Зажим массы для сварки своими руками: Зажим массы сварочный, типы зажимов для сварочного аппарата, самодельная клемма, держатель,

Содержание

2 в 1. Магнитная масса и уголок для сварки своими руками

Здравствуйте, уважаемые читатели и самоделкины!
Эта статья будет интересна всем, кто занимается сварочными работами. В ней АндРей00001, пользователь сайта «яплакалъ», расскажет Вам как сделать интересную магнитную массу, которая одновременно будет выполнять роль уголка.

Материалы.
— Стальной лист 0,6 мм.
— Несколько неодимовых магнитов.
— Пара обрезков проволоки
— Изоляционная лента
— Болт, гайка, шайба.

Инструменты, использованные автором.
— Шуруповерт или сверлиьный станок
— Сварочный аппарат
— Плоскогубцы, ключи
— Тиски.

Процесс изготовления.
Первым делом Андрей вырезал из стального листа треугольник. И, зажав его в тисках, приварил к его центру обрезок шпильки. Можно использовать и болт, приваривая его шляпкой — будет больше площадь контакта.


Получилась вот такая первая деталь.


Для второй части уголка, автор согнул из листа вот такой треугольник.
При помощи сверлильного станка сделал отверстие для шпильки.

Теперь нужно установить несколько неодимовых магнитов по углам корпуса, и просто закрыть его.

Края корпуса не привариваются, а зажимаются при помощи вот такой обрезанной шайбы.

Андрей надевает клемму массы сварочного аппарата и зажимает самоконтящейся гайкой при помощи ключа.

Для большей жесткости соединения прикладывает пару обрезков проволоки, и изолирует клемму, заматывая изолентой. Затем надевает резиновый кембрик.

Все прекрасно магнитится.


Пришло время испытаний. Андрей включает инвертор и проверяет качество контакта. Дуга загорается с первой попытки. Пробует соединить две ненужные железки. Контакт просто отличный.

Теперь приваривает отрезок трубы к стальному профилю под 90 градусов. Все отлично, даже по уголку видно.

А если «крокодил» сварочного аппарата подключить некуда? Достаточно примагнитить массу на зачищенный участок металлической конструкции!


Спасибо Андрею за интересную идею для очередной версии магнитного уголка
Ссылка на оригинальное видео — под статьей, кнопка «источник».

Всем удачи и хороших инструментов!


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Магнитная масса для сварочного аппарата своими руками

Здравствуйте, уважаемые читатели и самоделкины!
В данной статье, автор YouTube канала «Hassan Abu-Izmero» расскажет Вам, как изготовить качественную магнитную массу для сварочного аппарата.

Для изготовления этой самоделки мастер будет использовать различные станки, однако будет достаточно простой болгарки и дрели.
Материалы.
— Стальная полоса
— Медная шина
— Уксусная кислота 80%, машинное масло
— Стальная шпилька, барашковая гайка М12
— Наждачная бумага.

Инструменты, использованные автором.
— Струбцины
— Ленточная пила
— Ленточный шлифовальный станок
— Болгарка, отрезной диск
— Сверлильный и точильный станки
— Сверла по металлу, зенковка, метчик
— Сварочный полуавтомат
— Сварочный стол
— Разметочный рейсмус по металлу
— Тиски, керн, молоток, металлическая щетка
— Линейка, рулетка, маркер.
— Магнитный уголок для сварки

Процесс изготовления.
Первым делом из стальной полосы и медной пластины нарезаются заготовки для этого приспособления при помощи ленточной пилы.

Поверхности стальных деталей шлифуются на ленточном станке, а также закругляются острые грани.

Один из торцов медной пластины мастер срезает под углами 90 градусов. При отрезании он немного зацепил пильным диском губку тисков.

Места среза шлифуются, а также формируется острие.

Теперь мастер удаляет оцинковку с барашкового винта. Для этого он использует 80%-ю уксусную кислоту.

На одной из деталей он размечает и кернит центр. Кстати, мастер использует самодельный разметочный рейсмус, про изготовление которого рассказано в недавней статье.


Затем заготовка фиксируется в тисках, и в ней сверлится отверстие с использованием масла. После этого нарезается резьба, и снимается фаска.

Далее мастер приступает к сварочным работам. Сначала он сваривает между собой две первые пластины.


На противоположном краю приваривается деталь с резьбой для прижимного винта.

Упорная пластина приваривается так, чтобы между ней и крайней пластиной достаточно плотно входил медный контакт.

Теперь все поверхности корпуса шлифуются на ленточном станке.


Все поверхности медной контактной пластины шлифуются на точильном станке.

От стальной шпильки мастер отрезает небольшой кусочек.

К одному из его краев приваривается барашковая гайка, затем сварочный шов зачищается металлической щеткой. Так у него получился простой прижимной винт с барашковой головкой.

Все готово, остается зажать медную пластину в приспособлении, и зафиксировать его на детали при помощи магнитного уголка.

Даже если зажим от сварочного аппарата некуда зацепить, с помощью этого приспособления задача легко решается.

Благодарю автора за простое, но полезное приспособление для сварочных работ!

Всем хорошего настроения, крепкого здоровья, и интересных идей!

Авторское видео можно найти здесь.


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Магнитная масса для сварки своими руками за 5 минут

Простую магнитную массу можно сделать своими руками за 5 минут!


Обычно в штатной комплектации сварочных аппаратов крепление массы представлено в виде прищепки.

Из личного опыта знаю, что не всегда удобно использовать прищепку. Поэтому предлагаю сделать для вашего сварочного аппарата, такое нужное, простое и удобное приспособление как магнитная масса.

 

Для изготовления нам понадобится всего лишь ненужный динамик.


Изготовление

Разбираем динамик так, чтобы с обеих сторон магнита остался металл.

 

Все неровности и остатки от заклёпок сошлифовываем, выравнивая поверхность.

 

В моём варианте динамика по центру был вкручен болт, после его выкручивания у меня осталось отверстие, если у вас другая конструкция динамика, и у вас нет такого отверстия, то его нужно просверлить для дальнейшего крепления массы.

Теперь откручиваем провод массы от прищепки и прикручиваем его к магниту через заранее просверленное отверстие.

 

С той стороны магнита, которая будет приставать к деталям, нужно сделать небольшое углубление под болт, чтобы он не выступал за основание и не мешал приставать массе к деталям.

 

Теперь, когда мы присоединили провод массы к магниту наша и  конструкция готова к работе.

 

Вот такую магнитную массу может сделать своими руками каждый желающий.

Единственное примечание в использовании такой массы — это то, что её не желательно цеплять к деталям самим магнитом так как он будет немного изменять характеристику сварки и это будет влиять, не в лучшую сторону, на качество швов.

 

Видео от автора самоделки

Всем удачных самоделок и реализации всех планов.

Домашний мастер

Магнитная масса для сварки — инструкция по изготовлению

Магнитная масса для сварки — это удобное приспособление, позволяющее закрепить ее на свариваемых деталях, и хорошая альтернатива стандартным прищепкам.

Часто дополнительные приспособления к сварочному аппарату либо плохого качества и ломаются, либо же могут отсутствовать вообще. Магнитная масса для сварки — это удобное приспособление, позволяющее закрепить ее на свариваемых деталях, и хорошая альтернатива стандартным прищепкам.

Из чего состоит такой контакт, какие положительные качества у него имеются и как его изготовить самостоятельно. Об этом дальше в статье.

Магнит или зажим


Обычно сварочные аппараты комплектуются кабелем массы с держателем зажимного типа. С первого взгляда, это удобно, такое приспособление можно надежно закрепить к практически любой поверхности (листы, металлопрокат и прочие).

Но бывают ситуации, когда нет возможности установить такую массу на заготовку или, еще чаще, она перегорает. Неплохой альтернативой станет магнитный контакт сварочного кабеля.

В чем его преимущества перед стандартным зажимом-прищепкой?

  • Это возможность закрепить контакт практически на любые поверхности без особых хлопот.
  • Простая конструкция практически вечна в использовании, не сломается, так как нет никаких пружинок и механизмов.
  • Такая масса отлично выдерживает перепады напряжения и нагрузку, вследствие чего не перегорает.
  • Большая площадь контакта обеспечивает надежное замыкание.

Но есть и свои недостатки у такого вида крепления контактов. Главный недостаток — это то, что магнитная масса для сварки будет плохо устанавливаться на маленькие по площади детали, например, пруток или арматуру.

Вторым отрицательным свойством будет невозможность закрепления на свариваемые части из цветных металлов: алюминия, меди и прочих. Также со временем магнит будет загрязняться металлической стружкой и его периодически нужно очищать.

Без учета двух последних факторов, это довольно удобное приспособление, которое можно даже изготовить своими руками без лишних затрат.

Конструкция магнитного контакта


Само устройство состоит из двух частей.
  • Контакт. Это точка, где к держателю закрепляется кабель массы.
  • Магнит. Может быть разнообразных форм и размеров.

Эти две части соединяются между собой креплением. Вес магнитная масса для сварки будет иметь в зависимости от размеров. Например, магнитная клемма для сварки от компании ESAB весит около 850 грамм.

Главное в такой конструкции — простота, за счет которой обеспечивается надежность функционирования и бесперебойная работа.

Самостоятельное изготовление

Конечно, такой крепеж сварочной массы можно просто приобрести. Производители, которые изготавливают сварочное оборудование, выпускают и дополнительные приспособления в виде креплений. Но это лишние финансовые потери, такой контакт можно изготовить самостоятельно.

Изготовление магнитного контакта для сварочного кабеля своими руками довольно простое. Понадобится минимум инструментов, а детали могут быть под рукой.


Что для этого нужно:
  • Во-первых, магнит. Это главная деталь всего устройства, которая обеспечит надежность крепления. Чаще всего можно увидеть самоделки, сделанные из магнита от автомобильных динамиков.
  • Во-вторых, две шайбы по размеру магнита. Если использовать автомобильный динамик, то на одну из шайб можно наварить болт для дальнейшей сборки.
  • В третьих, болт и гайка для зажима кабеля.

Сборку всей системы проводят таким образом:

  1. Шайбы можно изготовить из листового металла, по размеру магнита. Если это динамик, то он обычно имеет круглую форму. Соответственно и шайбы должны быть такими же.
  2. У нижней (та, что будет служить непосредственно контактом) сверлят отверстие по диаметру шляпки болта.
  3. Саму верхушку болта нужно сточить до толщины шайбы.
  4. Теперь эту конструкцию сваривают и зачищают. Должна получиться деталь в виде гриба с ножкой из резьбы.
  5. Магнит надевают на болт, а сверху — вторую шайбу.
  6. Теперь на шток с резьбой крепят конец кабеля массы и всю конструкцию стягивают гайкой.

Так с простейшего материала собирается элементарная масса для сварки на магните. Ее бесперебойная работа будет доказательством правильной сборки. Размеры такого контакта будут зависеть от габаритов магнита. Круглые массы заводского изготовления обычно имеют диаметр около 50-60 миллиметров.

Для опытного сварщика, знающего принцип работы массы на сварочном аппарате, изготовить требуемое крепление не составит труда. Самым примитивным контактом может стать закрепленный к кабелю кусок прутка, который закрепляют к заготовке парой точек сварки. Но, конечно, такое приспособление очень неудобно в использовании.

Также можно сделать самостоятельно и магнитный держатель для электродов. Что тоже уже зависит от личных предпочтений в удобстве работы.

Самодельная клемма на магните хороший вариант экономии средств. Хотя использовать такое крепление или нет — это уже смотрят на личные удобства в работе. Если сварка используется редко (как обычно в быту), то можно попросту обойтись стандартным зажимом.

Что Вы думаете по поводу удобства такого приспособления? Насколько целесообразно покупать или изготовить такую клемму массы? И стоит ли приобретать такое крепление заводского изготовления, если можно сделать его самостоятельно в своей мастерской? Возможно, у Вас иметься личный опыт по использованию, тогда просим поделиться им в блоке комментариев и принять участие в обсуждении.

Сварочный зажим: обзор конструкций прижимов «массы»

Сварочный зажим влияет на эффективность работы, качество, безопасность и удобство проведения сварочных операций. Рассмотрим разновидности прижимов сварщика. Расскажем, как продлить жизнь зажиму типа «крокодил».

Электрическая цепь сварочного оборудования пропускает большие токи, поэтому каждый элемент цепи должен быть надежно соединен. Это вопрос качества, удобства работы и безопасности. Наиболее ответственным звеном здесь можно считать точку присоединения массы к металлической заготовке. Узел представляет собой быстросъемный контакт (сварочный зажим) и конструктивно может быть выполнен в нескольких вариантах.

Необходимость в применении разных модификаций зажимов для фиксации земли к детали часто обусловлена конфигурацией металлов, которые вы собираетесь варить. Попробуем разобраться, чем хороши те или иные фиксаторы массы для выполнения сварочных операций.

Разновидности сварочных зажимов (массы)


В природе существует четыре основных конструкции зажимов для сварки:

  • клемма в виде крокодила, которая получила одноименное название;
  • соединение провода при помощи магнита;
  • зажим в форме струбцины;
  • клемма заземления, именуемая центратором.

При внимательном изучении товара этой категории, предложенного на рынке, можно убедиться, что множество оригинальных конструкций сварочных зажимов является модификацией перечисленных четырех основных.

Сварочный «крокодил»

Быстросъемная сварочная клемма «крокодил» конструктивно выглядит как прищепка, выполненная из металла, в контактной части которой на закусывающих губках имеются ребристые насечки. За счет них зажим прочно крепится к стальной заготовке, осуществляя надежную электрическую связь.

Рисунок 1 — Сварочный крокодил



Основные плюсы изделий такого типа:
  1. Удобны в использовании при выполнении оперативных сварочных работ, где постоянно нужно переставлять контакт с места на место.
  2. Подходят для фиксации на деталях и конструкциях любой конфигурации.
  3. Имеют отличную электрическую проводимость.

Недостатки зажима «крокодил»:

  1. При частом использовании ослабляется пружина, что ведет к потере прочности механического соединения.
  2. Стенки металла зажима подвержены прогоранию, что со временем ухудшает электрическую связь.

Для разных по мощности сварочных аппаратов производители выпускают клеммы, рассчитанные на силу тока в 500, 400, 300 и 200 ампер. Для выполнения сварочных работ профессионального уровня рекомендовано использовать зажимы массы с возможностью прохождения силы тока не ниже 400 ампер.

Информация на заметку. Сварочный «крокодил» невозможно использовать при работе с деталями, размер контактных площадок которых превышает размер раскрытия губок зажима (трубы, цилиндрические бочки).

Магнитная масса


Электрический зажим, одна часть которого выполнена из металлического магнита, а другая представляет собой стальной контакт с болтовым соединением для крепления кабеля, получил название магнитной массы.

Рисунок 2 — Магнитная масса

Магнитные зажимы обладают следующими преимуществами:

  1. Имеют простую конструкцию без механически движущихся частей, что значительно увеличивает срок эксплуатации таких изделий.
  2. Позволяют закреплять массу на любой стальной поверхности вне зависимости от размера и конфигурации.
  3. Электрическое соединение можно установить за считанные секунды, что особенно важно при оперативных сварочных процессах.
  4. Возможность установки контакта в труднодоступных местах.
  5. Отсутствие склонности к перегоранию при нестабильном протекании электричества, просадках напряжения.

Существенные недостатки магнитного зажима:

  1. Слабое механическое, а значит и электрическое соединение с деталями, размер контактных площадок которых значительно меньше контактной плоскости магнита.
  2. Невозможность осуществлять контакт через поверхность, выполненную из цветных металлов.
  3. Необходимость в постоянной очистке магнита от металлической пыли, которая ослабляет электрическую связь в цепи.
  4. Перегрев магнита может привести к его размагничиванию.

Струбцина


В арсенале рядовых сварщиков редко можно встретить струбцину. Сварочные прижимы такого типа могут использовать профессионалы для решения особых задач. В частности, при выполнении точных операций, где нужно получить качественный красивый шов.

Рисунок 3 — Струбцина

Из преимуществ применения струбцины:

  1. Получение контакта с лучшей механической фиксацией за счет стягивания при помощи винта.
  2. Надежный электрический контакт, обеспечивающий хорошую пропускную способность сварочного тока, что исключает возможность подгорания и перегрева в точке соединения.

Основные недостатки:
  1. Струбцина не подходит для быстрой смены положения контакта на поверхности детали.
  2. Как и в случае с «крокодилом», конструкция струбцины может быть закреплена на элементах, размер которых сопоставим с пространством между болтом и упорной лапой.
  3. Струбцина – изделие крупного размера и по цене превышает обычную прищепку.

Информация на заметку. Отдельный вид – угловые струбцины для сварки, которые можно использовать в качестве клеммы массы (при определенных доработках), кроме этого, будут выполнять фиксирующую функцию, жестко соединяя детали свариваемой рамы.

Рисунок 4 — Угловая струбцина

Сварочный центратор


Специально разработанный зажим сварочный для создания контакта массы к таким металлическим деталям, как трубы. Конструктивно центратор выполнен из двух элементов, по форме напоминающих рабочую часть клещей. Составные части соединены при помощи шарнира и стягиваются за счет винта. Кроме труб, центратор можно прикреплять к любой металлической заготовке, если только ее толщина не выходит за возможности раскрытия губок клеммы.

Рисунок 5 — Сварочный центратор

Преимущества центратора:

  1. Жесткий физический и электрический контакт с металлом.
  2. Удобство работы при выполнении сварочных операций с трубами.

Недостатки клеммы:

  1. Сложная конструкция, не позволяющая оперативно переключать зажим сварочный с места на место.
  2. Высокая цена на изделие.

На что обратить внимание при выборе зажима для сварки


Нужно начать с того, для каких целей подбирается клемма, то есть насколько она будет загружена, какого типа аппарат используется при сварке. Профессионалы берут зажимы массы для сварочного аппарата с запасом по прочности, любители – чтобы красиво выглядел (и такое бывает), но правильный подход основан на следующих принципах:
  1. Мощность зажима должна быть рассчитана на больший ток относительно номинального, на котором работает инвертор.
  2. Специфика сварочного процесса: если нужно постоянно и быстро менять точку подключения, то подойдет элемент типа прищепки.
  3. Силы сжатия стягивающих губок должно хватать для удержания кабеля, если последний в процессе сварки будет в подвешенном состоянии.
  4. Величина раскрытия губок клеммы должна превышать размер контактной площадки, куда планируется подключать массу.
  5. Следует обратить внимание на то, можно ли доверять производителю. Если последний зарекомендовал себя на рынке с лучшей стороны, смело приобретать продукт.

Как заставить зажим «крокодил» служить дольше


Зажим «крокодил» имеет несколько уязвимых мест. В нем есть пружина, которая имеет время службы. Но даже когда сила сжатия не так важна и вопрос с пружиной отпадает, остается склонность «крокодила» перегорать в месте соединения двух подвижных частей в области шарнира. Это происходит потому, что контакт с кабелем через болтовое соединение осуществляется только с одной частью «крокодила».

В процессе сварки можно наблюдать процесс, когда та часть «крокодила», куда подключена масса, может иметь плохой механический, а следовательно, и электрический контакт с деталью, противоположная же часть, наоборот, хороший. Тогда вся сила тока будет идти через этот элемент. Но здесь проявляется слабое звено – шарнир, в районе него будет нестабильная проводимость, перегрев и проплавление металла.

Информация на заметку. Специалисты рекомендуют кинуть дополнительную мягкую шину от одной губки «крокодила» к другой, тогда в любом случае ток будет поступать от металла напрямую к массе, минуя слабое звено!

Всем, у кого есть реальный опыт решения проблемы, как улучшить контакт зажима сварочной массы, или вопросы на эту тему, пишите в комментариях!

магнитные держатели массы для сварки и другие прищепки заземления. Как их цеплять?

При проведении сварочных работ обязательно нужно пользоваться специальными клеммами. Данные элементы позволяют делать заземление. Оно обеспечивает безопасность, защищает от возможного поражения электрическим током. Рассмотрим, какими бывают такие детали, и как их правильно использовать.

Что это и зачем нужны?

Сварочные клеммы представляют собой специальный держатель в виде прищепки. Такие зажимы типа «крокодил» соединяют между собой кабель и металлическую деталь.

Такие клеммы часто называют зажимами массы. Они создают максимально надежный контакт в зоне подключения. А также они применяются для надежной фиксации деталей.

Подобные элементы используются для создания заземления – это дает возможность сделать сварочную работу более безопасной, предотвратить воздействия электрического тока.

Технические характеристики

В специализированных магазинах любой покупатель сможет увидеть большое разнообразие различных сварочных клемм с разными техническими параметрами. Важной характеристикой для данного инструмента является значение номинального тока. Чаще всего оно составляет 200, 300 и 500 ампер.

При выборе подходящей клеммы следует обязательно учитывать силу тока, при которой будут проводиться работы.

Еще одним важным показателем будет продолжительность включения при максимальной величине токе. Для клемм данное значение чаще всего составляет 35%. К таким параметрам можно отнести и массу изделий. Как правило, она достигает 300-500 граммов. Самые легкие модели можно прикрепить практически к любому месту – благодаря маленькой массе они не будут смещаться во время сварки, обеспечивая довольно хороший контакт.

Какими бывают?

Клеммы для сварочных работ могут быть разных видов. К основным из них относятся следующие разновидности:

  • «крокодил»;
  • фиксирующие элементы;
  • магнитные прищепки.

«Крокодил»

Данный вариант является самым распространенным. Нередко такие зажимы продаются в одном комплекте со сварочным оборудованием. Приспособление довольно удобно в применении, при необходимости его можно быстро и легко поменять одним нажатием руки. А также такой стандартный вариант можно прикрепить к металлической конструкции любой формы.

Но при этом он обладает и некоторыми недостатками:

  • сложность присоединения к трубам с большим значением диаметра;
  • трудное использование на угловых поверхностях (в таких случаях к изделию дополнительно приваривают небольшой «рожок», также можно взять провод с большой длиной).

Фиксирующие элементы

Такие разновидности не только обеспечивают заземление, но и позволяют легко зафиксировать металлические детали между собой в процессе сварочных работ. Эти элементы также подразделяются на несколько отдельных групп:

  • стяжки и зажимы;
  • струбцины;
  • распорки и центраторы.

Фиксирующие зажимы и стяжки чаще всего используются для стягивания концов изделий и кромок, закрепления их в таком положении. Это дает возможность сделать конструкцию более устойчивой к возможным ударам электродов, а также предотвращает деформацию металла при повышении температурного режима.

Положение фиксации производится плотным сжатием ручек. При этом нужно выставить подходящие размеры зева. Делают это при помощи небольшого винта на инструменте.

Распорки считаются самым подходящим вариантом для случаев, когда необходимо соблюдать определенное расстояние между отдельными частями свариваемой конструкции. А также такие фиксирующие устройства отлично подойдут для того, чтобы немного исправить деформации металла.

Струбцины представляют собой специальные стягивающие инструменты, оснащенными зажимными винтами. Они позволяют закреплять металл определенных размеров и форм.

Сами струбцины также могут быть разных форм и размеров. Все они оснащены регулятором зева. Наиболее распространенными являются угловые модели. Они обеспечивают фиксацию металлических элементов, которые свариваются под углом 90 градусов встык.

Центраторы представляют собой особые устройства, которые обеспечивают совмещение друг с другом осей и кромок деталей. Такие модели могут быть или внутренними, или внешними.

Магнитная прищепка

Такие клеммы производятся в 2-х вариантах: постоянные и электромагнитные модели. А также они подразделяются на универсальные (применяются для простого крепления к металлическим деталям) и угольники (предназначаются для сварки конструкций под определенным углом).

Магнитная основа позволяет обеспечивать прочное присоединение и к самим клеммам, и к отдельным металлическим частям. После их использования на поверхности изделия не будет следов, хотя многие модели других клемм оставляют их на металле.

Магнитные образцы прочно фиксируются во время сварки, их смещения в процессе работы не произойдет. Кроме этого, такие модели можно закрепить практически в любое место, поэтому их удобно использовать при сварке в труднодоступных местах конструкций.

Но магнитные клеммы лучше не брать для работы с мелкими изделиями, в том числе с проволокой или арматурой. Данное устройство следует регулярно полностью очищать от металлической стружки.

Место под его креплением надо своевременно зачищать, чтобы на нем не образовался слой грязи.

Как пользоваться?

Чтобы клемма выполняла все свои функции, ее следует правильно прикрепить к изделию. На концах таких устройств имеются специальные наконечники прямоугольной или круглой формы. Именно эту часть нужно цеплять к металлу.

Перед креплением внимательно посмотрите на контакты – они должны быть чистыми. Если они даже немного загрязнены, предварительно нужно провести тщательную чистку. Если этого не сделать, то тогда дугу невозможно будет разжечь из-за слишком плохого контакта.

В процессе использования внимательно следите за нагреванием кабеля. Не допускайте, чтобы он сильно перегревался. Чтобы этого не произошло, следует просто соблюдать допустимое значение сварочного тока, также рекомендуется делать небольшие регулярные перерывы во время сварочных работ.

Более наглядный обзор сварочных клемм и их правильное использование смотрите в следующем видеоролике.

Общее руководство по координатным приспособлениям, приспособлениям и оснастке с ЧПУ для станов

Введение

Под зажимом понимается любое устройство, используемое для надежной фиксации заготовки во время ее обработки.

Тесно связанные термины — «приспособления» и «приспособления».

Приспособление удерживает вашу заготовку во время резки. Шаблон удерживает заготовку, а также направляет резак. При использовании ЧПУ нет необходимости в приспособлениях, так как G-код направляет резак, поэтому этот термин в значительной степени относится к ручной обработке.

«Приспособления» — это, в просторечии, решения для крепления деталей, которые изготавливаются на заказ для конкретной детали или ситуации.

Оснащение оснасткой состоит из двух компонентов:

— собственно зажимное приспособление, такое как фрезерные тиски.

— Метод определения местоположения и крепления этого зажимного приспособления к вашей машине. Это включает в себя вездесущие Т-образные пазы, но также включает модульные фиксирующие пластины, решения для 4-й оси и многое другое.

Мы рассмотрим различные методы определения местоположения удерживающих приспособлений, а затем дадим описание ваших вариантов удерживающих приспособлений.

Но сначала давайте поговорим о том, почему приспособления и приспособления так важны и как узнать, когда вам нужно сделать специальный приспособление или приспособление.

Приспособления и приспособления: покажи мне деньги

Среди машинистов есть старая поговорка: на арматуре можно зарабатывать деньги. Если вы умеете делать приспособления, которые экономят время, вы получите большую прибыль. По крайней мере, так говорится.

Но так ли это на самом деле? Всегда ли это правда? Выиграет ли каждая работа от модного ремонта?

Я собрал бесплатный калькулятор приспособлений, который позволяет легко определить, подходит ли приспособление для вашей работы.Он даже определит, какой будет экономия (ROI), если вы создадите приспособление, сравнив два разных варианта крепления.

Бесплатный калькулятор приспособлений позволяет легко сравнивать сценарии, и у него даже есть параметры одним щелчком, так что вы можете учитывать:

  • Повторные прогоны: какова экономия после изготовления приспособления и повторного заказа клиентом другого прогона?
  • Модульное крепление: время на установку экономится, когда вы можете просто поставить крепление на штифты с модульной крепежной пластиной и запустить его.
  • Устройство смены поддонов
  • : возможно, лучшим устройством для смены поддонов является устройство смены поддонов, которое позволяет загружать / выгружать поддон, пока машина работает на другом поддоне.

Я также снял видео, в котором рассказывается о возможной экономии при использовании приспособлений и демонстраций, как использовать бесплатный калькулятор приспособлений для определения возможной экономии при определенных сценариях:

Я хочу особо поблагодарить Дэйва Бишопа на MiteeBite. Дэйв и команда MiteeBite забыли о приспособлениях больше, чем большинство из нас когда-либо узнает, и он дал мне несколько отличных советов по улучшению калькулятора приспособлений.Кроме того, если вы оцениваете стоимость работы, обязательно ознакомьтесь с нашим программным обеспечением G-Wizard Estimator. Калькулятор крепежа появился там, и в программном обеспечении есть много других полезных калькуляторов и функций, которые помогут с оценкой стоимости работы.

Теперь, когда у вас есть средства увидеть, как приспособления и приспособления могут помочь в вашей работе, давайте подробно рассмотрим, как это делается!

Позиционирование для зажимных приспособлений

Т-образные пазы

Т-образные пазы — это наиболее распространенный метод позиционирования и удержания вашего рабочего крепления…

Т-образные пазы

— это, безусловно, самый распространенный способ позиционирования и удержания вашего решения Workholding. Они просты, надежны и работают. Чтобы прикрепить что-либо к столу с Т-образным пазом, используйте гайки с Т-образным пазом и подходящие шпильки или другие крепежные детали, подходящие для гаек:

Гайки с Т-образным пазом…

Хотя они широко распространены, у них есть некоторые недостатки по сравнению с другими решениями. Помимо того факта, что Т-образные пазы могут собирать стружку и другой мусор, их самый большой недостаток заключается в том, что трудно вернуть ваши тиски или другое приспособление для крепления на стол в точно таком же месте и в той же ориентации.Это может привести к дополнительной работе каждый раз, когда машина должна быть настроена с новой рабочей оснасткой для новой работы. Со временем цена такой неэффективности может стать довольно большой.

Только представьте, что, если бы вместо устройства смены инструмента и стола для инструментов вам приходилось набирать каждый инструмент каждый раз, когда он использовался? Разве это не станет огромным препятствием для повышения производительности вашего рабочего процесса обработки? Что ж, время настройки также может стать большим препятствием для производительности, и Т-образные пазы здесь не помогают.

Есть несколько решений, которые пытались сделать их немного лучше:

Подгонка пазов

Мы можем проверить Т-образные пазы станка, чтобы убедиться, что ход идет параллельно движению оси, проверив их с помощью индикатора тестирования набора (DTI).Если они этого не сделают, мы сможем их превратить. Многие люди ненавидят идею намеренного фрезерования стола, но если Т-образные пазы не соответствуют действительности и они вам нужны, трудно понять, какой у вас выбор. Но есть выбор, который предполагает использование чего-то другого, кроме Т-образных пазов, как мы вскоре увидим.

Тиски и приспособления с ключом

Если ваши Т-образные пазы соответствуют требованиям, вы можете установить ключи на дно тисков или крепежных пластин, которые совпадают с Т-образными пазами. Вы также можете установить ключи в Т-образные пазы, которые совпадают с краем пластины или основания тисков. Это может сэкономить вам довольно много времени на вытаскивание тисков и тому подобное, и это несложно, так что об этом определенно стоит подумать.

Проблема в том, что такого рода решения помогут с одним измерением (обычно короткий размер стола равен размеру Y и выровнен перпендикулярно прорезям), но у нас все еще есть проблема с позиционированием вдоль оси T- Слот.

К счастью, есть лучший способ — это вспомогательные пластины для крепления (также называемые пластинами для инструментов).

Крепежные пластины, инструментальные пластины и модульное крепление

Вспомогательные пластины для крепления

(также называемые крепежными пластинами или инструментальными пластинами) — это пластины, которые устанавливаются поверх стола с Т-образными пазами, чтобы обеспечить новый способ позиционирования и фиксации крепления. Типичная пластина для инструментов выглядит так:

Типичная пластина для инструментов…

Инструментальные пластины

обычно используют сетку отверстий, которые чередуются между отверстиями для точных установочных штифтов и отверстиями с резьбой для крепежных деталей. Если эта сетка позиционируется точно (или даже если это не так и позиции точно известны), у вас есть очень повторяемый способ установки Workholding на пластину. Установочные штифты обеспечивают точное позиционирование с точностью до полтысячной. Представьте себе возможность опустить тиски, установленные на собственной крепежной пластине с установочными штифтами и отверстиями для крепежа, на пластину для инструментов, и это будет повторяться с точностью до полтысячной. Если все ваши приспособления могут упасть на пластину для инструментов, вы действительно можете очень быстро переключить станок на новую конфигурацию оснастки.Экономия времени позволяет очень быстро окупить стоимость такой системы.

С воздушным храповым механизмом в руке тиски могут быть установлены на одну из этих пластин в течение одной или двух минут. Станок с ЧПУ можно перенастроить за 5 или 10 минут для совершенно другой работы. К тому же навыки, необходимые для операторов станков, а также вероятность ошибок значительно снижаются, если не нужно каждый раз тщательно настраивать приспособления. Есть преимущества и для создания модульного G-кода, поскольку он может полагаться на сетку позиционирования Tooling Plate.

Если требуется точность более полутысячной, часто лучше использовать зондирование вместе с выбранной параметризацией g-кода, чтобы исправить оставшуюся ошибку. Вы можете попытаться более точно настроить параметры вручную, но решение для проверки может полагаться на то, что все почти верно, чтобы определить последнюю небольшую часть исправления ошибок, которая должна быть применена в самом g-коде. Например, можно очень точно применить вращение к g-коду на основе результатов датчиков трамвая (то есть выравнивание объектов по движению оси) — это почти правильная ситуация.

Инструментальные пластины

обычно изготавливаются из чугуна или алюминия, хотя есть и стальные. Их можно купить или изготовить с нуля. Чтобы получить полное руководство, обязательно посетите нашу страницу Fixture Plate.

Модульное крепление

Еще одна вещь, которую помогают облегчить инструментальные пластины, — это модульное крепление. Когда у нас есть фиксированная сетка, на которую можно положиться, мы можем купить готовые компоненты крепления, которые будут соответствовать сетке. Это может сэкономить довольно много средств по сравнению с необходимостью изготовления всего по индивидуальному заказу.

Шаровые замки и другие решения для быстросменных пластин

Надеюсь, теперь вы видите, сколько времени можно сэкономить, используя инструментальные пластины. Что может быть лучше? Почему есть как минимум два разных способа улучшить тему: быстрые сменные пластины для инструментов и поддоны.

Благодаря системе Quick Change время, необходимое для работы с установочными штифтами и крепежными деталями, сокращается за счет какого-то интегрированного решения, которое обеспечивает точное позиционирование и очень быструю фиксацию.Одна из них — система шаровых замков Jergens:

.

Шаровые замки — это система быстрого освобождения инструментальных пластин…

Эта система обеспечивает точное позиционирование и надежную фиксацию с помощью 4 шаровых замков. Просто совместите пластину с вспомогательной пластиной (которая имеет втулки приемника и установлена ​​на столе), опустите хвостовики шарикового фиксатора в отверстие, закрутите болт наверху хвостовика шарикового фиксатора, и все готово. Закрутить четыре болта и не возиться с установочными штифтами или дополнительными креплениями действительно быстро и легко.Джергенс говорит о 30-секундном времени смены приспособлений, что действительно очень быстро.

Поддоны

Следующий шаг — поддоны. Думайте о них как о механических инструментальных плитах, тогда как все остальное, о чем мы говорили, было ручным. Типичная машина с поддонами позволяет вам устанавливать один или несколько поддонов, пока машина работает над другим. Операция смены поддона включает старый поддон за пределами зоны фрезерования машины и вводит новый.Это сводит к минимуму время, необходимое станку в автономном режиме, и позволяет выполнять настройку параллельно с обработкой.

Некоторые машины имеют так называемые «пулы поддонов», которые позволяют заранее настроить несколько поддонов и запланировать их запуск. Пул поддонов может позволить машине работать без присмотра в течение довольно длительного времени и может быть полезным строительным блоком для полной автоматизации.

Поддоны обычно можно увидеть только на горизонтальных обрабатывающих центрах и некоторых высокопроизводительных вертикальных обрабатывающих центрах.Это определенно полноценная производственная функция, которая стоит довольно дорого, поэтому стоимость должна быть оправдана необходимостью того, чтобы машины не выпускали детали постоянно.

4-я ось, цапфы, надгробия и инструментальные колонны

Иногда полезно иметь возможность применить к нашему мышлению другое измерение — в данном случае 4-ю Ось. В ЧПУ 4-я ось обычно представляет собой ось вращения, которая выровнена для вращения вдоль оси, параллельной одной из трех других осей станка. На вертикальных мельницах 4-я ось часто параллельна X или Y и проложена вниз.На горизонтальной мельнице 4-я ось также параллельна X или Y, но она стоит вертикально. Оба метода отлично работают, но постоянная 4-я ось горизонтальной фрезы часто имеет больший зазор, поскольку работа никогда не застревает между столом и осью.

С точки зрения рабочего места, 4-я ось может использоваться для введения новых ориентаций в игру для двух целей:

1. Он обеспечивает доступ к большему количеству сторон детали, поэтому обработка может продолжаться без необходимости переворачивать детали вручную.

2. Он обеспечивает доступ к большему количеству деталей, которые могут быть расположены вокруг 4-й оси.

Чтобы узнать больше об этих применениях Workholding, ознакомьтесь с нашей превосходной серией статей «Основы 4-й оси».

Параметры сварки — ЗАЖИМЫ, настройки аппарата, манипуляции с горелкой и угол хода

> Параметры сварки <

Создание сварного шва нужного размера, формы и глубины требует множества переменных. Студенты по дуговой сварке запоминают большинство из них, произнося аббревиатуру «CLAMS», поскольку каждая буква обозначает параметр сварки.Вот список:

Ток — сила тока обычно определяет размер и глубину проплавления сварного шва, когда вы перемещаете резак с правильной скоростью. Сварщики обращаются к таблицам от производителей сварочных аппаратов и электродов или к спецификации процедуры сварки (WPS), чтобы узнать о своих текущих настройках, или попробуйте сваривать образцы пластин той же толщины, чтобы увидеть, что работает лучше всего.

Длина дуги — Насколько близко к рабочим пластинам сварщик держит дугу проволоки или сварочного электрода, может повлиять на количество тока и тепла, поступающего в соединение.Держа близко к рабочим пластинам, ток и тепло в сварном шве остаются высокими. Чем дальше электрод, тем меньше тепла и больше брызг.

Как показывает практика, длина дуги при сварке штангой должна соответствовать диаметру металла электрода. Другими словами, если вы используете стержень диаметром 1/8 дюйма, держите его на расстоянии 1/8 дюйма от поверхности соединения. Вы можете увеличить длину дуги, чтобы уменьшить нагрев лужи или ограничить осаждение сварочного металла.

В режиме подачи проволоки (т. е.е. Сварка MIG или порошковой сваркой) проволочный электрод располагается дальше от стыка, чем при сварке штучной сваркой. Это потому, что дуга более концентрированная и, следовательно, способна прожигать металл. По этой причине студенты также узнают разницу между залипанием электрода (длина провода от контактного наконечника) и расстоянием между контактом и работой. Вариации ESO или CTWD влияют на величину тока, идущего в соединение, независимо от настройки скорости проволоки на машине.

Угол — При сварке следует помнить о двух углах горелки.Первый — это рабочий угол, который представляет собой соотношение между шарниром и горелкой (или стержнем). В идеале вы должны держать фонарь перпендикулярно или под углом 90 градусов к суставу. Большим исключением из правил являются тройники, рабочий угол которых колеблется от 30 до 50 градусов. Второй угол, используемый при сварке, — это угол хода. Это связь между факелом и линией движения. Чтобы увидеть стык и лужу, сварщик может наклонить стержень до 10 градусов в направлении движения, а иногда и против направления движения.

— — —

Как вы можете видеть на первой диаграмме, угол наклона резака к обрабатываемой детали (слева) составляет 90 градусов, что позволяет максимальному теплу и току сосредоточиться вниз в стыковое соединение с открытой канавкой. (Думайте об этом как о виде спереди рабочих пластин.) На диаграмме справа угол перемещения показывает наклон в 5-10 градусов вдоль сустава. Это дает сварщику лучшее представление о том, что происходит в луже. Когда вы перетаскиваете фонарик или электрод, наклон направлен в сторону лужи, что способствует проникновению и получению толстого валика.Когда вы нажимаете, наклон направлен в сторону от лужи, что ограничивает проникновение тепла и попадание тепла в основной металл.

Манипуляции — это относится к движению руки сварщика, когда он или она направляет электрод вдоль стыка. Очень важно обеспечить закрепление на пальцах ног, но также важно контролировать проникновение и нагревание. Как описано в разделе «Типы бус», плетение, плетение, перетаскивание или толкание — все это примеры манипуляции.

Скорость — Если вы двигаетесь слишком быстро, размер сварного шва будет небольшим, и проплавление будет недостаточным.Двигайтесь слишком медленно, и вы получите толстый сварной шов и, вероятно, слишком много тепла попадет на рабочие пластины.

На следующей диаграмме показано, как некоторые переменные CLAMS влияют на сварной шов:

В последних двух примерах «WFS» означает скорость подачи проволоки, с помощью которой сварочные аппараты MIG и порошковой проволоки регулируют ток. Обратите внимание на то, что при слишком высоком напряжении валик становится широким и плоским. Кроме того, при слишком низком уровне напряжения сварной шов оказывается поверх основного металла, а не проникает в него.Таким образом, напряжение определяет общий профиль или геометрию сварного шва.

При сварке штангой сварщик устанавливает напряжение напрямую, но не ток, поэтому аппараты обозначаются как постоянного тока (CC). При MIG / порошковой сварке аппараты обеспечивают постоянное напряжение (CV), поэтому сварщик обычно устанавливает только ток. У некоторых автоматов с ручкой также есть настройка, известная как Dig . Этот параметр позволяет увеличить ток выше установленной выходной силы тока, если дуга начинает гаснуть.

Хотя на фотографиях выше это не показано, слишком длинная дуга может вызвать пористость (пузырьки воздуха) внутри сварного шва, разбрызгивание на основной металл и подрезание на носках соединения. См. Дополнительную информацию по этой теме в разделе «Дефекты сварных швов».

Помимо CLAMS, при планировании сварочных работ следует учитывать еще несколько переменных:

Проектирование и сборка стыков: то, как вы готовите рабочие плиты (или стационарную конструкцию) к сварке, может больше повлиять на результат операции, чем что-либо еще. Ваши стыки, скошенные кромки, отшлифованные поверхности корней и поверхности должны ровно и равномерно совмещаться, прежде чем вы начнете сварку. На нем не должно быть заусенцев, зазоров и ровностей.

Будучи студентом, легко предположить, что как только металл нагревается, все естественным образом падает вместе, и все маленькие неровности исчезают, как по волшебству. Фактически, вы можете усугубить ситуацию, если не уделите время правильной подгонке. Излишне говорить, что угол скошенных сторон должен соответствовать толщине металла и используемому процессу сварки.(При сварке MIG возможны более крутые углы, чем при сварке штучной сваркой.) Вы также должны прихватывать пластины и использовать зажимы по мере необходимости, чтобы предотвратить закрытие соединения перед сваркой или другие деформации, вызванные нагревом.

Предварительная очистка кромок сварных швов также важна. Хотя некоторые стержневые электроды предназначены для проникновения сквозь ржавчину и прокатную окалину, эти загрязнения могут вызывать проблемы. И хотя с низкоуглеродистой сталью работать намного проще, чем с другими металлами, вам все же следует выработать привычку очищать или шлифовать области, которые вы планируете сваривать.

Размер: Толщина основного металла должна влиять на решение о том, какой диаметр электрода, стержня, проволоки или наконечника горелки вы используете для сварки, а также от настроек напряжения, скорости подачи проволоки и / или тока. Следует учитывать множество других факторов размера, но обычно на первом месте стоит толщина металла.

Рассеивание тепла: разные металлы по-разному рассеивают тепло. Также имеет значение масса ваших деталей: более мелкие детали нагреваются намного быстрее, чем большие и тяжелые детали.. Низкоуглеродистая сталь может быть очень щадящей при перегреве, но другие металлы могут потерять свою прочность на разрыв или другие качества, если вы не будете следить за теплом, входящим и выходящим из пластин или трубы.

По мере того, как вы узнаете больше о химических и механических свойствах различных металлов и сплавов, вы можете решить включить предварительную или последующую термообработку ваших заготовок как часть сварочной операции. Закалка пластин после сварки (для их охлаждения) — это практика, которая обычно не одобряется после первого семестра в сварочной школе.Это потому, что закалка оказывает на металл своего рода травмирующий эффект и может сделать его хрупким. На уроке металлургии сварщиков обучают многим формам термической обработки и их преимуществам, таким как закалка, отпуск и отжиг.

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Далее: Типы сварных швов

— — — — — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Если у вас есть предложения или проблемы с веб-сайтом, напишите сварщику [at] thecityedition [dot] com.

Вернуться в главное меню

——————————————

Авторские права © 2012-2015 TheCityEdition.com

Расчет требований к металлу сварного шва вручную

Если вам нужно рассчитать требования к металлу сварного шва и у вас нет под рукой «Руководства по процедурам дуговой сварки», вы можете сделать это вручную, используя простую геометрию. Что вам нужно сделать, так это найти необходимый объем сварного шва в кубических дюймах.Угловой шов с плоской поверхностью образует прямоугольный треугольник. Используя математику средней школы, мы можем увидеть, что прямоугольный треугольник с дюймами ног будет иметь площадь ½ x основание x высоту. Используя наш 10% припуск на сварку, размеры наших ножек будут ¼ x 1,1 = 0,275 дюйма. Итак, наша площадь = (1/2) x 0,275 x 0,275 = 0,0378 квадратных дюймов. Мы должны сварить в общей сложности 76,5 дюймов на деталь (взято из примера в нашей предыдущей публикации: Расчет требуемого веса металла шва), поэтому общий объем сварного шва для каждой детали равен (0,0378) x (76.5) = 2,89 кубических дюйма. Поскольку мы свариваем углеродистую сталь, мы используем ее плотность для расчета фунтов металла шва. Плотность стали составляет 0,283 фунта / куб. Дюйм.

Расчет объема угловых швов можно легко выполнить с помощью простой математики.

2,89 куб. Дюйма x 0,283 фунта / куб. Дюйм = 0,819 фунта на часть. Мы сравниваем это со значениями, полученными с использованием Таблицы 12.1 в Руководстве по процедурам, и мы не верны.

Сделать это для угловых швов очень просто. Когда вы выполняете более сложный стык, например, двойной V-образный стыковой шов, он становится немного сложнее.Посмотрите разницу на нашем ноутбуке ниже:

Расчет объема сварного шва с разделкой кромок затруднен. Для этого нам нужно разбить его на разделы.

Вместо простого треугольника мы знаем, что берем поперечное сечение стыка и делим его на формы, для которых мы можем вычислить площадь. В примечаниях выше мы видим, что в итоге получаем 2 треугольника, 2 сегмента круга и 1 прямоугольник. Для этого типа соединения в таблице 12-1 Руководства по процедурам есть все, что вам нужно. Однако, когда вы начинаете заниматься J-образными пазами и другими сложными соединениями с пазами, вам, возможно, придется делать это вручную.Для этих соединений тоже есть таблицы, но, похоже, они опубликованы в малоизвестных книгах и технических отчетах.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *