧ 33-8.

Перлитный ковкий чугун получают после отжига белого чугуна в окислительной атмосфере. Вследствие обезуглероживания в процессе отжига отливок получают чугун с меньшей вязкостью. Этот чугун находит ограниченное применение в машиностроении.

Из перлитного ковкого чугуна изготовляют карданные валы, звенья цепей конвейера, муфты и др.

Ковкий чугун подразделяется в зависимости от механических свойств на следующие марки, приведенные в табл. 2.3.

Таблица 2.3. Марки ковких чугунов

Марка чугунаЗначение временного сопротивления при растяжении σв, МПаОтносительное удлинение, %Твердость, НВ
Ферритный
КЧ 30-62946,0100-163
КЧ 33-83238,0100-163
КЧ 35-1033310,0100-163
КЧ 37-1236212,0110-163
Перлитный
КЧ 45-74417,0150-207
КЧ 50-54905,0170-230
КЧ 55-45394,0192-241
КЧ 60-35883,0200-269
КЧ 63-26373,0212-269
КЧ 70-26862,0241-285
КЧ 80-1,57841,5270-320

Основной химический состав ковкого чугуна: 2,4–2,8 % C; 0,8–1,4 % Si; менее 1 % Mn; менее 0,1 % S; менее 0,2 % P.

Примеры записи марки ковкого чугуна по ГОСТ 1215-79:

КЧ 30-6.

Буквы «КЧ» обозначают ковкий чугун, первое число – значение временного сопротивления при растяжении σв, МПа·10-1, второе число – минимальное относительное удлинение δ, %.

Удельный вес чугуна, его свойства, виды, а также таблица значений

     Чугун представляет собой сплав углерода с железом, а также другими дополнительными элементами. Содержание углерода в чугуне не должны быть ниже 2,14 процентов. Чугун отличный материал для изготовления деталей литейного типа и использования при малых динамических нагрузках и невысоких напряжениях.

     По сравнению со сталью, чугун отличается небольшой стоимостью и отличными литейными свойствами. Он также хорошо обрабатывается, чем большая часть сталей, однако, плохо сваривается и обладает меньшей прочностью, пластичностью и жесткостью.

Таблица удельного веса чугуна

    Так как, чугун является сложным материалом, рассчитать его удельный вес в полевых условиях самостоятельно не представляется возможным. Эти вычисления проводят в специальных химических лабораториях. Однако, при этом его средний удельный вес известен. Этот параметр составляет: для серого чугуна от 6,6 до 7,8 г/см3, для белого от 7,0 до 7,8 г/см3.

     Для упрощения подсчетов ниже представлена таблица с значениями таких параметров, как вес чугуна, удельный вес чугуна, а также эти значения в зависимости от единиц исчисления.

Удельный вес и вес 1 м3 чугуна в зависимости от единиц измерения
МатериалУдельный вес (г/см3)Вес 1 м3 (кг)
Чугун белого типаОт 7 до 7,8От 7000 до 7800
Чугун серого типаОт 6,6 до 7,8От 6600 до 7800

Свойства чугуна

     Содержание углерода в составе придает сплаву повышенной твердости, снижая при этом вязкость и пластичность. Углерод может применятся двух типов: графита и цементита. Чугуны содержат примеси постоянного типа, такие как марганец, кремний, фосфор и сера, а также, редко, элементы легирующего типа, такие как никель, алюминий, хром, ванадий и другие.

     Температура плавления чугуна составляет от 1150 до 1200 градусов Цельсия, что является на 300 градусов Цельсия ниже чем у железа чистого типа.

Виды чугуна

     В зависимости от количества цементита и формы графита различают четыре вида чугуна:

  • Белый чугун. Углерод в составе этого вида находится в состоянии связанного типа. Этот чугун обладает светлыми тоннами благодаря светлому цементиту в составе. Этот вип подразделяется на эвтектичексие, в составе 4,3 процента углерода и заэвтектические, в составе от 4,3 до 6,67 процентов углерода. Данный вид применяется для изготовления путем обжига ковких чугунов.
  • Серый чугун. Этот вид представляет собой сплав от 1,2 до 3,5 процентов кремния, остальное — железо и углерод, а также различные примеси серы, марганца и фосфора. Практически весь кислород в сером чугуне находится в состоянии пластинчатой формы. Обладает ярко выраженным серым цветом.
  • Ковкий чугун. Данный вид получается благодаря дополнительному обжигу белого чугуна, в результате образуется графит хлопьевидного типа. Для металлической основы служат перлит и феррит. Название данный вид получил благодаря повышенным характеристикам вязкости и пластичности, а также повышенной прочности и большим сопротивлением к ударам. Из этого випа изготавливаются детали сложного типа, такие как: тормозные колодки, угольник, тройники и картеры для заднего моста автомобилей.
  • Высокопрочный чугун. В состав этого вида входит графит шаровидного типа, образованный в процессе кристаллизации. Этот вид графита не так сильно ослабляет основу из металла и не концентрирует напряжение.
  • Характеристика и классификация чугунов | Сварка и сварщик

    Чугун
    сплав железа с углеродом, содержащий углерода от 2,14 до 6,67%. Наряду с углеродом в чугуне содержится кремний (Si), марганец (Mn), сера (S) и фосфор (Р). Содержание серы (S) и фосфора (Р) в чугуне больше, чем в стали. В специальные (легированные) чугуны вводят легирующие добавки — никель (Ni), молибден (Mo), ванадий (V), хром (Сr) и др.

    Чугун делят:

    • по структуре — на белый, серый и ковкий;
    • по химическому составу — на легированный и нелегированный.
    Белый чугун
    это такой чугун, в котором большая часть углерода химически соединена с железом в виде цементита Fe3C. Цементит имеет светлый цвет, обладает большой твердостью и хрупкостью. Поэтому белый чугун также имеет в изломе светло-серый, почти белый цвет, очень тверд, не поддается механической обработке и сварке, поэтому ограниченно применяется в качестве конструкционного материала. Белые чугуны используются для получения ковких чугунов.
    Серый чугун
    это такой чугун, в котором большая часть углерода находится в свободном состоянии в виде графита. Серый чугун мягок, хорошо обрабатывается режущим инструментом, в изломе имеет темно-серый цвет. Температура плавления серого чугуна 1100-1250°С.

    Чем больше в чугуне углерода, тем ниже температура его плавления и выше жидкотекучесть.

    Кремний уменьшает растворимость углерода в железе, способствует распаду цементита с выделением свободного графита. При сварке происходит окисление кремния, оксиды кремния имеют температуру плавления более высокую, чем свариваемый металл, и тем самым затрудняют процесс сварки.

    Марганец связывает углерод и препятствует выделению графита. Этим самым он способствует отбеливанию чугуна. Марганец образует сернистые соединения (MnS), нерастворимые в жидком и твердом чугунах и легкоудаляемые из металла в шлак. При содержании марганца более 1,5% свариваемость чугуна ухудшается.

    Сера в чугунах является вредной примесью, она затрудняет сварку, понижает прочность и способствует образованию горячих трещин. Сера образует с железом химическое соединение — сернистое железо, препятствует выделению графита и способствует отбеливанию чугуна. Верхний предел содержания серы в чугунах 0,15%. Для ослабления вредного влияния серы в чугунах содержание марганца должно быть в три раза больше.

    Фосфор в чугуне увеличивает жидкотекучесть и улучшает его свариваемость, но одновременно понижает температуру затвердевания, повышает хрупкость и твердость. Содержание фосфора в серых чугунах не должно превышать 0,3%.

    По ГОСТ 1412-79 марку серого чугуна обозначают буквами СЧ и двумя числами, из которых первое обозначает величину временного сопротивления чугуна при растяжении в МН/м2, а второе — то же, при изгибе.

    Ковкий чугун получают из белого чугуна термической обработкой — длительной выдержкой при температуре 800-850°С. При этом углерод в чугуне выделяется в виде хлопьев свободного углерода, располагающихся между кристаллами чистого железа. В зависимости от режима термической обработки получают ковкий чугун ферритной или перлитной структуры. При нагреве ковких чугунов свыше 900°С в зависимости от скорости охлаждения графит может распадаться и образовывать химическое соединение с железом — цементит (Fe3C), при этом деталь теряет свойства ковкого чугуна. Это затрудняет сварку ковкого чугуна, так как для получения первоначальной структуры ковкого чугуна его приходится после сварки подвергать полному циклу термообработки.

    Ковкий чугун обозначают буквами КЧ и двумя числами: первое — указывает временное сопротивление при растяжении, МН/м, второе — относительное удлинение, %.

    Легированные чугуны имеют специальные примеси Сr, Ni, благодаря которым повышаются его кислотостойкость, прочность при ударных нагрузках и др.

    Высокопрочный чугун получают из серого чугуна специальной обработкой — введением в жидкий чугун при температуре не ниже 1400°С чистого магния (Mg) или его сплавов. Графит в высокопрочном чугуне имеет сфероидальную форму.

    Свариваемость чугуна

    Чугун является трудносвариваемым сплавом. Трудности при сварке чугуна обусловлены его химическим составом, структурой и механическими свойствами, при сварке чугуна необходимо учитывать следующие его свойства: жидкотекучесть, поэтому сварка выполняется только в нижнем положении; малая пластичность, характеризующаяся возникновением в процессе сварки значительных внутренних напряжений и закалочных структур, которые часто приводят к образованию трещин; интенсивное выгорание углерода, что приводит к пористости сварного шва; в расплавленном состоянии чугун окисляется с образованием тугоплавких оксидов, температура плавления которых выше, чем чугуна. Сварка чугуна применяется в основном для исправления литейных дефектов, при ремонте изношенных и поврежденных деталей в процессе эксплуатации и при изготовлении сварных конструкций.

    Чугуны, классификация чугунов, свойства

    Чугун – сплав железа с углеродом, в котором углерода больше 2.14%.

    Рис. 11. Классификация чугунов

    Белый и серый чугун. Серый и белый чугуны резко различаются по свойствам. Белые чугуны очень твердые и хрупкие, плохо обрабатыва­ются режущим инструментом, идут на переплавку в сталь и называются передельными чугунами. Часть белого чугуна идет на получение ков­кого чугуна.

    Серые чугуны — это литейный чугун. Серый чугун поступает в произ­водство в виде отливок. Серый чугун является дешевым конструкцион­ным материалом. Он обладает хорошими литейными свойствами, хоро­шо обрабатывается резанием, сопротивляется износу, обладает способ­ностью рассеивать колебания при вибрационных и переменных на­грузках. Свойство гасить вибрации называется демпфирующей способ­ностью. Демпфирующая способность чугуна в 2—4 раза выше, чем ста­ли. Высокая демпфирующая способность и износостойкость обуслови­ли применение чугуна для изготовления станин различного оборудова­ния, коленчатых и распределительных валов тракторных и автомо­бильных двигателей и др. Выпускают следующие марки серых чугунов (в скобках указаны числовые значения твердости НВ) :СЧ 10(143—229), СЧ 15 (163-229), СЧ 20 (170-241), СЧ 25 (180-250), СЧ 30(181-255), СЧ 35 (197-269), СЧ 40 (207-285), СЧ 45 (229-289).

    Серый чугун получают при добавлении в расплавленный металл веществ, способствующих распаду цементита и выделению углерода в виде графита. Для серого чугуна графитизатором является кремний. При введе­нии в сплав кремния около 5% цементит серого чугуна практически пол­ностью распадается и образуется структура из пластичной ферритной основы и включений графита. С уменьшением содержания кремния цементит, входящий в состав перлита, частично распадается и образуется ферритно-перлитная струк­тура с включениями графита. При дальнейшем уменьше­нии содержания кремния формируется структура серо­го чугуна на перлитной осно­ве с включениями графита.

    Механические свойства серых чугунов зависят от метал­лической основы, а также формы и размеров включений графита. Наиболее прочными являются серые чугуны на пер­литной основе, а наиболее плас­тичными —серые чугуны на ферритной основе. Поскольку графит имеет очень малую проч­ность и не имеет связи с метал­лической основой чугуна, поло­сти, занятые графитом, можно рассматривать как пустоты, над­резы или трещины в металличе­ской основе чугуна, которые значительно снижают его проч­ность и пластичность. Наиболь­шее снижение прочностных свойств вызывают включения графита в виде плас­тинок, наименьшее — включения точечной или шарообразной формы.

    По физико-механическим характеристикам серые чугуны условно можно разделить на четыре группы: малой прочности, повышенной проч­ности, высокой прочности и со специальными свойствами.

    Легированный серый чугун имеет мелкозернистую структуру и лучшее строение графита за счет присадки небольших количеств никеля и хрома, молибдена и иногда титана или меди.

    Модифицированный серый чугун имеет однородное строение по сечению отливки и более мелкую завихренную форму графита. Химический состав шихты для изготовления модифицированного чугуна подбирают таким, чтобы обычный модифицированный чугун затвердевал бы в отливке с отбелом (т.е. белым или половинчатым). Модификаторы — ферросили­ций, силикоалюминий, силикокальций и др. — добавляют в количестве 0,1 —0,3% от массы чугуна непосредственно в ковш во время его заполне­ния. В структуре отливок из модифицированного серого чугуна не со­держится ледебуритного цементита. Вследствие малого количества вводи­мого в чугун модификатора его химический состав практически остается неизменным. Жидкий модифицированный чугун необходимо немедлен­но разливать в литейные формы, так как эффект модифицирования ис­чезает через 10—15 мин.

    Высокопрочный чугун. Механические свойства высокопрочного чугуна позволяют приме­нять его для изготовления деталей машин, работающих в тяжелых ус­ловиях, вместо поковок или отливок из стали. Из высокопрочного чугуна изготовляют детали прокатных станов, кузнеч но-прессового оборудования, паровых турбин (лопатки направляющего аппарата), тракторов, автомобилей (коленчатые валы, поршни) и др. Так, напри­мер, коленчатый вал легковой автомашины «Волга» изготовляют из высокопрочного чугуна следующего состава: 3,4-3,6% С; 1,8-2,2% Si; 0,96-1,2% Mn; 0,16-0,30% Cr; <0,01 % S; <0,06% P и 0,01-0,03% Mg. Низкое содержание серы и фосфора и небольшие пределы содержания других химических элементов обеспечиваются тем, что такой чугун выплавляют не в вагранке, а в электрической печи. После термической обработки механические свойства чугуна получаются весьма высоки­ми: Ов= 620-650 МПа; §= 8-12 % и твердость НВ = 192-240.

    Ковкий чугун. Ковкий чугун — условное название более пластичного чугуна по сравнению с серым. Ковкий чугун никогда не куют. Отливки из ковкого чугуна получают длительным отжигом отливок из белого чугуна с перлитнс-цементитной структурой. Толщина стенок отливки не должна превышать 40—50 мм. При отжиге цементит белого чугуна распа­дается с образованием графита хлопьевидной формы. У отливокс толщиной стенокболее 50 мм при отжиге будет образовываться нежелательный пластинчатый графит.

    Ковкий чугун широко применяют в автомобильном, сельскохозяйст­венном и текстильном машиностроении. Из него изготовляют детали высо­кой прочности, способные воспринимать повторно-переменные и удар­ные нагрузки и работающие в условиях повышенного износа, такие как картер заднего моста, тормозные колодки, ступицы, пальцы режущих аппа­ратов сельскохозяйственных машин, шестерни, крючковые цепи и др. Широкое распространение ковкого чугуна, занимающего по механичес­ким свойствам промежуточное положение между серым чугуном и сталью, обусловлено лучшими по сравнению со сталью литейными свойствами белого чугуна, что позволяет получать отливки сложной формы. Ковкий чугун характеризуется достаточно высокими антикоррозионными свой­ствами и хорошо работает в среде влажного воздуха, топочных газов и воды.

    Чугуны со специальными свойствами. Такие чугуны используют в различных отраслях машиностроения тогда, когда отливка, кроме проч­ности, должна обладать теми или иными специфическими свойствами (износостойкостью, химической стойкостью, жаростойкостью и т. п.). Из большого количества чугунов со специальными свойствами приве­дем в качестве примеров следующие.

    Магнитный чугун используют для изготовления корпусов электричес­ких машин, рам, щитов и др. Для этой цели наилучшим является ферритный чугун с шаровидным графитом.

    Немагнитный чугун используют для изготовления кожухов и бандажей различных электрических машин. Для этого применяют никеле-марган-цовистый чугун, содержащий 7-10% Мп и 7-9% Ni, а также марганцево-меднистый чугун, в котором содержится 9,8% Мn и 1,2-2,0% Си.

    Жаростойкий чугун — чугаль содержит 20-25% А1.

    К чугунам со специальными свойствами относят также упомянутые ранее ферросплавы — ферромарганец, ферросилиций и т.д., предназна­ченные для раскисления и легирования стали при ее выплавке.

    что это, свойства и применение, маркировка марок чугуна

    На чтение 7 мин. Просмотров 2.6k. Опубликовано Обновлено

    Ковкий чугун получается при длительном термическом отжиге заготовок белого чугуна. В результате термообработки цементит распадается на железо и углерод в виде графита компактной хлопьевидной формы.

    Материал с такими графитовыми включениями характеризуется высокими прочностными параметрами, пластичностью и стойкостью к ударным нагрузкам.

    Виды чугунов

    Чугун – это сплав железа с углеродом, где содержание последнего более 2,14%. В состав такого сплава могут входить и другие элементы. Их содержание определяет многие параметры и .

    В железоуглеродистом сплаве содержится цементит, графит и графит с цементитом. Цементитом называют соединение углерода с железом состава Fe3C. Графит – это одна из аллотропных модификаций углерода со слоистой структурой.

    В зависимости от содержания указанных соединений меняется цвет изделия. Когда преобладает цементит, материал приобретает светлый отблеск. Отсюда и получилось название «белый».

    Графит обладает темной окраской, которую он придает и отливкам. Именно структура графитовых включений определяет пластические свойства материала.

    Виды чугуна по ГОСТ.

    Исходя из этого сплав разделяют на:

    • серый;
    • ковкий;
    • высокопрочный;
    • особого назначения.

    К первому типу материалов относится сплав железа с углеродом в графитовой модификации хлопьевидной, пластинчатой или глобулярной формы. Он обладает высокими литейными свойствами. Благодаря им часто используется для получения деталей сложной формы.

    В то же время хрупкость сплава ограничивает его применение в изделиях, подвергающихся растяжению или изгибу. Сплав с графитом глобулярной формы характеризуется высокими прочностными свойствами. Его относят к одному из подвидов серого чугуна.

    Формирование графита указанной формы достигается благодаря добавкам магния и церия. Другие же формы получаются вследствие разных скоростей охлаждения.

    [box type=”fact”]Форма включений может быть различной: в виде хлопьев, шаров или пластин. Именно на получении первого вида структуры основан метод получения ковкого чугуна.[/box]

    Ковкий чугун содержит углерод в интервале концентраций от 2,4–2,8%. Кроме того, в сплаве могут содержаться: кремний, марганец, сера и фосфор. Указанные элементы влияют на конечные свойства изделий.

    Особенности производства ковкого чугуна

    Форма графитовых включений и металлическая основа.

    Чтобы получить , необходимо следовать технологии, основанной на термическом отжиге заготовок при определенной температуре. В результате данного процесса происходит распад цементита и аустенита. Таким образом, получают углерод, кристаллизующийся в графите хлопьевидной формы.

    Аустенитом называют железо с гранецентрированным типом решетки. Данная модификация является высокотемпературной. В железоуглеродистых сталях он может формироваться при температурах более 727 градусов, а в чистом железе при 910 градусах.

    Окончательный процесс формирования графита происходит при более низких температурах – в диапазоне 720-760 градусов. Именно углерод в такой модификации определяет такие характеристики, как пластичность и прочность ковкого чугуна.

    Метод предусматривает термообработку ковких чугунов в два этапа. Вначале материал подвергают воздействию температуры до 1000 градусов. Выдержка отливок в указанных условиях приводит к распаду ледебурита на графит и аустенит.

    После отжига при высокой температуре изделие охлаждают до 720-760 градусов. В результате формируется перлит, распадающийся в дальнейшем на феррит и графит.

    Плавку материала для изготовления чугуна осуществляют в вагранках, пламенных и электропечах. Иногда этот процесс осуществляют в комбинированных печах. Исходные отливки могут содержать различное количество углерода.

    При изготовлении ферритного сплава необходимо использовать заготовки с меньшей концентрацией углерода. Такие изделия обладают высокой температурой плавления, поэтому требуют повышенную температуру перегрева.

    Обычно для плавки в данной ситуации используют две печи. В вагранке происходит расплавление, а в электродуговой печи перегрев. Описанная технология плавки называется дуплекс-процессом.

    Для производства перлитного сплава используют заготовки с большим содержанием «С». Для плавки такого материала достаточно вагранки.

    Особенностью производства форм для отливок является повышенная усадка белого сплава. Из-за этого процесса возникает необходимость установки боковых прибылей у каждого местного утолщения отливки. Это позволяет избежать формирования раковин.

    Для того, чтобы увеличить скорость охлаждения более толстых мест отливки используются металлические холодильники.

    диаграммы свойств чугунаВлияние углерода и кремния на структуру чугуна и зависимость структуры от толщины чугуна.

    Название данного материала обусловлено лишь его более высокими пластичными свойствами. На самом деле его нельзя . Данный тип сплава используется так же, как и другие его виды.

    Преимуществом ковкого чугуна, по сравнению с белым, является высокая антикоррозионная стойкость. По этому свойству материал занимает более высокие позиции, чем углеродистые стали. По механическим свойствам он уступает сталям, однако превосходит белый чугун.

    Разновидности ковкого чугуна

    В зависимости от процесса производства ковкий чугун бывает ферритным и перлитным. В первом случае изготовление осуществляется в нейтральной среде. Такой материал отличается ферритной структурой с остаточным углеродом отжига.

    В состав сплава до термообработки входит 2,2-2,99 процента углерода, а также добавки других элементов, содержание которых не превышает одного процента. Уменьшение концентрации «С» сопровождается увеличением прочностных характеристик материала. Однако его литейные свойства снижаются.

    Данный материал широко применяется при изготовлении деталей для машин и сельхоз техники, где необходима стойкость к постоянным нагрузкам и напряжениям.

    [box type=”info”]Термообработка изделий в окислительной среде приводит к формированию белосердечного или перлитного чугуна. Данный сплав отличается другими концентрациями углерода до отжига – 2,8-3,3 процента. После термического воздействия количество углерода падает до 0,6-2,2%.[/box]

    Данный сплав отличается более низкими пластическими свойствами. В связи с этим его используют в задачах, не требующих стойкости к серьезным пластическим и химическим нагрузкам.

    Свойства ковких чугунов

    характеристики ковкого чугунаСостав ковкого чугуна.

    Ковкий чугун обладает механическими свойствами, зависящими от содержания кремния углерода в графитовой аллотропной модификации. Для белосердечного материала влияние оказывают также хром и марганец.

    Различие структуры изделий определяет и различие свойств. Так, черносердечный сплав характеризуется большей пластичностью, но меньшей твердостью, чем перлитный тип.

    Высокие прочностные характеристики данных сплавов обеспечиваются графитом хлопьевидной формы. Несмотря на свое название, данные изделия . Они изготавливаются путем отливки деталей в заданные формы.

    Главным достоинством ковкого сплава является однородность свойств по сечению материала, а также отсутствие напряжений.

    С точки зрения других характеристик они отличаются:

    • хорошей текучестью при литье;
    • поглощением вибраций;
    • высокой износостойкостью;
    • хорошей коррозионной стойкостью к влаге и многим агрессивным химическим соединениям;
    • высокой стойкостью к ударным нагрузкам.

    Маркировка изделий

    Марки ковкого чугуна начинаются с букв «КЧ», после которых следуют цифры. Первые числа соответствуют уменьшенному в десять раз пределу прочности материала. Вторая пара – это показатель относительного удлинения.

    Согласно принятым стандартам ковкие чугуны имеют одиннадцать типов маркировки. 4 соответствуют ферритному, а 7 марок – перлитному.

    https://youtu.be/2_Xwdx4GL40

    Сферы использования материала

    таблица свойствМеханические свойства и химический состав чугуна.

    Применение ковкого чугуна нашлось в машиностроении, автомобилестроении, в производстве ж/д вагонов, изготовлении сельхоз оборудования.

    Лучшими свойствами для отмеченных сфер применения является перлитный тип. Однако, несмотря на более высокие характеристики, чаше используется черносердечный сплав. Это обусловлено меньшими затратами на его производство.

    Только для изготовления деталей, подвергающихся высоким нагрузкам, используют белосердечный материал. К таким изделиям относятся рессоры, детали двигателей и т.д.

    Итог

    Ковкие чугуны нашли широкое применение в различных областях человеческой жизнедеятельности благодаря своим высоким прочностным свойствам и хорошей коррозионной стойкости.

    Они используются для изготовления различных деталей, которые должны выдерживать значительные постоянные и периодические нагрузки.

    В зависимости от задач, может использоваться либо ферритный, либо перлитный тип материала. Каждый из них обладает своими достоинствами и недостатками, описанными в данной статье.

    https://youtu.be/F6ApHPhpnok

    Различные виды железа и свойства его материалов


    В этой статье дается обзор различных типов чугуна, включая кованое железо, белый чугун, серый чугун, ковкий чугун и чугун с шаровидным графитом. Каждое железо классифицируется на основе его физических и химических свойств в отношении процентного содержания углерода и его применения.

    В повседневной жизни мы часто встречаем множество типов конструкций из железа и его сплавов.Железо — один из наиболее часто используемых металлов в мире, и его необходимо использовать в повседневной жизни для создания многих конструкций, бытовых приборов и для других целей. В этой статье показано, сколько типов железа используют инженеры в приложениях, исходя из его свойств и пригодности.

    Чугун и его свойства:

  • Чугун является основным сырьем для всех видов чугуна и производится в доменной печи.

  • Он содержит 3-4% углерода в чушках.

  • Чугун из руды содержит три основных формы железа:
    1.Чугун (Изготовлен из купольной печи)
    2. Кованое железо (Изготовлено из печи для пудинга)
    3. Сталь (Изготовлено из конвертера Бессемера)

  • Кованое железо и его свойства:

  • Кованое железо представляет собой механическую смесь чистого железа и силикатный шлак

  • Содержание углерода в нем составляет от 0,02% до 0,03%.

  • Кованое железо никогда не бывает литым или трудным для литья

  • Кованое железо обладает высокой пластичностью, устойчивостью к коррозии и усталости.

  • Предел прочности на разрыв: 3380-3500 кг на квадратный сантиметр и 2530-2670 кг на квадратный сантиметр в поперечном направлении

  • Точка плавления кованого железа: 1510 градусов С, масса — 7680 кг на метр куб.

  • Коэффициент Пуассона для кованого железа: 0,3

  • Ковкий чугун и его свойства:

  • Ковкий чугун получают из твердого и хрупкого белого чугуна путем контролируемого процесса термической обработки.

  • Ковкий чугун с процентным содержанием углерода: от 2% до 3%

  • Ковкий чугун, обладающий такими свойствами материала, как высокий предел текучести, легкость обработки, коррозионная стойкость и высокий модуль упругости

  • Он имеет низкий коэффициент термической стойкости расширение и высокая износостойкость и гашение вибрации.

  • Допуск на усадку для этого чугуна составляет 1,5 мм / 100 мм.

  • Ковкий чугун используется для изготовления коленчатого вала, рельсового пути, карданного вала и т. Д.
  • Чугун с шаровидным графитом содержит% углерода: 3,2% и 4,2%

  • Чугун с шаровидным графитом имеет промежуточную демпфирующую способность между чугуном и сталью.

  • Этот утюг также обладает высокой износостойкостью.

  • Применение: насос, компрессор, клапан, т.е.c двигатели, трубы, бумажная промышленность, землеройные машины.

  • Серый чугун и его свойства:

    Серый чугун также может производиться из чугуна.
    Серый чугун назван по цвету его микроструктуры. Из-за графита / кремния он имеет серый цвет. Графит также обладает самозатухающей способностью и часто имеет прочность.
  • Серый чугун — это сплав углерода и кремния с железом.

  • Содержание углерода в сером чугуне: от 2,5 до 3.8%

  • Серый чугун обладает самозатухающими, хорошими антифрикционными свойствами, а также имеет самую низкую температуру плавления. Это причина того, что серый чугун в основном используется в станинах (токарный станок, фрезерный станок), чтобы уменьшить и поглотить вибрацию из-за самозатухающих свойств.

  • Области применения серого чугуна: конструкция станков, крышки люков, поршневые кольца, прокатный стан. Водопроводные трубы.

  • Белый чугун и его свойства:

  • Содержание углерода в белом чугуне: 1.От 8% до 3,6%

  • Белый чугун не поддается механической обработке

  • Допуск на усадку для этого типа чугуна составляет 1 мм / 100 мм.

  • .

    Iron — Информация об элементе, свойства и использование

    Расшифровка:

    Химия в ее стихии: железо

    (Promo)

    Вы слушаете Химию в ее стихии, представленную вам журналом Chemistry World , журналом Королевского химического общества.

    (Конец промо)

    Крис Смит

    Здравствуйте, на этой неделе мы обратимся к одному из самых важных элементов человеческого тела.Это тот, который делает возможным метаболизм, и мы просто не знаем об этом. Есть проблемы с железным человеком, лидеры с железными кулаками и те, у кого в душе есть железо. Но у элемента номер 26 есть и темная сторона, потому что его мощный химический состав означает, что это также плохие новости для клеток мозга, как объясняет лауреат Нобелевской премии Кэри Маллис

    Кэри Маллис

    Для человеческого мозга железо важно, но смертельно опасно. Он существует на Земле в основном в двух степенях окисления — FeII и FeIII.FeIII преобладает в пределах нескольких метров от атмосферы, которая около двух миллиардов лет назад превратила 20% кислорода, окисляя это железо до состояния плюс три, которое практически нерастворимо в воде. Это изменение относительно обильного и растворимого FeII потребовало тяжелого труда почти для всего живого в то время.

    Выжившие наземные и обитающие в океане микробы выработали растворимые молекулы сидерофоров, чтобы восстановить доступ к этому многочисленному, но в остальном недоступному важному ресурсу, который использовал гидроксаматные или катехоловые хелатирующие группы, чтобы вернуть FeIII в раствор.Со временем возникли высшие организмы, включая животных. Животные использовали энергию рекомбинации кислорода с углеводородами и углеводами в растительной жизни для обеспечения движения. Железо было неотъемлемой частью этого процесса.

    Но ни одно животное, тем не менее, не смогло адекватно справиться в долгосрочной перспективе, то есть восьмидесятилетней продолжительности жизни, с тем фактом, что железо необходимо для преобразования солнечной энергии в движение, но практически не растворяется в воде при нейтральной pH и, что еще хуже, токсичен.

    Углерод, сера, азот. кальций, магний, натрий и, возможно, десять других элементов также участвуют в жизни, но ни один из них не обладает способностью железа перемещать электроны, и ни один из них не способен полностью разрушить всю систему. Железо делает. Системы эволюционировали, чтобы поддерживать железо в определенных полезных и безопасных конфигурациях — ферменты, которые используют его каталитические свойства, или трансферрины и гемосидерины, которые перемещают его и хранят. Но они не идеальны. Иногда атомы железа неуместны, и не существует известных систем для повторного улавливания железа, осажденного внутри клетки.

    В некоторых тканях клетки, перегруженные железом, могут быть переработаны или уничтожены — но это не работает для нейронов.

    Нейроны за время своего существования порождают тысячи процессов, стремясь сформировать сети соединений с другими нейронами. В процессе развития мозга взрослого человека большая часть клеток полностью удаляется, и добавляются новые. Это процесс обучения. Но как только какая-то область мозга заработает, уже ничего нельзя будет сделать биологически, если по какой-либо причине большое количество ее клеток перестанет работать.

    Причиной этого, вероятно, является медленная ползучесть осажденного железа в течение многих десятилетий. В менее сложных тканях, таких как печень, могут активироваться новые стволовые клетки, но в мозгу необходимы обученные, структурно сложные, взаимосвязанные нейроны с тысячами проекций, которые накапливаются в течение всей жизни обучения. Таким образом, результатом является медленно прогрессирующее нейродегенеративное заболевание, такое как болезни Паркинсона и Альцгеймера.

    Тот же самый основной механизм может привести к множеству заболеваний.Есть двадцать или тридцать белков, которые связаны с железом в мозгу — удерживают железо и передают его с места на место. Каждый новый человек, наделенный новым набором хромосом, наделен новым набором этих белков. Некоторые комбинации будут лучше других, а некоторые будут опасны по отдельности и в совокупности.

    Мутация в гене, который кодирует один из этих белков, может нарушить его функцию, что приведет к потере атомов железа. Эти атомы, которые были потеряны из химических групп, которые их удерживают, не всегда будут безопасно возвращены в какую-либо структуру, такую ​​как трансферрин или гемоферритин.Некоторые из них вступят в реакцию с водой и исчезнут навсегда. Только они не совсем потеряны. Они накапливаются в несчастливых типах клеток, которые были назначенными местами для экспрессии белков с наибольшей утечкой железа. И оксиды железа не просто занимают критическое место. Железо очень реактивно. Печально известные «реактивные формы кислорода», которые, как подозревают, вызывают так много возрастных заболеваний, могут происходить только от различных форм железа.

    Пришло время специалистам в области химии, разбирающимся в химии железа, обратить внимание на нейродегенеративные заболевания.

    Крис Смит

    Кэри Маллис рассказывает историю железа, элемента, без которого мы не можем обойтись, но который в то же время может держать ключ к нашему неврологическому падению. В следующий раз на «Химии в ее элементе» Джонни Болл расскажет историю Марии Кюри и элемента, который она обнаружила и назвала в честь ее родины.

    Джонни Болл

    Пичбленда, урансодержащая руда, казалась слишком радиоактивной, чем можно было объяснить ураном.Они просеивали и отсортировывали вручную унцию за унцией через тонны урана в проветриваемом морозильном сарае, прежде чем в конечном итоге были обнаружены крошечные количества полония.

    Крис Смит

    Так что будьте радиоактивными или, по крайней мере, будьте активны в подкасте и присоединяйтесь к нам, чтобы узнать загадочную историю о полонии на следующей неделе в «Химии в его элементе». Я Крис Смит, спасибо за внимание, увидимся в следующий раз.

    (промо)

    (конец промо)

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *