Можно ли использовать «нержавейку» и «обычную» сталь вместе?
Рекомендуется избегать прямого контакта метизов из разных металлов, особенно в узлах крепления.
Проблемы, возникающие при контакте крепёжного изделия из «обычных» углеродистых сталей с изделием из нержавеющих аустенитных сплавов,
изучены инженерами BEST-Крепёж по факту частых обращений в наш технический отдел.
Ниже рассмотрим основные причины, по которым нельзя допускать их контакта.
В нержавеющих сталях аустенитного класса по ГОСТ ISO 3506-2014 содержание легирующих элементов ≈30%.
Основные из них: хром (Cr≥15%) и никель (Ni≥8%).
Стали марки А4 дополнительно легируют молибденом в пределах 2-3%.
Такое содержание легирующих элементов обуславливает заметную разницу электродных потенциалов между «обычными» углеродистыми сталями и коррозионно-стойкими аустенитными сплавами.
В зависимости от активности электролита при контакте двух металлов с разными потенциалами растут риски возникновения контактной коррозии.
Согласно ГОСТ 5272-68:
«Контактная коррозия – это электрохимическая коррозия, вызванная контактом металлов, имеющих разные стационарные потенциалы в данном электролите».
При контакте двух электрохимически разнородных металлов анодом выступает тот, потенциал которого более отрицательный.
Катодом — металл с более положительным потенциалом.
При возникновении контактной коррозии коррозионному разрушению подвергается анод.
Скорость растворения анода зависит, в первую очередь, от разности потенциалов между сплавами.
Но особенную опасность при этом представляет близость морского побережья и промышленных предприятий.
С одной стороны может показаться, что разница потенциалов между разными сталями не такая значительная, как например, у той же стали с алюминием.
Однако, разница потенциалов между «обычной» углеродистой сталью и нержавеющими аустенитными сплавами имеет место быть
* «Теория коррозии и коррозионностойкие конструкционные сплавы.» Томашов Н.Д., Чернова Г.П. М.: Металлургия, 1986
К сожалению, нам не известны какие-либо научные исследования коррозионной стойкости крепёжных узлов, состоящих из аустенитной «нержавейки» и «обычной» углеродистой стали.
Однако, возникновение контактной коррозии между ними подтверждается частыми обращениями в технический отдел BEST-Крепёж по этому вопросу:
Следы коррозии на тросе из стали А2.
Среда эксплуатации: атмосферные условия вблизи с морским заливом.
Причина: посторонняя ржавчина.
Имеют место образования ржавчины на поверхности троса из стали А2 вследствие коррозии микрочастиц углеродистой оцинкованной стали, попадающих на трос при перемещении по нему стальных карабинов.
Рекомендации.
Воспользоваться средством для полировки нержавеющих сталей для удаления уже образовавшейся ржавчины с поверхности троса.
Для этих целей можно воспользоваться раствором окисляющих кислот, в частности 20% HNO
Следы коррозии на головках болтов из стали А2.
Среда эксплуатации: атмосферные условия вблизи с морским заливом.
Причина: посторонняя ржавчина.
Следы коррозии находятся в верхнем левом углу каждой грани головки болта — это место контакта биты монтажного инструмента с головкой болта. Как известно, такие биты массово производят из обычной углеродистой стали.
В таком случае можно сделать вывод, что показанная на фото ржавчина на нержавеющем крепеже, не что иное, как коррозия микрочастиц углеродистой стали от монтажного инструмента.
Рекомендации.
Воспользоваться средством для полировки нержавеющих сталей для удаления уже образовавшейся ржавчины с поверхности головки болта.
Для этих целей можно воспользоваться раствором окисляющих кислот, в частности 20% HNO3.
Следы коррозии на гайках из стали А4.
Среда эксплуатации: атмосферные условия вблизи с морским заливом.
Причина: посторонняя ржавчина.
Как и в предыдущем примере – не что иное, как коррозия микрочастиц углеродистой стали от монтажного инструмента.
Рекомендации.
Воспользоваться средством для полировки нержавеющих сталей для удаления уже образовавшейся ржавчины с поверхности гаек.
Для этих целей можно воспользоваться раствором окисляющих кислот, в частности 20% HNO3.
Во всех перечисленных примерах микрочастицы углеродистой стали быстро корродируют из-за своего малого объема.
Как результат на поверхности нержавеющих метизов проявляются хорошо всем знакомые «рыжие пятна» ржавчины.
Стоит обратить внимание, что при кажущейся простоте решения проблемы – «обработал раствором и готово», остаются риски усугубления проблемы.
Если своевременно не удалить постороннюю ржавчину с поверхности коррозионно-стойкой стали, возникает риск возникновения точечной коррозии самого метиза
Поэтому ГОСТ 9.005–72 исключает контакт между метизами из хромоникелевых аустенитных сплавов и углеродистыми сталями как в атмосферных условиях, так и в морской среде.
В этом вопросе инженеры технического отдела BEST-Крепёж присоединяются к требованиям ГОСТ-а, пусть даже от 1972 года, с учётом накопленного нами опыта.
Контакт — нержавеющая сталь — Большая Энциклопедия Нефти и Газа, статья, страница 1
Контакт — нержавеющая сталь
Cтраница 1
Контакт нержавеющих сталей с углеродистой в атмосферных условиях может оказаться опасным, так как разность потенциалов между нержавеющей сталью и железом значительна, а анодная поляризация железа в пленках электролита, возникающих на металлах при атмосферной коррозии, мала.
Контакт нержавеющих сталей с железом является в любой атмосфере нежелательным, поскольку разность потенциалов между нержавеющей сталью и железом значительна, а анодная поляризация железа в пленках электролитов, возникающих на металлах в промышленной и морской атмосферах, мала. Нержавеющая сталь в качестве катода работает относительно эффективно, особенно в промышленном районе, в воздухе которого имеется высокая концентрация сернистого газа, являющегося, как было показано в работе [15], сильным катодным деполяризатором. Контактирование между собой любых видов низколегированных и углеродистых сталей допустимо. [2]
Контакт нержавеющих сталей с углеродистой сталью в атмосферных условиях может оказаться опасным, так как разность потенциалов между нержавеющей сталью и железом значительна, а анодная поляризация железа в пленках электролитов, возникающих на металлах в промышленной или морской атмосферах, мала.
Контакт нержавеющей стали 1Х18Н9 с платиной, поверхность которой в 5 раз больше поверхности стали, позволяет расширить область пассивности в серной кислоте. Штерн и Виссенберг [14] показали, что для защиты титана в растворе 5 % — ной h3S04 — f — 5 % — ного Na2S04 необходима в 4 раза большая площадь платины. При меньшей площади протектора скорость коррозии сильно возрастает. [4]
Контакт нержавеющих сталей с железом является в любой атмосфере нежелательным, поскольку разность потенциалов между нержавеющей сталью и железом значительна, а анодная поляризация железа в пленках электролитов, возникающих на металлах в промышленной и морской атмосферах, мала. Нержавеющая сталь в качестве катода работает относительно эффективно, особенно в промышленном районе, в воздухе которого имеется высокая концентрация сернистого газа, являющегося, как было показано в работе [15], сильным катодным деполяризатором.
Контакт нержавеющих сталей с такими электроотрицательными металлами, как сталь, алюминий, цинк, полностью защищает нержавеющую сталь от коррозии. Однако при этом необходимо иметь в виду, что коррозия более отрицательных металлов будет усиливаться. В общем случае следует помнить, что чем больше поверхность катодного контакта, тем сильнее в морской воде подвергается коррозии более отрицательный металл. [6]
При контакте нержавеющей стали, хромированных, а также никелированных деталей с дуралюмином целесообразно с целью усиления защиты после оксидирования нанести на сплав плотный слой пассивирующей грунтовки горячей сушки, например, ФЛ-086 или ФЛ-ОЗ-Ж. [7]
В концентрированных растворах азотной кислоты контакт нержавеющей стали с алюминием приводит к электрохимической защите стали. [9]
Гатфилд и Мэин сообщают, что контакт нержавеющей стали с обыкновенной сталью в мо. Контакт с чугуном также защищает нержавеющую сталь. [10]
Наряду с другими факторами, вызывающими и интенсифицирующими различные виды коррозии ( существование пар дифференциальной аэрации, производственные дефекты металла, наличие зазоров и щелей в негерметичных механических соединениях, влияние микроорганизмов, биологическое обрастание организмами растительного и животного происхождения) контакт нержавеющей стали и металлов с различными потенциалами может вызывать локальные формы коррозии оборудования из нержавеющей стали, например питтинговую или подповерхностную. [12]
В некоторых случаях металлы, которые в обычных условиях находятся в пассивном состоянии, например нержавеющая сталь или титан, при их контакте с более электроотрицательным металлом, например алюминием, могут подвергаться сильной коррозии вследствие катодной поляризации. В концентрированных растворах азотной кислоты контакт нержавеющей стали е алюминием приводит к электрохимической защите стали. [13]
Скорость развития МКК зависит от потенциала металла. Первая область соответствует потенциалам, возникающим при контакте нержавеющих сталей со слабоокислительными средами, вторая — с сильноокислительными. Механизмы развития МКК в указанных областях могут принципиально различаться. [14]
Усиленная коррозия нержавеющих сталей под влиянием контакта с менее благородным металлом зависит от состава электролита. По данным Фонтана с сотрудниками [69], тот же контакт нержавеющих сталей с алюминием, который вызывает усиленную коррозию нержавеющих сталей в разбавленных растворах азотной кислоты, приводил в концентрированных растворах к электрохимической защите нержавеющих сталей. [15]
Страницы: 1 2
Физические свойства нержавеющих сталей и совместимость с другими материалами
Совместимость с другими материалами
В практическом применении часто возникает необходимость комбинировать нержавеющую сталь с различными металлическими материалами в одном узле. В случае с токопроводящим соединением этих материалов друг с другом в условиях токопроводящей среды появляются коррозионные реакции, которые могут вызвать повреждения вследствие контактной коррозии.
Согласно DIN 50 900 часть 1 — „контактная коррозия является ускоренной коррозией металлической области, которая вызвана коррозионным элементом, состоящим из пары металл/металл или металл/проводящее электроны твердое тело. При этом ускоренно коррозирующая металлическая область является анодом коррозионного элемента“. Появляющееся при контактной коррозии явление коррозии является равномерным или неравномерным поверхностным удалением слоя. Поверхностное удаление слоя или потеря массы „неблагородного“ партнера в этой комбинации зависит от размера текучего тока элементов („потенциальный дифференциальный ток“) и степени собственной коррозии в устанавливающемся смешанном потенциале металлической комбинации. Ток элементов является комплексной величиной, которая зависит от геометрического расположения, размера вступающих в контакт со средой поверхностей электродов, потенциалов покоя и поляризационных сопротивлений партнеров, а также от сопротивления электролита среды.
Для оценки коррозионной опасности неблагородного партнера в комбинации материалов важной является не значение разности потенциалов (различие напряжения) между соединенными вместе материалами, а характеристика кривой потенциала парциальной плотности тока обоих материалов в корродированной среде. Коррозионная плотность тока (ток элементов) и, таким образом, воздействие контактной коррозии может при одинаковой разности потенциалов изменяться на несколько порядков в зависимости от характеристики анодной и катодной кривой потенциала парциальной плотности тока. Решающим является то, могут ли анодные или катодные парциальные реакции происходить без препятствий или с препятствиями, например, вследствие образования покровных слоев. Если при хорошей проводимости коррозионной среды имеются неблагоприятные относительные площади (большой катод/маленький анод), то контактная коррозия может вызвать коррозионные повреждения.
Поэтому использование теоретического ряда напряжений, но также и практического ряда напряжений, не подходит на практике для оценки риска для материалов при токопроводящем контакте. Для точной оценки опасности комбинации материалов необходимы исследования коррозии согласно DIN 50 919.
Физические свойства
Физические свойства некоторых выбранных сортов стали указаны для сравнения в следующей таблице. Следует учесть более высокое тепловое расширение и более низкую теплопроводимость аустенитной стали. Её электрическое сопротивление из-за содержания легирующих компонентов выше, чем в нелегированной стали.
Важным признаком различия между ферритной/мартензитной хромовой сталью и хромоникелевой сталью является магнитная восприимчивость. В отличие от намагничивающейся хромовой стали аустенитная сталь проявляет значительные свойства ненамагничиваемости в состоянии диффузионного отжига.
Холодная обработка под давлением может вызвать в аустенитной стали изменение структуры, так что после этого появляется ограниченная намагничиваемость. Содержание никеля значительно влияет на намагничиваемость аустенитной нержавеющей стали, так что при повышении содержания никеля можно значительно избегнуть склонности к намагничиванию также в состоянии холодной обработки давлением.
Ориентировочные значения натяжных моментов и сил предварительной натяжки для шурупов из стойкой к ржавлению и кислотам стали — A2/A4
Коррозия нержавеющей стали
Антикоррозионная стойкость
Принципиальной предпосылкой для достижения оптимальной антикоррозионной стойкости является металлически абсолютно чистая поверхность. Нержавеющая сталь характеризуется особой стойкостью к активным химическим, водяным средам. Они имеют в общем массовую долю элемента хрома (Cr) минимум 12% и массовую долю элемента углерода (C) максимум 1,2%.
Высокая антикоррозионная стойкость нержавеющей стали основывается на её способности образовывать на поверхности так называемый пассивный слой. При этом речь идет о слое из окиси или гидроокиси метала толщиной лишь несколько ангстремов, который отделяет металл от воздействующей среды. Пассивный слой нержавеющей стали не является чем-то постоянным, а со временем уравновешивается по своему составу и структуре с окружающей средой. После механического повреждения поверхности металла происходит образование нового пассивного слоя в общем самостоятельно.
Если в среде не может образоваться достаточный пассивный слой или существующий пассивный слой химически пробивается или полностью разрушается, могут появлиться повреждения от коррозии.
Решающим для способности образования пассивного слоя легирующим элементом является хром.
Благодаря повышению содержания хрома, а также молибдена (Mo) и также благодаря другим легирующим элементам повышается стойкость к значительно более агрессивным условиям применения.
Эффективным для пассивирования является только растворимое в металле содержание легирующих элементов. Поэтому максимальная антикоррозионная стойкость имеет свободную от сегрегации матрицу, которая обедняется не только осадками или образованием неметаллических фаз, например, хрома или молибдена.
Нержавеющая сталь может иметь снимающую слой металла коррозию поверхности и разные формы местной коррозии. Снимающая слой металла коррозия появляется в первую очередь при контакте с кислотами и сильной щелочью. Но для практики более важными являются преимущественно различные формы местной коррозии.
Межкристаллитная коррозия
Межкристаллитная коррозия является воздействием вдоль так называемых границ ядра, в то время, как сами зерна почти не разрушаются или чуть разрушаются.
Воздействие на границы зерен может доходить до того, что отдельные зерна будут выделяться из структеры зерен, вследствие чего структура потеряет свое сцепление. Причиной межкристаллитной коррозии в нержавеющей стали являются осадки богатых на хром карбидов на границах зерен, которые вызывают обеднение хрома в приграничных зонах. Образованные таким образом бедные на хром зоны не имеют антикоррозионной стойкости к большинству воздействующих средств и поэтому могут быстро растворяться.
Предпосылкой осадков карбидов хрома является определенное содержание углерода и они происходят в диапазоне температур между прибл. 500° C и 800° C, например, при тепловой обработке или сварных процессах.
Чтобы не допустить осадков карбидов хрома, можно понизить содержание углерода в нержавеющей стали до ниже 0,03% или привязать имеющийся углерод с помощью так называемых стабилизирующих элементов, например, титана (Ti) или ниобия (Nb), которые имеют большее химическое сродство с углеродом, чем хром.
Если появились осадки карбидов хрома, то их можно снова растворить при температурах диффузионного отжига выше 1050° C. В нестабилизированной ферритной стали существующая склонность к межкристаллитной коррозии может быть устранена с помощью отжига при 800° C — 885° C. При этом благодаря дополнительной диффузии хрома из зерна устраняется обеднение хрома в граничащих к зерну зонах.
Сквозная и щелевая коррозия
Сквозная и щелевая коррозия вызывается на практике в большинстве случаев ионами хрома. Наряду с этим причиной могут быть появляющиеся реже галогениды бромид и йодиди.
Сквозная коррозия вызывается взаимодействием между ионами галогенида и пассивного слоя, при чем пробивается локально. Создаются ситовидные углубления и вследствие их расширения места сквозной коррозии, которые могут иметь различную форму. Опасность сквозной коррозии повышается при повышении концентрации ионов галогенидов, повышении температуры и увеличении электрохимического потенциала стали.
Щелевая коррозия появляется в щелях, в которых ограничен обмен жидкостью с окружающей средой. Такие щели зависят от конструкции и эксплуатации и находятся, например, на фланцах, в местах завальцовки труб, под прокладками, головками шурупов или также под коркой.
Этот механизм коррозии соответствует по существу механизму сквозной коррозии. В качестве дополнительных факторов влияния выступают также геометрия щели и вид щелеобразующих материалов. Поскольку щелевая коррозия появляется уже при значительно более слабой коррозионной нагрузке, чем сквозная коррозия, путем конструктивных мер следует максимально не допускать появления щелей в содержащих хлорид средах.
При гомогенном распределении легирующих элементов относительная стойкость к сквозной и щелевой коррозии нержавеющей стали может быть определена активной суммой „W“ W = % Cr + 3,3 x % Mo + 30 x % N oder W = % CR + 3,3 x % Mo.
Влияние легирующего элемента азот выражено более комплексно, чем это соотношение. Выраженная в сомножителе 30 высокая эффективность может проявляться полностью только в высоколегированной стали с повышенным содержанием молибдена. Неметаллические загрязнения, прежде всего сульфидные осадки, способствуют сквозной и щелевой коррозии, если они выходят на поверхность.
Преимущества имеет максимально гладкая поверхность, которая затрудняет сцепление осадков, которые могут вызвать щелевую коррозию.
Высокая стойкость к сквозной и щелевой коррозии достигается только при безукоризненной характеристике поверхности, т. е. при металлически блестящей поверхности. Поэтому следует основательно удалять цвета побежалости и остатки окалин после сварочных работ, посторонней ржавчины, остатков от шлифования и т.д.
Посторонняя ржавчина
Под посторонней ржавчиной понимаем отложения частиц ржавчины, которые возникают не в соответственном месте, а переносятся откуда-то извне. Постороння ржавчина возникает преимущественно при нераздельном хранении и обработке „черной“ и „белой“ стали. Но также истирание инструмента может вызвать постороннюю ржавчину. Вследствие отложения посторонней ржавчины могут быть выполнены условия для щелевой коррозии.
Коррозионное растрескивание
Cреды со специфически действующими компонентами – особенно ионы хлоридов – могут при одновременном воздействии напряжения растяжения вызвать коррозионное воздействие при образовании трещины в нержавеющей стали, также если сталь без механической нагрузки в среде достаточно стойкая. Это явление, которое называют коррозионным растрескиванием, может быть вызвано не только привнесенными извне обусловленными эксплуатацией напряжениями растяжения.
Часто причина большей частью состоит также в собственном напряжении, которое появляется при обработке, например, при сварке, шлифовании или холодной обработке давлением.
Опасность индуцированного хлоридом коррозионного растрескивания повышается, как при сквозной и щелевой коррозии, так и при увеличении температуры и концентрации хлорида. Со стороны материала действуют, кроме этого, другие факторы. Так, например, аустенитная сталь типа 18/10 – CrNi и 18/10/2 – CrNi- Mo подвергается опасности индуцированного хлоридом коррозионного растрескивания при температурах выше прибл. 50°C. Но путем повышения содержания молибдена и особенно никеля можно значительно увеличить стойкость.
Также ферритная и ферритно – аустенитная, нержавеющая сталь сравнительно меньше чувствительна.
Коррозионное растрескивание при вибрации
Стойкость к вибрации всех видов нержавеющей стали уменьшается вследствие дополнительного химического воздействия более или менее сильно. Уменьшение стойкости к вибрации зависит от средства воздействия и многоосности появляющихся переменных нагрузок.
Контактная коррозия
Возможность контактной коррозии существует тогда, когда в коррозионной среде соединены друг с другом проводкой два металла с различным свободным коррозионным потенциалом. Металл с более низким свободным коррозионным потенциалом может быть поляризован до более высоких потенциалов и вследствие этого подвергаться усиленному воздействию.
Также при большом различии между свободными коррозионными потенциалами участвующих металлов коррозия не появляется обязательно. Это зависит от электрохимической характеристики обоих металлов.
Значение имеет также проводимость среды и характеристика участвующих металлов. Если „менее благородный“ металл занимает значительно большую поверхность, чем „более благородный“, и коррозионная среда имеет высокую проводимость, опасность коррозионного ущерба меньше. Но следует все-таки избегать контакта между „неблагородным“ металлом с небольшой поверхностью и „более длагородным“ металлом с большой поверхностью.
Нержавеющая сталь занимает в общем высокие свободные коррозионные потенциалы и поэтому не подвергается опасности усиленного воздействия со стороны контактной коррозии. Значительно более частым является случай, когда появляется контактная коррозия в других металлах с более низким свободным коррозионным потенциалом вследствие контакта с нержавеющей сталью.
Понравился материал?
Почему же ржавеет нержавейка?
Почему ржавеет нержавейка или ничто не вечно под луной
В данной статье мы частично ответим на вопрос почему ржавеет нержавеющая сталь, но отвечать на этот вопрос будем не с технической точки зрения, описывая такие банальные и скучные причины ржавления, как появление общей, межкристаллитной, точечной, либо щелевой коррозии. Нет. Сегодня мы разберем причины ржавления нержавейки чисто по причине присутствия человеческого фактора. И не только его.
Одной из причин ржавления нержавейки по причине человеческого фактора может служить следующая ситуация. На предприятии по производству бассейнов появляется заказ на оснащение переливным бассейном небольшого фитнес-центра. А заказ этот появляется благодаря выигранному предприятием тендеру. В результате жесткой конкуренции пришлось значительно снизить стоимость изготовления бассейна. Предприятие пошло на снижение по причине выставленного счета на нержавеющую сталь AISI 316, из которого делаются бассейны, от одного из поставщиков, предложившего самую низкую цену на нержавеющие листы. Все документы и спецификации подписаны. Металл уже получен. Правда при приемке на складе заметили, что на листах нет маркировки. Зато сертификат поставщик к документам приложил, и даже дал небольшую отсрочку платежа. Через некоторое время предприятие изготовило у себя на производстве заказ, произвели монтаж бассейна и оборудования водоподготовки и даже предоставили заказчику программное обеспечение для контроля за насосами и фильтрами бассейна из нержавейки. Подписали акты-приемки. Отметили выполнение заказа и благополучно забыли. Ибо появились и другие заказы.
бассейн из нержавейки
А через полгода к предприятию-изготовителю обратился представитель заказчика с претензией появления точек темно-рыжего цвета в различных местах бассейна. После проведения осмотра чаши бассейна было выявлено, что точки ржавчины образовались в следствии воздействия реагентов, которыми обеззараживают воду. Но ведь в производстве использовалась кислотостойкая нержавейка AISI 316! Как такое могло произойти? После долгих разбирательств и поисков возможных причин случившегося на складе нашли небольшие куски закупленных когда-то листов и отдали кусок на хим. анализ. Выяснилось, что сталь, из которой сделали бассейн, и рядом не стояла по химическому составу со сталью AISI 316.
Что же в действительности произошло? Вы, конечно, можете сказать: не гонялся бы ты, поп, за дешевизной. Но не всегда низкая цена может означать, что вас хотят обмануть. Тут, к примеру, может сыграть тот факт, что у поставщика лежит металл, который он закупил по очень хорошей цене у завода-изготовителя. Но в данном случае произошло нечто другое. На производстве при приемке нержавеющих листов не придали особого значения отсутствию маркировки на поверхности листов, а как известно, именно по маркировке на листе нержавейки можно соотнести данные в сертификате, при проверке на подлинность. А металлоторговец, предоставивший низкую цену, сам у кого-то перекупил эти листы и просто предоставил сертификат от другой партии. Вот и результат.На будущее: в случае предъявления высоких требований к изделиям из нержавеющей стали проверяйте наличие маркировки на листовой нержавейке и приобретайте товар у проверенных поставщиков.
Почему ржавеет нержавейка? Непредвиденная ситуация.
Может ещё случиться и такая ситуация. Допустим, вы купили нержавеющую металлопродукцию, не важно что — нержавеющий лист или профильную нержавеющую трубу, к примеру, марок стали AISI 430 или AISI 201, и решили использовать её в своем производстве по прямому назначению, скажем так, без фанатизма. И купили, можно сказать, прям с корабля, с которого контейнер с нержавейкой только поступил на склад продавца. Купили и забыли. Лежит он у вас на складе и ждёт своего часа. В один прекрасный день у рабочих на производстве руки доходят до купленной вами нержавейки, а она ржавая. Они смотрят на неё и глаза у них становятся такими 0_о. Звонят вам и у вас становится такое же выражение лица. Как так? – думаете вы. Вот же — на руках – свежёхонький сертификат на металлопродукцию. Вы так долго ждали поставки этой нержавейки! Ахи да охи, ругань с поставщиком. Срыв сроков выпуска продукции. Всё тлен.
стихийные бедствия могут попортить нержавейку при транспортировке
А что, собственно, случилось-то? Да, обычное чрезвычайное происшествие в процессе транспортировки морем контейнеров с нержавейкой на контейнеровозе. Судно попало в шторм. Залило водой. Морской водой. И хотя контейнеры для транспортировки делают не из нержавейки, а из кортеновской стали, устойчивой к атмосферной коррозии, морская соленая вода все-равно просачивается во внутрь контейнера, и вода с тридцатью пятью промилле (‰), являющимися показателем средней солености Мирового океана, таки вступает в контакт с нержавейкой, а результат взаимодействия соленой морской воды со сталью вы уже видели у себя складе. Так что ещё одним вариантом ответа на вопрос почему ржавеет нержавейка служит вышеописанная ситуация. И, как вы поняли уже, нержавеющая сталь AISI 201, а уж тем более AISI 430 не предназначены для работы в морской воде.
Почему ржавеет нержавейка? Простая невнимательность
небольшая очередь на загрузку на нашем складе с нержавейкой
Рассмотрим ещё пример. Заслали вы бойца на машине за металлом для нужд производства вашего к металлоторговцу. Да не за простым металлом, а за разномарочным. За черным и за нержавеющим. Хотя нержавейка и так относится к черному металлу, но сейчас не об этом. Итак, боец на базе. Его грузят. Листовым прокатом его грузят. И складывают всё друг на друга. Черный лист на лист нержавеющий. Без каких-либо прокладок между листами. И в процессе погрузки черный лист немного царапнул по нержавеющему. А ещё и моросит на улице слегка. В общем, созданы все условия для того, чтобы нержавейка начала ржаветь.
А всё почему? Потому что повреждён защитный слой оксидной пленки и происходит вытяжка железа на поверхность нержавеющего листа, которое и будет корродировать. Ибо вспомнив таблицу из ГОСТа 9.005 72-ого года рождения выпуска, в которой указана допустимость контактов различных металлов друг с другом, можно увидеть, что нержавеющие хромоникелевые и хромистые стали ну никоим образом не должны контактировать с низколегированной и углеродистой, то есть черной, сталью. От слова совсем. Разве что некоторым хромистым сталям ограничено допустимы контакты в атмосферных условиях и то при условии азотированного, оксидированного или фосфатированного покрытия низколегированной и углеродистой стали. Вот вам ещё один ответ на вопрос почему ржавеет нержавейка.
Почему ржавеет нержавейка? На заметку.
В данном примере нам не удастся ответить на вопрос почему же ржавеет нержавейка, так как мы просто рассмотрим вариант неправильного использования конкретной марки стали в определенных условиях. Предположим, ваш внук, являющийся большим поклонником Юрия Гагарина и главы компании Tesla и Space X, подходит к вам и говорит: — Деда, а давай сделаем ракету? Чем мы хуже американцев? – и действительно, чем? И вы, будучи увлеченным по молодости ракетостроением, решили с внуком на летних каникулах запустить на заднем дворе на вашей даче небольшую ракету. Не Р-7, конечно, а поменьше. Посмотрев старые записи, а также видео таких-же энтузиастов на ютубе, вы приступаете к работе в вашем гараже. Благо у вас сохранилось небольшое количество топлива на основе пары жидкий кислород и керосин, а неподалеку есть металлобаза.
И вот, после нескольких недель конструирования ваше чудо готово к запуску. Алюминиевый корпус полутораметровой ракеты и двигатель, у которого баки сварены из нержавеющих листов AISI 304, красуется на заднем дворе, а вы уже созвали всех соседей, внук успел сделать несколько селфи с гостями и скоро начнется обратный отсчёт до запуска. Чистое небо и приподнятое настроение способствует скорейшему запуску. Камеры телефонов наведены на вашу ракету, внук отсчитывает заветные «три, два, один! Поехали!» Производится поджиг топлива и запуск произведен! Из сопла раздается шум, химическая реакция окисления с последующим выделением тепла идёт полным ходом. Металлические хомуты, приваренные к профильным трубам, являющиеся подобием ферм-опор, отводятся от корпуса ракеты и обтекаемая конструкция несется ввысь. В считанные секунды ракета со свистом взлетает под восторженные возгласы смотрящих, оставляя за собой небольшое количество дыма. Оптика камер телефонов пытается отследить быстро удаляющийся объект в небе. Проходит секунд десять, как вдруг небольшая вспышка в небе даёт вам понять, что до стратосферы вашей ракете не дотянуть. Удивленные вскрики гостей и протяжное «Н-е-е-е-т!» вашего внука, переносящего свой взор на вас, зарождает в последующей молчаливой паузе немой вопрос — Как тебе такое, Илон Маск? Что же могло произойти?
Есть подозрения, что произошёл взрыв в отсеке с жидким топливом. А произошёл он потому, что нержавеющая сталь AISI 304 не выдерживает такие температуры, при которых горело керосинное топливо с кислородом. В ГОСТе 5632-72, где отечественным аналогом импортной стали является нержавеющая сталь 08Х18Н10 указано, что рекомендуемая максимальная температура применения 800 °С. Горение же топлива происходило при температурах, дважды превышающих этот показатель. К слову сказать, сам двигатель нужно было лучше сделать из меди, ведь благодаря её намного высокой, чем у нержавейки, теплопроводности, ракета бы пролетела значительно выше из-за того, что стенки баков в двигателе прогорели-бы позже. Так что на будущее имейте в виду, что лучше использовать нержавеющую сталь согласно её специфики применения, нежели омрачить воспоминания внука о лете, проведенном у дедушки на даче.
А если говорить серьезно, то вы можете просто обратиться к нам в компанию СтенлисПро, и мы избавим вас от хлопот выбора той или иной марки нержавеющей стали для ваших нужд. Звоните — (812) 320-14-01
Смотрите также:
Оформление заказа
Для осуществления заказа вам достаточно позвонить по телефону 8 (800) 333-06-56 (Бесплатный звонок по РФ).
Склад с нержавеющей продукцией находится в СПб на Парнасе, Энгельса пр-кт, 163. Вся продукция сертифицирована.
Контактная коррозия нержавеющей стали — Энциклопедия по машиностроению XXL
Так как пассивное состояние нержавеющей стали в морской воде не очень устойчиво и, в частности, может нарушаться от катодной поляризации, то поведение нержавеющей стали в контакте с медью сильно зависит, помимо интенсивности аэрации, также от соотношений площадей контактируемых металлов. В общем, сочетание нержавеющая сталь — медь является неблагоприятным. Например, контакт большой площади меди или медного сплава с относительно малой площадью нержавеющей стали в морской воде опасен для нержавеющей стали. В этом случае сталь вследствие наличия в морской воде значительного количества хлор-ионов может активироваться и становиться анодной по отношению к меди с последующим сильным контактным ускорением коррозии нержавеющей стали. Наоборот, контакт с нержавеющей сталью малых деталей из меди и медных сплавов опаснее для медных сплавов в этом случае более вероятным делается устойчивое катодное состояние стали по отношению к меди и возможно значительное ускорение коррозии меди за счет контактного действия со сталью. Поэтому недопустимо применение медной арми-ровки на обшивке из нержавеющей стали. [c.416]В электролитах, в которы.ч коррозия протекает с кислородной деполяризацией, например в морской воде, предельный диффузионный ток увеличивается при перемешивании, вследствие чего увеличивается и сила тока контактной пары. Такое явление наблюдается для пар Fe — Си, Fe — нержавеющая сталь и др. Ниже приведены данные, показывающие влияние скорости движения морской воды на скорость контактной коррозии (в числителе скорость движения воды 0,15 м/с, в знаменателе — 2,4 м/с). [c.201]
При контактной коррозии важную роль играют вторичные явления, выражающиеся в изменении потенциалов контактных пар. Так, при контакте железа с нержавеющими сталями происходит разрушение железа как анода, но вместе с тем по мере накопления продуктов коррозии на нержавеющей стали доступ кислорода затрудняется и последняя подвергается разрушению при этом определенное значение имеет и щелевой эффект [7]. На интенсивность контактной коррозии влияет соотношение площадей катода и анода, которое определяет поляризуемость каждого электрода [80—81]. [c.82]
Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних. [c.84]
Контактная коррозия наблюдается при контакте алюминия с более благородными металлами в электролитах. В этом виде коррозии существенную роль играют состояние поверхности контактируемых металлов, площадь контакта, аэрация и степень деформации. Значительная контактная коррозия наблюдается при контакте алюминия с медью, ее сплавами и сталью известны случаи контактной коррозии алюминия с алюминиевыми сплавами. Скорость коррозии алюминия при контакте с нержавеющей сталью значительно повышается в водных растворах хлорида натрия и в меньшей степени в спиртовых растворах. [c.124]
Алюминий и его сплавы чувствительны к контактной коррозии. В обычной атмосфере усиливает коррозию контакт с медью и медными сплавами, с никелем и его сплавами, с серебром. Допустим контакт со сталями, кадмием, цинком, хромом, титаном, магнием. В морской и пресной воде не допустим контакт с медью и ее сплавами, с титаном, с нержавеющими сталями, с никелем, оловом, свинцом, серебром. Допустим контакт с цинком и кадмием. [c.75]
ВЛИЯНИЮ контакта с титаном на скорость коррозии ряда металлов и сплавов при равной площади поверхности контактирующих образцов. Количественно оценивая данные, можно отметить, что электрохимическое поведение титана при контакте в морской воде с другими металлами аналогично поведению нержавеющей стали типа 18-8. Это позволяет сделать вывод о возможности замены нержавеющей стали титаном в условиях контактирования с другими металлами без опасности существенного усиления кон тактной коррозии. При оценке контактной коррозии с титаном как и с другими электроположительными металлами, следует учи тывать соотношение площадей контактирующих металлов и уда ленность от места контакта. Так, по данным Коттона, в воде в кон такте с титаном при соотношении площадей 10 1 (титан—катод другой металл — анод) сильно корродировали углеродистая сталь алюминий, пушечная бронза умеренной коррозии подвергались алюминиевая латунь, сплавы медь-никель, с незначительной ско ростью корродировала нержавеющая сталь типа 18-8. При обрат ном соотношении площадей (Т1 Me = 1 10) единственным ме таллом, который подвергался коррозии, была углеродистая сталь Эффект контактной коррозии при этом соотношении площадей был в 12 раз меньше, чем при соотношении площадей 10 1. [c.37]
Скорость разрушения анода должна, естественно, зависеть от разности потенциалов. Однако многие ошибочно полагают, что это единственный критерий, определяющий величину контактной коррозии. На самом деле можно при одной и той же разности потенциалов наблюдать различную контактную коррозию. Так, например, Эванс [9], рассматривая коррозию алюминия в контакте с медью и нержавеющими сталями, указывает на то, что, несмотря на практически одинаковую разность потенциалов, алюминий в контакте с медью подвергается сильной коррозии, а в контакте с нержавеющей сталью корродирует гораздо сла- [c.19]Другим примером может служить поведение пары железо — алюминий. До сих пор вопрос о допустимости контакта железа с алюминием не нашёл однозначного решения. Некоторые авторы считают его допустимым, другие недопустимым. Несмотря на значительную разность потенциалов, имеются указания об успешном использовании этих контактов в атмосферных условиях. Вместе с тем в морских атмосферах и на кораблях наблюдается часто усиленная коррозия алюминиевых конструкций, находящихся в контакте с железом. Вопрос, как справедливо отмечает Эванс, довольно сложный и он не может быть просто решен на основе одной разности потенциалов. Хотя установленный много лет тому назад критерий допустимой разности потенциалов в четверть вольта и оказался полезным, чтобы избежать явно недопустимых контактов, в настоящее время с его помощью нельзя получить удовлетворительного решения вопроса. К тому же при контактной коррозии приходится учитывать и вторичные явления, изменяющие поведение контактных пар. Так, например, при контакте железа с нержавеющими сталями или алюминием наблюдается часто усиленная коррозия обоих металлов. Полагают, что железо в контакте с нержавеющими сталями вначале работает в качестве анода. По мере накопления продуктов коррозии последние затрудняют доступ кислорода к нержавеющим сталям, который нужен для поддержания их в пассивном состоянии, и они начинают также корродировать. [c.20]
Алюминий — нержавеющие стали. В нормальных атмосферах и в пресных водах, по данным работы [52], алюминий можно безопасно эксплуатировать в контакте с нержавеющими сталями. Однако в сильно агрессивных морских атмосферах нержавеющие стали склонны усиливать коррозию алюминиевых сплавов и подобные контакты должны быть защищены. В морской воде контактная коррозия проявляется особенно сильно, когда соотношение поверхностей является неблагоприятным (большая поверхность нержавеющей стали контактирует с малой поверхностью алюминиевого сплава). [c.135]
Учитывая заметную разность потенциалов между различными сплавами, применяющимися в авиации, Симпсон [5] подчеркивает, что высокопрочный алюминиевый сплав, являющийся основным конструкционным материалом в авиации, должен быть особенно тщательно изолирован от магниевых сплавов, марганцовистых бронз, нержавеющих и малоуглеродистых сталей. Контакт алюминиевого сплава с нержавеющей сталью в эксплуатации не так уж опасен, как этого можно было ожидать, исходя из разности потенциалов. Это объясняется способностью алюминиевого сплава к сильной анодной поляризации. Однако этот эффект проявляется лишь в средах, не содержащих галоидных ионов. В их же присутствии контактная коррозия не подавляется и алюминиевый сплав подвергается коррозии. В этих условиях следует позаботиться о защите контакта. [c.138]
Особую заботу о контактной коррозии надо проявлять в тех случаях, когда конструкция содержит детали из магниевых сплавов. Обладая наиболее отрицательным потенциалом среди применяемых в технике материалов, магниевые сплавы в сочленениях являются, как правило, анодами и подвергаются разрушению. По данным работы [55], наблюдалась сильная коррозия магниевых сплавов в туманных камерах при контактировании их с углеродистыми и нержавеющими сталями, а также с оцинкованным железом и бронзой. [c.138]
Плакированный дюралюминий оказался менее чувствительным к контактной коррозии (см. нижнюю диаграмму рис. 53). В этом случае даже контакт с такими благородными металлами, как медь, латунь и нержавеющая сталь типа 18-8, не приводил за 30 суток к существенным изменениям механических свойств. Снижение этих свойств у плакированного дюралюминия, находившегося в контакте с перечисленными выше ме- [c.169]
В аппарат, изготовленный из алюминиевого сплава типа 5052, были вмонтированы змеевики из нержавеющей стали, предназначенные для подогрева электролита — нитрата аммония. Трубки для подогрева располагались параллельно дну на расстоянии примерно 300 мм. Средняя температура раствора поддерживалась на уровне 95° С. Довольно быстро были отмечены локальные разрущения алюминиевого сплава в местах, расположенных близко к сварным швам и на участках дна аппарата, подвергшихся механическим напряжениям. Сквозные разрушения наступили уже после четырех недель эксплуатации аппарата. Хотя наблюдалась и коррозия под напряжением, было сделано заключение, что процесс был ускорен, а возможно и инициирован контактной коррозией. После ремонта змеевики из нержавеющей стали были полностью изолированы от алюминиевого аппарата. При осмотре аппарата через несколько месяцев никакой коррозии обнаружено не было. [c.184]
Поверхностные пленки снижают эффективность электрода. Обнаженный металл является значительно лучшим катодом, чем покрытый окислом последний не только может,препятствовать выделению водорода, но и создает дополнительное сопротивление в электрохимическом контуре. Поэтому определенную важность имеет стабильность окисла в растворе. Разность потенциалов, возникающая между алюминием и нержавеющей сталью, примерно такая же, как между алюминием и медью. В первом случае катодная нержавеющая сталь покрыта имеющей низкую проводимость оКисной пленкой с высокими защитными свойствами. Поэтому контактный ток между этими двумя металлами сравнительно мал. Во втором случае, однако, окисел на катодной меди легко восстанавливается (как это описано в разд. 1.8 применительно к электрометрическому восстановлению) и восстановление кислорода происходит с высокой скоростью на элективной обнаженной поверхности металла. В этих двух случаях процесс идет с катодным контролем, т. е. эффективность катода определяет скорость коррозии, и это — обычная ситуация. [c.104]
Здравый смысл требует при возможно полном использовании знаний в области коррозии сочетать их с чувством перспективы. Здесь имеются свои подводные камни. Следует избегать при проектировании застойных зон и щелей, в которых недостаток кислорода может вызвать возникновение весьма активно корродирующих участков. В местах, где может собираться вода, следует предусматривать дрена ые отверстия. Необходимо избегать контактов различных металлов. В воде, содержащей растворенный кислород, стальные листы, соединенные медными заклепками, будут работоспособными, однако медные листы на стальных заклепках быстро развалятся, так как в последнем случае образуются очень большие эффективные катоды. При сопряжении двух нержавеющих сталей различного состава с существенно различными потенциалами могут возникнуть контактные коррозионные токи заметной величины. Для одних нержавеющих сталей возможно пассивное, а для других — активное состояние в одной и той же среде. [c.165]
Скорость движения морской воды увеличивает коррозию малоуглеродистой стали и алюминия, находящихся в контакте с другими металлами. При небольших скоростях движения воды (0,15 м/с) в паре со всеми металлами увеличение скорости коррозии стали и алюминия практически одинаковое, т. е. скорость коррозии определяется величиной диффузионного тока по кислороду. При увеличении скорости движения воды, и, следовательно, значительного возрастания предельного тока по кислороду наибольшая коррозия наблюдается при контакте с медью, никелем, монелем. В этих условиях величина тока пары будет в значительной степени определяться скоростью электрохимической реакции восстановления кислорода, которая зависит от природы металла (на нержавеющей стали и титане эта реакция затруднена), что вызывает различные скорости коррозии стали и алюминия при контактировании с различными металлами. И. Л. Розенфельдом, О. И. Вашковым [50, с. 64] было установлено количественное соответствие между скоростью вращения электрода и линейной скоростью судна, что позволяет моделировать эффект контактной коррозии для движущихся судов в лабораторных условиях. [c.81]
Например, контакт большой площади меди или медного сплава с относительно малой площадью нержавеющей стали опасен для нержавеющей стали, так как при ее активировании она может становиться анодом и подвергаться сильной контактной коррозии. Наоборот, контакт малых деталей из меди или медных сплавов с большими поверхностями пассивной нержавеющей стали, остающейся катодом пары, может значительно ускорить коррозию меди. Поэтому, недопустимо применение медной армировки на обшивке из нержавеющей стали. [c.81]
Более совершенные образцы показаны на рис. 82, в. Они часто применяются при изучении контактной коррозии разных металлов с нержавеющими сталями. При их использовании отпадает необходимость изолировать часть исследуемой поверхности краской, невелика поверхность, корродирующая без контакта, и, кроме того, обеспечивается хороший контакт между образцами. Возможное капиллярное затекание электролита в тонкий зазор считается положительным фактором. Использование таких образцов позволяет сократить время испытания по сравнению с образцами типа а и б. Недостатки образцов типа в заключаются в том, что эти образцы позволяют получить сведения о коррозии только анода, тогда как образцы в виде дисков позволяют одновременно изучать протекторное действие анодного материала. Для этого достаточно определить изменение веса катодного материала и сравнить его с изменением веса того же материала, испытанного без контакта. К недостаткам относится также то, что анодный материал может испытываться только в виде проволоки. [c.147]
Контакт с нержавеющей сталью усиливает разъедание алюминия. Контакт с медными сплавами также недопустим. В данном случае, помимо контактной коррозии, существует также опасность разрущения из-за попадания в воду ионов меди [44]. [c.326]
При коррозии в морской воде или других нейтральных средах вследствие высокой электропроводности воды дальность действия контакта велика, поэтому соотношение площадей поверхности контактирующих металлов существенно влияет на характер контактной коррозии. Например, сочетание медных образцов большой площади с относительно малой площадью образцов из нержавеющей стали в морской воде опасно для нержавеющей стали. В этом случае сталь, активируясь, может стать анодной по отношению к меди, и тогда возможно сильное ускорение коррозии нержавеющей стали. Наоборот, контакт малых деталей с большими поверхностями нержавеющей стали более опасен для медных С1Тлавов в этом случае вероятнее устойчивое катодное состояние стали по отношению к меди и возможно значительное ускорение коррозии меди за счет контакта со сталью. [c.202]
Ионы тяжелых металлов, особенно свинца, уменьшают не только общую коррозию, но и локальную. Так, есть сведения, что малые добавки ионов свинца почти полностью подавляют коррозионное растрескивание нержавеющей стали под напряжением и в условиях активного растворения в серной и азотной кислотах [214]. При эффективных концентрациях ионов свинца (10— — 10- моль/л) равновесные потенциалы свинца отрицательнее стационарного потенциала нержавеющей стали и поэтому контактное выделение с образованием фазового осадка здесь исключено и на поверхности стали возникает лишь субмономолекулярный слой свинца. Природа этого процесса еще окончательно не выяснена, но реальность процесса несомненна [209 238]. [c. 88]
По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77]. [c.73]
Из материалов, используемых в конструкции приборов, наиболее стойкими оказались высокохромистые и хромоникелевые нержавеющие сплавы, алюминий, бронза, медь и медные сплавы. Когда в конструкции и медь, и медные сплавы находились в контакте со сталью, алюминием, свинцом, эловом и его сплавами, то наблюдалась коррозия последних сплавов. В таких случаях необходимо применять специальные меры защиты от контактной коррозии, а также специальные покрытия. [c.79]
Контактная коррозия обусловлена контактом двух разнородных металлов, при котором металл с бойее отрицательным электродным потенциалом становится анодом и усиленно корродирует. Межкристаллитная коррозия проявляется при использовании нержавеющих аустенитных сталей преимущественно в растворах азотной кислоты и заключается в избирательной коррозии металла по границе зерен. Характерным признаком разру-34 [c.34]
На всех перечисленных выше образцах, за исключением заделочной арматуры из нержавеющей стали AISI 304 и стальной проволоки, видимой коррозии не было. Внутренние поверхности арматуры из нержавеющей стали марки 304 подверглись сильной щелевой коррозии. Скорость этой щелевой коррозии, по-видимому, увеличивалась за счет образованной двумя разными металлами гальванической пары, анодом которой являлась нержавеющая сталь. На одном из титановых канатов проволока из малоуглеродистой стали, использованная для обвязывания конца каната почти полностью разрушилась вследствие контактной коррозии. [c.403]
При температурах 385—445° С в полифинилах не стойки магний, цирконий и его сплавы, а также гафний [1,69], [1,70]. Цирконий в этих условиях становится очень хрупким из-за образования гидридов. Увеличение содержания воды в полифинилах приводит к значительному возрастанию скорости коррозии. Движение органического теплоносителя со скоростью 9 м/сек увеличивает лишь скорость коррозии циркония [1,70]. Коррозионное растрескивание и контактная коррозия в органических теплоносителях не наблюдаются [1,70]. Скорость коррозии углеродистых, низколегированных нержавеющих сталей и алюминиевых сплавов в полифинилах при температуре 380—445° С не превышает 0,025 мм/год. При температуре 430°С наиболее пригодны для изготовления оболочек тепловыделяющих элементов аустенитная нержавеющая сталь, алюминий типа САП, содержащий до 10% окиси алюминия, и бериллий [1,71]. В качестве основного конструкционного материала для органических теплоносителей может быть рекомендована углеродистая или низколегированная сталь. Это объясняется тем, что в высокотемпературном контуре, заполненном органическим теплоносителем, углеродистая сталь коррозии фактически не подвергается. Если принять соответствующие меры, то можно избежать и отложения продуктов полимеризации на теплопередающих поверхностях. Чтобы улучшить стойкость конструкционных материалов, органические теплоносители необходимо очищать от воды [1,72]. [c.55]
Ввиду незначительной разности температур между теплоносителем и рабочим телом (испаряемой жидкости) поверхность нагрева парогенераторов необходимо поддерживать в чистоте с тем расчетом, чтобы не допустить снижения производительности парогенератора. Это достигается, во-первых, путем строгого соблюдения режима питательной воды относительно содержания в ней продуктов коррозии и соединений, образующих накипь во-вторых, с помощью периодических чисток и промывок парогенераторов кислотой. Поэтому предупреждение коррозии металла парогенераторов при кислотных промывках — также очень важная задача Парогенераторы могут под-вер Дться еледутощим ВидД м»коррозии кислородной — как во время работы, так и при остановке агрегатов щелевой и контактной коррозионному растрескиванию змеевиков и других деталей, изготовленных из нержавеющей стали кислотной во время промывок оборудования кислотой. Одновременно следует отметить, что такие виды коррозии, как кислородная, контактная и щелевая, как в смысле условий протекания, так и способов предупреждения, достаточно подробно рассмотрены в V и VI главах этой работы. [c.339]
Контактная коррозия развивается в растворах электролитов при контакте металлов, обладающих различными электрохимическими свойствами, например, системы углеродистая сталь/нержавеющая сталь, углеродистая сталь/алюминий (или его сплавы) и др. Контактная коррозия может возникать также в случаях, если различие элек-трохимичес1сих свойств обусловлено применением пайки или сварки при изготовлении конструкции из одного и того же металла или при контакте деталей, изготовленных из металла одной и той же марки, но существенно различающегося по своим свойствам в ее пределах. Механические напряжения, приводящие к изменению электрохимических характеристик металла, также могут вызвать возникновение контактной коррозии при соединении деталей из одного и того же металла, но по-разному механически обработанных. Таким образом, плохо продуманные с точки зрения конструкционного оформления сложные металлические объекты могут досрочно выходить из строя вследствие контактной коррозии. [c.134]
Одной из распространенных форм коррозии оборудования из нержавеющей стали является контактная коррозия, протекающая при контакте деталей из нержавеющей стали с более благородными металлами или углеродом, в результате которого начинает действовать макрогальванический элемент с морской водой в качестве электролита. В этом гальваническом элементе сталь играет роль анода, т. е. она подвергается разрушению, интенсивность которого тем выше, чем больше внутренний ток элемента. [c.23]
При тщательной очистке листов из титановых сплавов и нержавеющих сталей частички стальной дроби внедряются в поверхность металла. В процессе хранения таких листов начинается сильная контактная коррозия. Титановые сплавы и нержавеющие стали начинают как бы корродировать. На самом деле под влиянием положительного контакта корродирует стальная дробь, но тем не менее это неприятно. Если же на обработанные таким образом листь/н осят защитные покрытия, то они часто в результате коррозии час/и%Хдроби начинают отслаи- [c.17]
Проблема контактной коррозии не потеряла своей актуальности и сегодня, несмотря на то что наши знания в этой области значительно расширились. В этом можно убедиться по многочисленным публикациям и, в частности, появившимся в печати сообщениям о коррозии самолетов, ракет Бомарк, Минетмен и других [3, 4]. Значительная коррозия, появившаяся в самолете, возникла вследствие контакта магниевых сплавов со стальными подшипниками. В другом случае при испытании отдельных узлов ракет была обнаружена сильная коррозия узла, ставящего ракету на боевой взвод. Коррозия появилась в месте контакта латунных лопаток, армированного корпуса и пружин из нержавеющих сталей. [c.18]
Металлы каждой последующей группы усиливают коррозию металлов предыдущей группы. Коррозия может, однако, наблюдаться и в пределах одной группы. Металлы первого ряда, как правило, подвергаются коррозии, находясь в контакте с металлами, расположенными в рядах ниже. Однако могут быть условия, в которых будет наблюдаться и обратное явление. Например, в одних условиях алюминий, находящийся в контакте с цинком, корродирует, а в других он защищается электрохимически коррозия меди может усиливаться- при контакте с никелем или нержавеющими сталями. Алюминиевые сплавы, богатые медью, в контакте с алюминием или сплавами, бедными медью, вызьь вают коррозию последних. Олово и свинец являются катодами в паре с железом. В пористых гальванических покрытиях они способствуют усилению коррозии железа. Однако ввиду наличия большой катодной поверхности и малой анодной наблюдается сильная анодная поляризация, благодаря которой катодный ток резко уменьшается. В общем можно сказать, что в пределах каждой группы металлов контактная коррозия все же невелика. [c.130]
Рис. 5S. Поведение различных контактных пар титан — металл, погруженных в аэрированную морскую воду на 2S00 ч а — контактная коррозия б — щелевая коррозия 1 — 10 — металлы, контактирующие с титаном при соотношении поверхностей анода и катода ol 10 I — 10 — то же, но при соотношении поверхностей анода и катода соЮ 1 1,1 — малоуглеродистая сталь 2,2 — орудийный металл 3,3 — алюминий (технически чистый) 4,4 — купроникель 70/80 5,5 — купроникель 80/20, 6,6 — монель 7,7 — алюминиевая латунь 76/22 S,S — AST MB 9, 9 — латунь 60/40 10, 10 — нержавеющая сталь 18-8 (стабилизированная титаном) |
Рассмотренные выше закономерности, которые были вскрыты на основе электрохимических исследований, хорошо подтверждаются непосредственными опытами по определению тока контактных пар (рис. 59). Резкое увеличение контактной коррозии, как и следовало ожидать из анализа нотенциостатической кривой, наблюдается при контакте алюминия с платиной в концентрированных растворах кислоты. Максимальный ток, возникающий при контакте алюминия с нержавеющей сталью, наблюдается примерно в 30%-ной азотной кислоте. По мере увеличения концентрации азотной кислоты ток при контакте алюминия с нержавеющей сталью падает, а не растет, как в случае платины. Объясняется это, как показывает анализ коррозионных диаграмм для этой пары (рис. 60), возрастанием анодной поляризуемости алюминия. Поскольку в данном случае потенциал алюминия не выходит за пределы потенциала активирования, то это способствует уменьшению контактного тока. [c.183]
Особенно сильной коррозии часто подвергаются сварные соединения, если не приняты меры к тому, чтобы их потенциал не оказался менее благородным, чем потенциал основного металла. Бровер наблюдал сильную коррозию сварного шва на трубках из нержавеющей стали типа 304 (18-8). Трубки многократно травили ингибированной 10%-ной соляной кислотой при температуре 70° С. Лабораторные коррозионные испытания подобных пар в ингибированной соляной кислоте показали, что коррозия в основном развивается на сварном шве (более 250 MMjeod). Скорость коррозии металла шва (сталь типа 312) в изолированном виде оказалась в 12—15 раз больше скорости коррозии малоуглеродистой стали или нержавеющей стали типа 304. Разрушение сварного шва в теплообменниках автор объясняет возникновением контактной коррозии между аустенитной и ферритной фазами сплава. Исследования стационарных потенциалов и поляризационных характеристик типичных аустенитных и ферритных нержавеющих сталей подтвердили это предположение. Было показано, что наиболее целесообразно в этом случае использовать инконель А и сварочные электроды из стали типа 310 (24—26% Сг 19—22% Ni макс. 0,25% С). Для трав- [c.185]
Контактная коррозия проявляется часто и в не столь агрессивных средах. Вентили из нержавеющей стали, выбранные из-за их хороших качеств, были установлены на алюминиевом трубопроводе, по которому подавалась слабо подкисленная вода (pH = 6). Спустя несколько недель эксплуатации алюминиевые трубы подверглись сильной питтинго-вой коррозии на участках, прилегающих к вентилям. Когда вентили из нержавеющей стали были заменены на алюминиевые, питтинговая коррозия. прекратилась. [c.186]
В условиях контактной коррозии может возникнуть щелевая коррозия, однако этот термин также включает/все сходные формы коррозии типа создаваемсй частицами пыли на гигроскопической поверхности, в узлах из соединённых заклепками пластин и т. д. Эффекты щелевой коррозии возникают также вследствие дефицита кислорода. Некоторые металлы, обладающие высокой стойкостью в присутствии кислорода, например титан, и нержавеющая сталь, могут сильно разрушаться от этого типа разъедания. Защита от него достигается рациональным конструированием, исключающим участки, в которых может собираться влага, [c.105]
Однако в некоторых случаях, как будет показано ниже, возможны и отступления от этой более общей зависимости. Например, возможно снижение скорости коррозии анода, если металл (нержавеющие стали и др.) склонен к пассивации или увеличение скорости коррозии катода, если металл (алюминий и др.) чувствителен к катодному подщелачи-ванию. Контактная коррозия может наблюдаться также и в том случае, если в конструкции, изготовленной из того же металла, есть разница в потенциалах различных ее частей. Например, в сварных конструкциях потенциал сварного шва может отличаться от потенциала основного металла. При наличии отдельных участков — либо нагартованных или напряженных, либо находящихся при различных температурах, участки с более отрицательным потенциалом могут такя е подвергаться коррозии, аналогичной контактной. Если в растворе присутствуют ионы благородных металлов, то при их местном осаждении на поверхности конструкции может также произойти коррозия подобного типа. [c.77]
Стационарные потенциалы алюминия АД-1 и стали Х18Н10Т в одних и тех же растворах перекиси водорода различаются почти на вольт (см. рис. 13—15), что даже при одинаковых размерах поверхности обоих металлов должно сместить потенциал стали в катодную сторону к значениям, при которых возможно восстановление перекиси водорода и окислов железа, а также гомогенное каталитическое разложение перекиси водорода за счет ионов железа, переходящих в раствор. В застойных местах (щелях, зазорах) может произойти значительное уменьшение содержания перекиси водорода (из-за разложения пос.тедней) и нарушение пассивности нержавеющей стали, в результате чего и появляется контактно-щелевая коррозия стали. [c.103]
Гальваническая коррозия алюминия – aluminium-guide.com
Следует подчеркнуть, что стойкость алюминия и алюминиевых сплавов к нормальным условиях окружающей среды является очень высокой. Главным источником защиты от коррозии является прочная, самовосстанавливающаяся оксидная пленка, которая всегда присутствует на алюминии в условиях окружающей воздушной атмосферы (рисунок 1).
Рисунок 1 – Естественная защита алюминия от коррозии – поверхностная оксидная пленка [4]
Основные типы коррозии алюминия
Для коррозии алюминия характерны следующие основные типы [4]:
- Общая коррозия
- Щелевая коррозия
- Фреттиниг-коррозия
- Коррозия под напряжением
- Гальваническая коррозия
- Точечная (питтинговая) коррозия
- Межзеренная коррозия
- Подповерхностная коррозия
Рисунок 2 – Общая коррозия алюминия: растворение естественной оксидной пленки
растворами сильных щелочей и некоторых кислот [4]
Рисунок 3 – Щелевая коррозия алюминия [4]
Рисунок 4 – Фреттинг-коррозия алюминия: взаимное трение двух алюминиевых компонентов
в условиях шероховатого контакта [4]
Рисунок 5 – Коррозия алюминиевых сплавов под напряжением: при некоторых условиях
в сплавах Al-Cu, Al-Mg, Al-Zn-Mg [4]
Рисунок 6 – Гальваническая коррозия алюминиевого сплава
происходит в условиях его мокрого или влажного контакта
с другим, более “благородным” металлом, таким как медь [4]
Рисунок 7 – Питтинговая (точечная) коррозия алюминия
под воздействием хлоридных ионов [4]
Рисунок 8 – Межзеренная коррозия и подповерхностная коррозия [4]
В зависимости от условий окружающей среды, нагружения и функционального назначения детали любой из видов коррозии может явиться причиной преждевременного разрушения. Кроме того, неправильное применение алюминиевых деталей и изделий может усугублять коррозионные процессы.
Гальваническая коррозия алюминия
Наиболее частые ошибки проектирования алюминиевых конструкций связаны с гальванической коррозией. Гальваническая или электрохимическая коррозия происходит, когда два разнородных металла образуют электрическую цепь, замыкаемую жидким или пленочным электролитом или коррозионной средой. В этих условиях разность потенциалов между разнородными металлами создает электрический ток, проходящий через электролит, который (ток) и приводит к коррозии в первую очередь анода или менее благородного металла из этой пары.
Сущность гальванической коррозии
Когда два различных металла находятся в прямом контакте с электропроводящей жидкостью, то опыт показывает, что один из них может корродировать, то есть подвергаться коррозии. Это называют гальванической коррозией.
Другой металл не будет корродировать, наоборот, он будет защищен от этого вида коррозии.
Этот вид коррозии отличается от тех видов коррозии, которые могли бы возникнуть, если бы оба эти металлы были помещены раздельно в ту же самую жидкость. Гальваническая коррозия может случиться с любым металлом, как только два различных металла будут находиться в контакте в электропроводящей жидкости.
Внешний вид гальванической коррозии
Внешний вид гальванической коррозии является очень характерным. Эта коррозия не раскидывается по всей поверхности изделия, как это бывает с точечной – питтинговой – коррозий. Гальваническая коррозия плотно локализована в зоне контакта алюминия с другим металлом. Коррозионное воздействие на алюминий имеет равномерный характер, он развивается в глубь в виде кратеров, которые имеют более или менее округлую форму [3[.
Все алюминиевые сплавы подвергаются идентичной гальванической коррозии [3].
Принцип батареи
Гальваническая коррозия работает как батарея, которая состоит из двух электродов:
- катода, где происходит реакция восстановления
- анода, где происходит реакция окисления.
Эти два электрода погружены в проводящую жидкость, которая называется электролитом. Электролит – это обычно разбавленный кислотный раствор, например, серной кислоты, или соляной раствор, например, сульфат меди. Эти два электрода соединены снаружи электрической цепью, которая обеспечивает циркуляцию электронов. Внутри жидкости передача электрического тока происходит путем перемещения ионов. Жидкость, таким образом, обеспечивает ионное электрическое соединение (рисунок 9).
Рисунок 9 – Принцип гальванической ячейки [3]
Рисунок 1 показывает ячейку, в которой электролитом является раствор серной кислоты. Серная кислота полностью диссоциирована в воде (поскольку является сильной кислотой) путем образования ионов Н+, которые определяют кислотность среды. Происходит следующая электрохимическая реакция [3]:
- цинковый анод окисляется:
Zn → Zn2+ + 2e−
на медном катоде восстанавливаются протоны Н+:
2Н+ + 2e− → Н2
Полная реакция имеет вид:
Zn + H2O → Zn(OH)2 + H2
Эта ячейка производит электричество за счет потребления цинка, который выделяется в виде гидроксида цинка Zn(OH)2.
Для работы ячейки необходимо одновременное выполнение трех условий:
- два различных металла, которые образуют два электрода;
- присутствие электролита;
- непрерывность всей электрической цепочки.
Если хотя бы одно из этих условий не выполняется, например, если нарушается электрический контакт, то ячейка не будет производить электричество, и окисления на аноде не будет происходить (также как и восстановления на катоде).
Условия для гальванической коррозии
Гальваническая коррозия основана на том же самом принципе и для того, чтобы она происходила необходимо одновременное выполнение следующих трех условий [3]:
- различные типы металлов;
- присутствие электролита;
- электрический контакт между двумя металлами.
Различные типы металлов
Для любых металлов, которые относятся к различным их типам, гальваническая коррозия является возможной. Металл с электроотрицательным потенциалом (или более электроотрицательный металл, если они оба электроотрицательные) действует как анод.
Тенденцию различных металлов образовывать гальванические пары и направленность электрохимического действия в различных коррозионных средах (морской воде, тропическом климате, промышленной атмосфере и т.д.) показывают в так называемых гальванических рядах. Чем далее удалены друг от друга металлы в этих рядах, тем более серьезной может быть электрохимическая коррозия. В разных коррозионных средах эти последовательности металлов могут быть разными (рисунок 10).
Присутствие электролита
Область контакта должна быть смочена водным раствором, чтобы обеспечивать ионную электропроводимость. В противном случае отсутствует возможность для гальванической коррозии.
Электрический контакт между металлами
Электрический контакт между металлами может происходить или путем прямого контакта между двумя металлами, или через крепежное соединение, например, болт.
Рисунок 10 [1]
Как видно из графиков рисунка 10 алюминий и его сплавы становятся анодами в гальванических ячейках с большинством металлов, и алюминий корродирует, как говорят, жертвенно и защищает от коррозии другой металл гальванической пары.
Только магний и цинк, включая и оцинкованную сталь, являются более анодными и поэтому, сами подвергаясь коррозии, защищают от нее алюминий.
Алюминий и кадмий вообще имеют почти одинаковые электродные потенциалы и поэтому ни алюминий, ни кадмий не подвергаются гальванической коррозии. К сожалению, кадмий признан весьма токсичным и все реже применяется, а во многих странах просто запрещен, как антикоррозионная защита.
Гальванические пары
Относительное расположение двух металлов или сплавов в гальваническом ряду указывает только возможность гальванической коррозии, если различие их гальванических потенциалов является достаточно большим. Больше этот ряд ничего не говорит, и особенно ничего – о скорости или интенсивности гальванической коррозии. Она может быть нулевой или несущественной или даже незаметной. Ее интенсивность зависит от типов металлов, которые входят в контакт – гальванической пары.
Пара: алюминий – нелегированная сталь
В строительных конструкциях алюминиевые детали, которые открыты для воздействия климатических и погодных воздействий, могут соединяться винтами из обычной стали. Опыт показывает, что алюминий в контакте со стальными винтами подвергается только очень поверхностной коррозии. Возникающая ржавчина, которая не оказывает никакого влияния на алюминий, полностью пропитывает слой оксида алюминия и образует на поверхности пятна. Фактически, для алюминиевой конструкции в контакте с незащищенной сталью важнее будет ее влияние на внешний вид и декоративные качества, а не способность сопротивляться коррозии.
Это явление имеет следующее объяснение:
- на поверхностях контакта образуются пленки с продуктами коррозии – ржавчины на стали и оксида алюминия на алюминии, которые и замедляют электрохимические реакции.
Пара: алюминий – оцинкованная сталь
Судя по гальваническому ряду, цинк является более электроотрицательным, чем алюминий. Крепеж из оцинкованной стали может, поэтому, применяться для соединения и сборки конструкций из алюминиевых сплавов. Надо помнить, что когда цинковое покрытие станет слишком изношенным, чтобы защищать сталь и алюминий, наступает предыдущий сценарий контакта между алюминием и голой сталью [3] .
Пара: алюминий – нержавеющая сталь
Хотя и существует большая разность потенциалов между нержавеющей сталью и алюминиевыми сплавами – около 650 мВ, очень редко можно увидеть гальваническую коррозию на алюминии в контакте с нержавеющей сталью. Поэтому алюминиевые конструкции очень часто собираются с применением болтов и винтов из нержавеющей стали [3].
Пара: алюминий – медь
Контакт между алюминиевыми сплавами и медью, а также медными сплавами (бронза, латунь) приводит к совершенно незначительной гальванической коррозии алюминия под воздействием атмосферных условий. Тем не менее, рекомендуется обеспечивать электрическую изоляцию между этими двумя металлами, чтобы локализовать коррозию алюминия.
Необходимо отметить, что продуктом коррозии меди является, так называемая, патина. Эта патина – голубовато-зеленый налет на меди, который состоит в основном из карбоната меди. Эта патина химически воздействует на алюминий и может восстанавливаться с образованием малых частиц меди. Эти медные частицы, в свою очередь, могут вызывать локальную питтинговую коррозию алюминия [3].
Ближе к контакту – больше коррозия
Ускоренная гальваническая коррозия обычно наиболее интенсивна вблизи мест соединения двух металлов; с удалением от мест соединения ее интенсивность уменьшается. Существенное влияние на скорость коррозии оказывает величина отношения площади поверхности катода, контактирующей с электролитом, к площади незащищенной поверхности анода. Желательно иметь малое отношение площади катода к площади анода.
Как избежать гальванической коррозии
- Выбирать в пару алюминию или его сплаву металл, который как можно более ближе к нему в гальваническом ряду для рассматриваемой коррозионной среды (см. рисунок 10).
- Применять «катодный» крепеж. Избегать комбинаций с неблагоприятным (большим) отношением площадей катода к аноду (рисунок 3).
- Обеспечивать полную электрическую изоляцию двух соединяемых металлов. Это может быть выполнено с помощью изолирующих прокладок, втулок, шайб и т. п. (рисунок 12).
- Если применяется окраска, всегда нужно красить катод. Если покрасить только анод, любая царапина на нем даст неблагоприятное отношение поверхностей катода к аноду и приведет к коррозии царапины.
- Увеличивать толщину анода или устанавливать в соединение заменяемые массивные прокладки из анодного металла.
- По возможности размещать гальванический контакт вне коррозионной среды.
- Избегать резьбовых соединений из металлов, образующих гальваническую пару. Заменять их паяными или сварными соединениями.
- Если возможно, применять ингибиторы коррозии, например, в системах с циркуляцией жидкости, которая может играть роль электролита для гальванической коррозии.
- В случаях, когда металлы должны оставаться в электрическом контакте через наружную электрическую цепь, нужно разнести их как можно дальше друг от друга для увеличения сопротивления жидкой цепи (электролита).
- При необходимости и там, где это возможно, применять катодную защиту с цинковым или магниевым жертвенными анодами.
- В наиболее агрессивных средах только цинк, кадмий и магний могут быть в контакте с алюминием без возникновения гальванической коррозии. Заметим, что применение кадмиевых покрытий в значительной степени ограничено из-за их экологической небезопасности.
Рисунок 11 [1]
Рисунок 12 [1]
Источники:
- TALAT 5104.
- Corrosion of Aluminum and Aluminum Alloys. Edited by J.R. Davis. – ASM International, 1999.
- Corrosion of Aluminium / Christian Vargel – ELSEVIER, 2004
- TALAT 1252
Пункт приема и вывоза металлолома и чугуна по лучшей цене в Екатеринбурге. Сдать радиатор, лом черных и цветных металлов и нержавейки
В наше время сдача металлолома является достаточно востребованной среди современного общества. Поэтому наша компания готова принять латунь, нержавейку, радиаторы и другой лом на особо выгодных условиях для всех заинтересованных лиц. И если вас интересуют наши предлагаемы услуги, тогда мы готовы вам помочь.
Почему стоит сдать лом именно нам?
Каталог лома черных и цветных металлов
Порядок приема металлолома в нашей организации:
- Клиент складывает лом черных и цветных металлов на весы и измеряет общий вес.
- После измерения веса он направляется к месту разгрузки.
- Он проходит оценку качества и содержания загрязнений.
- По факту приема производится оплата, которую клиент получает на свой банковский счет или наличкой лично.
- Физическое лицо, продающее металлолом, должно предоставить документы, и указать номер своего счета, на который будет переведен платеж. Акт приема-передачи и сертификат выдаются при приемке металла.
- Чистая стоимость металлолома напрямую зависит от его объёма, качества и текущей стоимости.
- Количество металла измеряется при помощи специальных весов.
- Эксперт грамотно оценивает качество.
- Инструменты оценки качества могут использоваться в дополнение к визуальному осмотру в случае таковой надобности.
- Эксперт измеряет загрязнение, на присутствие неметаллических унаследованных примесей, за которые поставщик не получает оплаты.
Основными поставщиками являются центры приема лома, другие фирмы, такие как автосервисы, заводы и металлообрабатывающие предприятия, а также индивидуальные предприниматели, фермеры и частные лица не относятся к сертифицированным. К каждому клиенту, желающему продать металлолом или стать партнером, относятся внимательно и оплачивают сразу после передачи.
Наша компания закупает лом как черных, так и цветных металлов. Мы принимаем различные виды черных металлов, от легкого оловянного лома до крупных стальных или чугунных деталей, включая машины, подлежащие утилизации. Посетите нашу домашнюю страницу, чтобы ознакомиться с полным списком допустимых типов лома.
Наша фирма также принимает целые изделия и обрезки шнуров, пломб и сплавов, состоящих из разных металлов, таких как нержавеющая сталь, медь, латунь, магний, алюминий, свинец и цинк.
Независимо от того, что вас беспокоит, мы предоставим вам самые выгодные условия. Свяжитесь с нами, и мы предложим оптимальное решение для каждого отдельного клиента. Мы ценим время клиентов, и предлагаем лучшие условия сотрудничества для всех заинтересованных лиц без ограничений. Так как наша компания предлагает надежные условия сотрудничества для всех без ограничений.
Возникли вопросы или предложения? Обращайтесь
Разница между черными и цветными металлами | Металлические супермаркеты
В чем разница между черными и цветными металлами?
Ответ прост: черные металлы содержат железо, а цветные — нет. Более подробный ответ заключается в том, что у черных и цветных металлов есть свои отличительные свойства. Эти свойства определяют приложения, для которых они наиболее подходят.
Цветные металлы использовались с начала цивилизации.Открытие меди в 5000 г. до н.э. положило конец каменному веку и началу медного века. Позднее изобретение бронзы, сплава меди и олова, положило начало бронзовому веку.
Использование черных металлов началось примерно в 1200 году до нашей эры, когда производство железа стало обычным явлением. Это положило начало железному веку.
Какие металлы являются черными?
Некоторые распространенные черные металлы включают легированную сталь, углеродистую сталь, чугун и кованое железо. Эти металлы ценятся за их прочность на разрыв и долговечность.Углеродистая сталь, также известная как конструкционная сталь, является основным продуктом строительной индустрии и используется в самых высоких небоскребах и самых длинных мостах. Черные металлы также используются в морских контейнерах, промышленных трубопроводах, автомобилях, железнодорожных путях и многих коммерческих и бытовых инструментах.
Черные металлы имеют высокое содержание углерода, что обычно делает их уязвимыми для ржавчины при воздействии влаги. Из этого правила есть два исключения: кованое железо устойчиво к ржавчине благодаря своей чистоте, а нержавеющая сталь защищена от ржавчины присутствием хрома.
Большинство черных металлов обладают магнитными свойствами, что делает их очень полезными в двигателях и электротехнике. Использование черных металлов в дверце холодильника позволяет прикрепить к ней список покупок с помощью магнита.
Сталь
Сталь производится путем добавления железа к углероду, который упрочняет железо. Легированная сталь становится еще жестче по мере введения других элементов, таких как хром и никель. Сталь получают путем нагрева и плавки железной руды в печах. Стальную банку выпускают из печей и разливают в формы для формования стальных стержней.Сталь широко используется в строительстве и обрабатывающей промышленности.
Углеродистая сталь
Углеродистая стальимеет более высокое содержание углерода по сравнению с другими типами стали, что делает ее исключительно твердой. Он обычно используется при производстве станков, сверл, лезвий, метчиков и пружин. Он может держать острую режущую кромку.
Легированная сталь
Легированные сталисодержат такие элементы, как хром, никель и титан, для придания большей прочности и долговечности без увеличения веса.Нержавеющая сталь — важная легированная сталь, изготовленная с использованием хрома. Легированные стали используются в строительстве, станках и электрических компонентах.
Чугун
Чугун — это сплав железа, углерода и кремния. Чугун хрупкий, твердый и износостойкий. Он используется в водопроводных трубах, станках, автомобильных двигателях и печах.
Кованое железо
Кованое железо — это сплав с таким низким содержанием углерода, что это почти чистое железо. В процессе производства добавляется некоторое количество шлака, который придает кованому железу отличную стойкость к коррозии и окислению, однако имеет низкую твердость и усталостную прочность.Кованое железо используется для изготовления ограждений и перил, сельскохозяйственных орудий, гвоздей, колючей проволоки, цепей и различных украшений.
Какие металлы цветные?
Цветные металлы включают алюминий, медь, свинец, цинк и олово, а также драгоценные металлы, такие как золото и серебро. Их главное преимущество перед черными металлами — пластичность. Они также не содержат железа, что придает им более высокую стойкость к ржавчине и коррозии и делает их идеальными для водостоков, жидкостных труб, кровли и наружных вывесок.Наконец, они немагнитны, что важно для многих электронных и электромонтажных приложений.
Алюминий
Алюминий легкий, мягкий и непрочный. Алюминий легко лить, ковать, обрабатывать и сваривать. Он не подходит для высокотемпературных сред. Поскольку алюминий легкий, он является хорошим выбором для изготовления самолетов и пищевых банок. Алюминий также используется в отливках, поршнях, железных дорогах, автомобилях и кухонной утвари.
Медь
Медь красного цвета, очень пластичная, пластичная и обладает высокой проводимостью для электричества и тепла.Медь в основном используется в электротехнической промышленности в виде проволоки и других проводников. Он также используется в кровельных покрытиях, гильзах для картриджей, статутах и подшипниках. Медь также используется для изготовления латуни, сплава меди и цинка.
Свинец
Свинец — мягкий, тяжелый, ковкий металл с низкой температурой плавления и низким пределом прочности. Он может противостоять коррозии от влаги и многих кислот. Свинец широко используется в электрических кабелях, батареях, строительстве и пайке.
Цинк
Цинк — это металл средней и низкой прочности с очень низкой температурой плавления. Его можно легко обработать, но может потребоваться нагрев, чтобы избежать раскола кристаллов. Цинк наиболее широко используется в гальванике, процессе нанесения защитного цинкового покрытия на железо или сталь для предотвращения ржавчины.
Олово
Олово очень мягкое и податливое, пластичное с низким пределом прочности. Его часто используют для покрытия стали, чтобы предотвратить коррозию. Белая жесть из стали используется для изготовления жестяных банок для еды. В конце 19 века оловянная фольга обычно использовалась для упаковки пищевых продуктов, но с тех пор ее заменила алюминиевая фольга. Олово также можно сплавить с медью для получения оловянной латуни и бронзы.
Нет времени читать блог?
Вы можете посмотреть наше видео ниже, чтобы узнать разницу между черными и цветными металлами:
Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.
В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.
Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и листы. Мы можем разрезать металл по вашим требованиям.
Посетите одно из наших 80+ офисов в Северной Америке сегодня.
черных и цветных металлов — в чем разница?
«В чем разница между черными и цветными металлами?»
Ответ прост: черные металлы содержат железо, а цветные — нет. Это означает, что каждый тип черных и цветных металлов имеет разные свойства и применение.
Черные металлы
Черные металлы содержат железо и известны своей прочностью. Подумайте о стали, нержавеющей стали, углеродистой стали, чугуне.Черные металлы используются как в архитектурном, так и в промышленном производстве, например в небоскребах, мостах, транспортных средствах и железных дорогах. Благодаря своим магнитным свойствам черные металлы также используются в приборах и двигателях. (Ага — благодаря черным металлам вы можете повесить табель успеваемости ребенка или список покупок с помощью магнита на дверце холодильника.) Черные металлы также имеют высокое содержание углерода, что обычно делает их склонными к ржавчине. Исключение составляют нержавеющая сталь из-за хрома и кованое железо из-за высокого содержания чистого железа.
Примеры черных металлов:
- Сталь: железо с углеродом; широко используется в строительстве и производстве металлических изделий
- Углеродистая сталь: в железо добавлено еще более высокое содержание углерода; исключительно твердый металл
- Нержавеющая сталь: легированная сталь с добавлением хрома, защищающая от ржавчины.
- Прочие легированные стали: легкие металлы, такие как хром, никель, титан, добавлены для упрочнения других металлов без увеличения веса.
- Чугун: чугун, углерод, кремний; тяжелый, твердый износостойкий металл
Цветные металлы
Цветные металлы использовались с медного века, около 5000 г.C. Поскольку цветные металлы не содержат железа, они обычно более устойчивы к коррозии, чем черные металлы. Некоторыми примерами цветных металлов являются алюминий, алюминиевые сплавы и медь, которые часто используются в промышленных приложениях, таких как водостоки, кровля, трубы и электричество. Цветные металлы также включают латунь, золото, никель, серебро, олово, свинец и цинк. Другие общие свойства цветных металлов — немагнитные, ковкие и легкие. Это делает их идеальными для использования в самолетах и других приложениях.
Примеры цветных металлов:
- Алюминий: легкий, малопрочный, легко формируемый
- Медь: очень пластичная, с высокой электропроводностью
- Свинец: тяжелый, мягкий, ковкий металл; низкая температура плавления, низкая прочность
- Олово: мягкий, податливый металл с низкой прочностью на разрыв, часто используемый для покрытия стали для предотвращения коррозии.
- Цинк: металл средней прочности с низкой температурой плавления, широко используемый при цинковании для предотвращения ржавчины на чугуне или стали.
Спросите у экспертов All Metals Fabrication, какой металл лучше всего подходит для вашего следующего промышленного или архитектурного проекта по изготовлению металла.
Как предотвратить гальваническую коррозию углеродистой и нержавеющей стали
Вас, наверное, предупреждали о строительстве из разнородных металлов, таких как углеродистая и нержавеющая сталь; есть веская причина. Эта ошибка стала причиной крупных катастроф, таких как разлив нефти в Санта-Барбаре.
Тем не менее, совсем не обязательно избегать этого металлического сочетания. Мы здесь, чтобы помочь вам понять, как это сделать правильно.
Прочтите простой анализ гальванической коррозии и способы предотвращения коррозии между углеродистой и нержавеющей сталью.
Что такое гальваническая коррозия? Гальваническая коррозия является причиной возникновения проблем при соединении углеродистой и нержавеющей стали. Гальваническая коррозия — это когда один металл вызывает коррозию и разрушение другого металла.Чтобы эта коррозия началась, необходимы три вещи: анод (один металл), катод (второй металл) и электролит (обычно вода).
Некоторые металлы с большей вероятностью отдают свои электроны, а другие более охотно притягивают лишние электроны.Это означает, что сочетание этих различных типов металлов в среде с высоким содержанием электролита заставляет один металл передавать свои электроны другому.
Когда металл отдает электроны, начинается гальваническая коррозия, и металл ржавеет.
Как возникает гальваническая коррозия?Когда два разнородных металла соединены друг с другом, электролит помогает перемещать электроны одного металла к другому. Поскольку электронно-щедрый металл теряет электроны, он подвергается окислению.
Окисление вызывает ржавчину, ослабление и распад металла. В результате получается поврежденная металлическая деталь и ослабленная труба, балка или конструкция.
Углеродистая сталь и нержавеющая сталь: в чем разница?Не вся сталь одинакова. На самом деле, некоторые стали не уживаются друг с другом. Это может быть случай с углеродистой и нержавеющей сталью.
В чем разница между этими двумя распространенными типами стали?
Углеродистая стальУглеродистая сталь и нержавеющая сталь — это металлы на основе железа, но углеродистая сталь имеет особенно высокое содержание углерода. Это делает углеродистую сталь особенно прочной, тяжелой и твердой.
Однако углеродистая сталь уязвима к коррозии. Это потому, что он сделан из железа, а кислород легко повредит железо. В результате образуется оксид железа или ржавчина, которая может полностью разъедать углеродистую сталь.
Нержавеющая стальВы можете подумать: «Подождите, если обе стали на основе железа, почему нержавеющая сталь устойчива к коррозии?»
У нержавеющей стали есть секретное оружие: хром.
Хром может отводить кислород, не вызывая коррозии. Это добавление также продвигает нержавеющую сталь выше в таблице благородства.
Таким образом, когда нержавеющая сталь соединяется с углеродистой сталью и вводится электролит, такой как влага, нержавеющая сталь поглощает электроны углеродистой стали. Углеродистая сталь может быстро разрушиться, ослабнуть и рухнуть.
Как предотвратить коррозию между углеродистой и нержавеющей стальюНесмотря на то, что они не ладят друг с другом, углеродистая и нержавеющая сталь прочны и полезны. К счастью, есть несколько способов помочь им работать в тандеме, не вызывая коррозии:
Использовать буфер
Если два типа стали не могут хорошо сочетаться, мы можем разделить их. Как? Для обвязки можно установить такие вещи, как башмаки для труб или изнашиваемые накладки. Вы также можете добавить зажимные вкладыши или всевозможные изоляторы, такие как стержни ProTek или плоские пластины.
Эти опоры усиливают трубопровод и предохраняют металлы от трения друг о друга.
Они также помогают стабилизировать конструкции, что снижает трение, делает трещины менее частыми и затрудняет проскальзывание разрушающих электролитов в металлы.
Другие буферы, такие как нейлоновые шайбы или крепежные детали, могут также добавлять защитный слой между разнородными металлами в болтах или опорных балках.
Пластина из углеродистой стали
Цинкование — это способ защитить углеродистую сталь без полного изменения ее структуры. При гальванизации углеродистой стали на ее поверхность наносится слой цинка.
Цинкимеет гораздо меньшие гальванические свойства, чем углеродистая сталь, что означает, что он более простой и с большей вероятностью будет отдавать свои электроны, чем углеродистая сталь.
После цинкования цинк жертвует своими электронами всякий раз, когда коррозионный металл соприкасается с поверхностью. Таким образом, конструкция из углеродистой стали может сохранять свою прочную форму.
Снижение воздействия электролитов
Помните, что для начала гальванической коррозии необходимы два металла и электролит. Таким образом, отсутствие электролитов может замедлить коррозию.
Хороший вариант — добавить аэрацию или сгладить поверхности, когда это возможно. Гидроизоляция путем добавления водостойких покрытий может иметь большое значение для сохранения металлов, и вы можете использовать герметики, чтобы вода или грязь не скользили между щелями.
Также рекомендуется добавить дренаж, чтобы избежать застоя воды. Объединенная вода разрушает металлические части и запускает процесс коррозии. Хороший способ добавить дренаж — через дренажные отверстия. Здесь вы просверливаете отверстия в нижней части полых опор, чтобы у воды был выход.
Подробнее о предотвращении коррозииКоррозия может представлять серьезную опасность на рабочем месте или в существующих конструкциях. Однако знание того, как это работает, поможет вам принять правильные меры, чтобы остановить это.
Просмотрите некоторые из наших ресурсов по коррозии и раз и навсегда узнайте о коррозии.
Имеет ли значение то, что загрязняет пищу?
*Выберите страну / regionUnited StatesCanadaAfghanistanAlbaniaAlgeriaAmerican SamoaAndorraAngolaAnguillaAntarcticaAntigua и BarbudaArgentinaArmeniaArubaAustraliaAustriaAzerbaijanBahamasBahrainBangladeshBarbadosBelarusBelgiumBelizeBeninBermudaBhutanBoliviaBosnia и HerzegovinaBotswanaBouvet IslandBrazilBritish Индийский океан TerritoryBrunei DarussalamBulgariaBurkina FasoBurundiCambodiaCameroonCape VerdeCayman IslandsCentral африканских RepublicChadChileChinaChristmas IslandCocos (Килинг) IslandsColombiaComorosCongoCongo, Демократическая Республика ofCook IslandsCosta RicaCote D’IvoireCroatiaCubaCyprusCzech RepublicDenmarkDjiboutiDominicaDominican RepublicEast TimorEcuadorEgyptEl SalvadorEquatorial GuineaEritreaEstoniaEthiopiaFalkland (Мальвинские) острова Фарерские IslandsFijiFinlandFmr Югославская Республика МакедонияФранцияФранцузская ГвианаФранцузская ПолинезияФранцузские Южные ТерриторииГабонГамбияГрузияГерманияГанаГибралтарГрецияГренландияГренадаГваделупаГуамГватемалаГвинеяГвинея-БисауГайанаГаити Херд и Макдональд IslandsHoly Престол (Ватикан) HondurasHong KongHungaryIcelandIndiaIndonesiaIran (Исламская Республика) IraqIrelandIsraelItalyJamaicaJapanJordanKazakstanKenyaKiribatiKorea, Корейские Народно-Демократической RepKorea, Республика ofKuwaitKyrgyzstanLao Народный Демократической RepLatviaLebanonLesothoLiberiaLibyan Arab JamahiriyaLiechtensteinLithuaniaLuxembourgMacauMadagascarMalawiMalaysiaMaldivesMaliMaltaMarshall IslandsMartiniqueMauritaniaMauritiusMayotteMexicoMicronesia, Федеративные StatesMoldova, Республика ofMonacoMongoliaMontserratMoroccoMozambiqueMyanmarNamibiaNauruNepalNetherlandsNetherlands AntillesNew CaledoniaNew ZealandNicaraguaNigerNigeriaNiueNorfolk IslandNorthern Mariana IslandsNorwayOmanPakistanPalauPanamaPapua Нового GuineaParaguayPeruPhilippinesPitcairnPolandPortugalPuerto RicoQatarReunionRomaniaRussian FederationRwandaSaint HelenaSaint Киттс и НевисСент-ЛюсияСент-Пьер и МикелонСамоаСан-МариноСао-Томе и ПринсипиСаудовская АравияСенегалСейшельские островаСьерра-ЛеонеСингапурСловакия iaSloveniaSolomon IslandsSomaliaSouth AfricaSpainSri LankaSth Georgia & Sth Sandwich Институт социальных Винсент и GrenadinesSudanSurinameSvalbard и Ян MayenSwazilandSwedenSwitzerlandSyrian Arab RepublicTaiwan, провинция ChinaTajikistanTanzania, Объединенная Республика ofThailandTogoTokelauTongaTrinidad и TobagoTunisiaTurkeyTurkmenistanTurks и Кайкос IslandsTuvaluUgandaUkraineUnited арабских EmiratesUnited KingdomUruguayUS Minor Отдаленные IslandsUzbekistanVanuatuVenezuelaVietnamVirgin острова (Британские) Виргинские острова (U. S.) Острова Уоллис и Футуна Западная Сахара ЙеменЮгославия Замбия Зимбабве
Справочник по архитектурному дизайну: основы — архитектурные аспекты
Выветривание, коррозия, окрашивание, подложка, припой, герметики
Одним из наиболее важных вопросов, связанных с использованием меди, является химическая реакция между медью и другими материалами. Химические реакции вызывают коррозию, окрашивание и даже зеленую патину, которая со временем образуется на медных поверхностях.
Выветривание и патинирование:
Процесс окисления, придающий меди характерную зеленую патину, является результатом воздействия кислой атмосферы.Следовательно, этот процесс идет быстрее в некоторых городских, морских и промышленных районах, где существуют более высокие концентрации загрязняющих веществ. Когда кислая влага вступает в контакт с незащищенными медными поверхностями, она вступает в реакцию с медью с образованием сульфата меди. Кислота нейтрализуется во время реакции с медью. Эта патина в конечном итоге покрывает поверхность и плотно прилегает к ней, обеспечивая тем самым защитный слой от дальнейшего атмосферного воздействия.
Таблица цветов при естественном атмосферном воздействии — типичная для влажного промышленного климата, временной интервал варьируется
Коррозия:
Все металлы обладают свойством, называемым благородством.Это мера устойчивости металла к коррозии при контакте с другим металлом. Большая относительная разница в благородстве между двумя контактирующими металлами указывает на больший потенциал коррозии. Таблица 1.3A ранжирует наиболее распространенные металлы, используемые в строительстве, по возрастанию благородства, называемого гальваническим числом.
|
Когда разнородные металлы контактируют друг с другом в присутствии электролита, происходит гальваническое действие, приводящее к ухудшению качества металла с более низким гальваническим числом. Электролитом может быть дождевая вода, текущая с одной поверхности на другую, или влага из воздуха, содержащая достаточно кислоты, чтобы заставить ее действовать как электролит.
Поскольку медь имеет одно из самых высоких гальванических чисел или благородство среди активных металлов, она не будет повреждена при контакте с любым из них. Однако при прямом контакте это вызовет коррозию других металлов. Решение состоит в том, чтобы предотвратить такой прямой контакт с использованием разделительных материалов, таких как специальные краски или прокладки.
В большинстве случаев нет необходимости изолировать медь от свинца, олова или нержавеющей стали. Основными металлами, вызывающими озабоченность с точки зрения прямого контакта, являются алюминий и цинк. Железо и сталь обычно не представляют проблемы, если их масса не равна или меньше массы меди.
Если для изоляции используются краски или покрытия, они должны быть совместимы с обоими металлами. Между медью и алюминием можно использовать битумные грунтовки или грунтовки на основе хромата цинка. Любой из них или красная свинцовая грунтовка могут быть эффективными для отделения меди от железа и других черных металлов.
Лента или прокладки из непоглощающих материалов или герметиков — эффективные методы отделения меди от всех других металлов. В зонах с сильным воздействием следует использовать свинец или аналогичные уплотнительные материалы, за исключением меди и алюминия.
Независимо от метода, используемого для отделения металлов, не следует допускать попадания смывки с медных поверхностей на открытый алюминий. Следы солей меди в стирке могут ускорить коррозию алюминия.
Другой тип коррозии, поражающий медь, вызван потоком кислой воды, сосредоточенной на небольшом участке меди.Этот тип, часто называемый «эрозионной коррозией», возникает, когда дождь падает на не медную крышу, такую как черепица, шифер, дерево или асфальт. Кислая вода не нейтрализуется, поскольку течет по инертному материалу. Когда вода, собранная на большой поверхности, отводится или собирается относительно небольшой медной гидроизоляцией или желобом, медь может испортиться до того, как на ней появится защитная патина. Другой тип коррозии возникает на краю капель инертного кровельного материала, проводящего воду в медный желоб или долину.Если черепица лежит непосредственно на меди, коррозионный эффект усиливается, потому что влага удерживается по краю за счет капиллярного действия, что приводит к «линейной коррозии». Решение состоит в том, чтобы приподнять нижний край черепицы с помощью косой полосы или обеспечить заменяемую армирующую полосу между черепицей и медью.
Окрашивание:
Омывание водой медных поверхностей может иметь дополнительное воздействие. Влага при контакте с медными поверхностями склонна собирать небольшие количества солей меди.Когда эта влага контактирует с пористым материалом, таким как мрамор или известняк, она поглощается. Когда влага испаряется, она оставляет после себя соли меди в виде пятен на этих материалах. Зеленое пятно особенно заметно на светлых поверхностях.
Такое состояние не возникает при проливных дождях или подобных быстрых стоках, поскольку время пребывания влаги на меди невелико и соли меди улавливаются мало. Окрашивание происходит из-за медленного оттока влаги, содержащей медь.
Есть несколько способов уменьшить окрашивание или его визуальное воздействие. Двумя общими методами являются: сбор сточных вод в желобах и их отвод от здания через водосточные трубы; а также конструкция кромок капель минимум до одного дюйма, что помогает уменьшить количество содержащейся в меди влаги, которая вступает в контакт с материалом ниже. Покрытие прилегающей поверхности пористого материала прозрачным силиконовым герметиком может уменьшить образование пятен за счет сведения к минимуму количества влаги, впитываемой поверхностью.
Выбор подложки:
Подготовка подложки, на которую будет наноситься медь, частично зависит от выбранной подложки и области применения меди. Однако всегда следует принимать во внимание ряд соображений.
При выборе подложки ключевым моментом является способ крепления меди. Для всех применений, в которых для крепления меди или планок к основной конструкции используются гвозди или винты, требуется настил с гвоздями, полоски для гвоздей внутри настила или деревянные блоки в определенных местах. К таким применениям относятся крыши со стоячим фальцем, крыши с обрешеткой, крыши с плоским фальцем, сплошные кромочные полосы и планки, а также оклады вокруг проходов в крыше.
Независимо от используемого метода крепления, структурная целостность основы не должна быть нарушена. Он должен удерживать крышу при устойчивых расчетных ветровых условиях, а также соответствовать всем другим необходимым нормам и стандартам.
Наиболее распространенной подложкой для меди является дерево, обычно фанера от 1/2 до 3/4 дюйма.Пиломатериалы должны быть высушены в печи и уложены с правильными стыками и ровной гладкой поверхностью. Рекомендуется дать дереву выветриться в течение нескольких дней после укладки. В этот период его следует защитить от дождя, чтобы он приспосабливался к температуре и уровню влажности воздуха, пока не осядет.
В последнее время появилось много разработок в области обработки фанеры и пиломатериалов с антипиреновой обработкой (FRT). В большинстве этих продуктов используется древесина или фанера, пропитанная под давлением химическими солями в водном растворе для предотвращения горения. Многие из этих солей вызывают коррозию меди, а также других металлов и материалов. Если выщелачивание этих солей приведет их к контакту с медью, произойдет коррозия. Это особенно вероятно в районах с высокой влажностью, если происходит конденсация, или если вода попадает во время строительства или позже. Любые участки, где соленая влага может собираться, а затем испаряться, тем самым увеличивая концентрацию солей, ускоряет процесс коррозии. Для получения полного и обновленного отчета по огнестойкой фанере и коррозии свяжитесь с CDA.
Другие материалы, используемые в качестве подложки для меди, включают: бетон, кирпич, кирпичную кладку, терракоту и штукатурку. Приведенные выше рекомендации применимы и к этим материалам. Гладкие сухие поверхности, совместимость с медью и обеспечение крепежа — все это необходимо для приемлемого основания.
Подготовка основания:
Применение листовой и полосовой меди в строительстве неизбежно требуется для обеспечения определенного уровня сопротивления проникновению воды. Следует избегать всего, что может вызвать проколы или отверстия в медной мембране.Медные крыши, долины и облицовка желобов всегда следует укладывать на гладкую, сухую, устойчивую поверхность без выступающих шляпок гвоздей или других дефектов. Движение основания должно компенсироваться правильно спроектированными компенсаторами.
В таких случаях на основание необходимо нанести утвержденный подкладочный материал, обычно пропитанный войлоком. Войлок действует как подушка для медных листов. Между медью и подложкой следует вставить лист строительной бумаги размером с канифоль.Это предотвратит соединение между двумя поверхностями, которое в противном случае ограничило бы тепловое движение меди. Единственным исключением из этого требования являются приложения, в которых медь не должна двигаться, даже при термическом напряжении. Например, непрерывные планки и кромочные планки прибиваются гвоздями, обычно в шахматном порядке из гвоздей на 3 дюйма в центре, чтобы ограничить движение.
Припой и герметики:
Медные конструкции традиционно основывались на использовании припоя для обеспечения водонепроницаемости и усиления стыков и швов. В качестве припоя используется обычный припой 50-50 оловянно-свинцовый стержень для меди без покрытия. Альтернативные припои на основе олова доступны для тех, кто предпочитает бессвинцовый монтаж. Припой обычно наносят на механически скрепленные или формованные жесткие соединения. Паяные швы и стыки постоянные; они должны продлить жизнь меди. Следует избегать непрерывных длинных участков паяных швов, чтобы ограничить поломку под напряжением.
В процессе выветривания цвет припоя меняется от блестящего к матовому. Открытый припой в готовых соединениях можно уменьшить с помощью слепой пайки.В этой технике припой наносится на заднюю или скрытую кромку медных поверхностей.
Альтернативой припою, где не требуется его дополнительная прочность, является использование герметиков. Швы, заполненные герметиком, успешно используются для кровельных покрытий со стоячим фальцем и обрешеткой, где уклоны крыши составляют менее трех дюймов на фут. Герметики также могут использоваться в соединениях, которые в первую очередь предназначены для компенсации теплового движения меди.
Используемые герметики должны быть протестированы производителем и признаны совместимыми с медью.Многие эластомерные полиуретановые, силиконовые, бутиловые, полисульфидные или другие герметики на неорганической или резиновой основе показали приемлемые характеристики. Герметики на основе акрила, неопрена и нитрила активно разъедают медь. Поэтому использование таких герметиков не рекомендуется.
FAQ 1: Гальваническая коррозия / коррозия разнородных металлов
Контакт между разнородными металлами происходит часто, но часто не является проблемой.Алюминиевая головка на чугунном блоке, припой на медной трубе, гальваника на стальной обрешетке и стальной крепеж в алюминиевом листе — типичные примеры.
Скачать FAQ по ASSDA 1 (PDF)
ЧТО ВЫЗЫВАЕТ ГАЛЬВАНИЧЕСКУЮ КОРРОЗИЮ?
Для возникновения гальванической, разнородной или электролитической коррозии необходимо выполнение трех условий:
- Металлическое соединение должно быть смочено токопроводящей жидкостью
- Должен быть контакт металла с металлом
- Металлы должны иметь достаточно разные потенциалы
Смачивание стыка
Проводящей жидкостью (или электролитом) может быть дождевая вода или вода, абсорбированная поверхностными отложениями, если относительная влажность (RH) достаточно высока, или даже простая конденсация. Если отложения представляют собой морскую соль, они начнут растворяться, если относительная влажность превысит 34% из-за хлорида магния. Чем выше проводимость, тем сильнее гальванические эффекты. Соляное или промышленное загрязнение значительно увеличивает проводимость воды, поэтому гальванические эффекты обычно более сильны у побережья или в тяжелых промышленных зонах. Чистая дождевая вода с низкой проводимостью вызовет лишь незначительные гальванические эффекты. Одна из сложностей заключается в том, что во время испарения водяные пленки становятся более проводящими, поэтому изначально чистая вода может вызывать довольно активные гальванические эффекты, поскольку жидкость в щели под болтом или зажимом становится более концентрированной.Вода может быть исключена за счет конструкции или использования адгезивных герметиков или окраски благородного металла на 30–50 мм за стыком, чтобы предотвратить перенос заряженных атомов (ионов) в любой тонкой водной пленке. Покраска активного металла (углеродистой стали, алюминия или цинка) может вызвать глубокие отверстия на дефектах покрытия.
Контакт металл-металл
Гальваническая коррозия может возникнуть только в том случае, если разнородные металлы находятся в электрическом контакте. Контакт может быть прямым или посредством внешней трубы, провода или болта.Если разнородные металлы изолированы друг от друга подходящими пластиковыми полосами, шайбами или втулками, то гальваническая коррозия не может возникнуть. Краска не является надежным электрическим изолятором, особенно под головками болтов, гайками, шайбами или возле краев металлических листов. Краска обычно повреждается при установке или последующем перемещении. Обратите внимание, что слой пленки оксида хрома на нержавеющей стали очень тонкий и не является электрическим изолятором. Поэтому пленка оксида хрома не предотвращает гальваническую коррозию.
Разница потенциалов
Все металлы в некоторой степени растворяются, когда они смачиваются проводящей жидкостью. Степень растворения наиболее высока для активных или жертвенных металлов, таких как магний и цинк, и они имеют наиболее отрицательный потенциал. Напротив, благородные или пассивные металлы, такие как золото или графит, относительно инертны и имеют более положительный потенциал. Посередине находится нержавеющая сталь, хотя она более благородна, чем углеродистая сталь. Потенциал можно измерить с помощью электрода сравнения и использовать для построения гальванической серии, как показано ниже (стандарт ASTM G82).
Когда два металла соединяются и контактируют с проводящей жидкостью, более активный металл вызывает коррозию и защищает благородный металл. Цинк более негативен, чем сталь, поэтому цинковое покрытие оцинкованной стали подвергается коррозии, защищая сталь от царапин или порезов. Нержавеющие стали, в том числе 304 и 316, более положительны, чем цинк и сталь, поэтому, когда нержавеющая сталь соприкасается с оцинкованной сталью и является влажной, сначала коррозирует цинк, затем сталь, а нержавеющая сталь будет защищена эта гальваническая активность и не вызывает коррозии.Скорость гальванической атаки определяется величиной разности потенциалов.
График показывает, что нержавеющая сталь имеет два диапазона потенциала. Обычное пассивное поведение показано светлой штриховкой. Однако, если пассивная пленка разрушается, нержавеющая сталь подвергается коррозии, и ее потенциал находится в диапазоне темных полос.
Как показывает опыт, если разность потенциалов меньше 0,1 В, то гальваническая коррозия маловероятна.
Если все три условия соблюдены, то вероятна гальваническая коррозия, и на скорость коррозии будут влиять относительная площадь и плотность тока, подаваемого благородным металлом.
ОТНОСИТЕЛЬНАЯ ПОВЕРХНОСТЬ, СМАЧИВАЕМАЯ СМАЗКОЙ
Если благородный металл, такой как нержавеющая сталь, имеет большую площадь поверхности, контактирующую с электролитом, а жертвенный металл (например, алюминий) имеет очень маленькую площадь поверхности, контактирующую с электролитом, то нержавеющая сталь будет генерировать большой ток коррозии, который будет сосредоточено на небольшой площади жертвенного металла. Алюминий быстро подвергается коррозии, поэтому алюминиевые крепежи из нержавеющей стали неприемлемы.Однако часто используется нержавеющий винт из алюминия, хотя коррозия алюминия непосредственно вокруг нержавеющей стали вполне возможна. Это связано с тем, что соотношение А смоченной благородной застежки в активном металле может измениться с 1:50 до 1: 1 во время высыхания после ливня. Если загрязняющие вещества значительны, это означает, что избегание пар разнородных металлов может быть предпочтительным вариантом для предотвращения гальванической атаки.
Гальванизированные крепежные детали из нержавеющей стали также теряют цинк быстрее, чем отдельные изделия.Дополнительным недостатком является то, что продукт коррозии изменит цвет с белого на оранжевый, когда коррозия достигнет сплава цинка с железом около нижней части гальванизированного слоя. После этого начинается коррозия крепежа из углеродистой стали — снова более быстрыми темпами, чем при автономном воздействии.
Как показывает опыт, если смачиваемая площадь корродирующего металла в 10 раз больше смачиваемой площади благородного металла, то гальванические эффекты не являются серьезными, хотя чем больше это отношение, тем меньше эффект.
ДОСТУПНАЯ ПЛОТНОСТЬ ТОКА Нержавеющая сталь
имеет эффективную пассивную пленку, поэтому доступный ток коррозии, переносимый заряженными атомами (ионами), довольно низок.Если сравнивать поведение пары медь / сталь и пары нержавеющая сталь / сталь, муфта медь / сталь представляет собой более серьезную гальваническую проблему, несмотря на аналогичное разделение потенциалов в 0,35 В.
Примеры приемлемых гальванических пар:
- Потенциал медного сплава более активен, чем у нержавеющей стали, и он обеспечивает ток катодной защиты для ограничения точечной коррозии вала из нержавеющей стали или трещин на втулке подшипника. Глубина потери медного сплава невелика, поскольку он имеет очень большую площадь по сравнению с открытым валом.
- Подвески для труб из оцинкованной стали используются для внешней подвески труб из нержавеющей стали вокруг химических заводов. Отношение площади поверхности плохое при большой площади нержавеющей стали и небольшой площади активного цинка / стали, но дождевая вода обычно имеет довольно низкую проводимость, и 20-летний срок службы является нормальным.
- В водной промышленности заедание между резьбой и гайками из нержавеющей стали удалось избежать за счет использования гайки из алюминиевой бронзы на шпильках или болтах из нержавеющей стали. Хотя алюминиевая бронза более активна, чем нержавеющая сталь, проводимость воды и, следовательно, скорость коррозии, как правило, довольно низкая.Гайки потребуют замены, но только во время капитального ремонта.
- Разница потенциалов между пассивным элементом 304 и пассивным элементом 316 мала, поэтому гальваническая коррозия 304 не ожидается даже при больших соотношениях площадей.
Неприемлемые пары материалов включают резиновое уплотнение с таким высоким содержанием технического углерода (для устойчивости к ультрафиолетовому излучению), что оно является проводящим и вызывает гальваническое воздействие на винт или штифт из нержавеющей стали. Прокладки, содержащие графит, вызывают аналогичные проблемы для фланцев из нержавеющей стали, и их нельзя использовать для морской воды независимо от сплава нержавеющей стали. Неизолированные крепления из нержавеющей стали не допускаются для настенного или кровельного покрытия Colorbond®, поскольку гальванический ток от корродирующего Zincalume® вызывает вздутие краски.
GALVANIC СЕРИИ
ВАЖНЫЙ ОТКАЗ ОТ ОТВЕТСТВЕННОСТИ: Технические рекомендации, содержащиеся в этой публикации, обязательно носят общий характер, и на них нельзя полагаться для конкретных приложений без предварительного получения компетентного совета. Несмотря на то, что ASSDA предприняла все разумные шаги для обеспечения точности и актуальности информации, содержащейся в данном документе, ASSDA не гарантирует точность или полноту информации и не несет ответственности за ошибки или упущения.
Различия между ломом черных и цветных металлов
Это один из наиболее часто задаваемых вопросов, которые задают специалисты по переработке лома: «Так в чем же разница между черными и цветными материалами?» Ответ на самом деле довольно прост.
Однако, что означают эти различия, когда дело доходит до покупки и продажи лома, нужно пояснить подробнее.Краткий ответ
Черные металлы и сплавы содержат железо; цветные металлы — нет.Если этот вопрос возникает во время вечеринки по викторине или во время вашего появления на игровом шоу, вы в значительной степени защищены. Но это не так просто отличить, просто глядя на случайный кусок металла. К счастью, есть несколько других факторов, которые их различают.
Характеристики черных металлов
Черные металлы включают низкоуглеродистую, углеродистую, нержавеющую сталь, чугун и кованое железо. Эти металлы в основном используются из-за их прочности на разрыв и долговечности, особенно из мягкой стали, которая помогает удерживать самые высокие небоскребы и самые длинные мосты в мире.Вы также можете найти черные металлы в жилищном строительстве, промышленных контейнерах, крупногабаритных трубопроводах, автомобилях, рельсах для железных дорог и транспорта, большинстве инструментов и оборудования, которые вы используете по дому, и ножах, которыми вы готовите дома.
Из-за большого количества углерода, используемого при их создании, большинство черных металлов и сплавов уязвимы для ржавчины при воздействии элементов. Хотя это не относится к кованому железу, которое настолько чистое, что оно устойчиво к окислению, или к нержавеющей стали, которая защищена благодаря высокому содержанию хрома, есть хорошее практическое правило: если вы видите ржавчину, это черный металл. .
Большинство черных металлов также обладают магнитными свойствами, что делает их очень полезными для создания больших двигателей и электрических приборов. Почему вы можете прикрепить произведение искусства вашего ребенка к холодильнику с помощью этого магнита с номером телефона местной пиццерии? Черный металл.
Самое главное, что черные металлы являются наиболее переработанным материалом в мире. Только в 2008 году было произведено 1,3 миллиарда тонн стали, из которых 500 миллионов тонн — из лома.Но мы поговорим о том, почему это важно, чуть позже.
Характеристики цветных металлов
Цветные металлы включают алюминий, латунь, медь, никель, олово, свинец и цинк, а также драгоценные металлы, такие как золото и серебро. Хотя цветные металлы могут обеспечивать прочность, они в основном используются там, где их отличия от черных металлов могут дать преимущество.
Например, цветные металлы намного более пластичны, чем черные металлы. Цветные металлы также намного легче, что делает их хорошо подходящими для использования там, где требуется прочность, но вес является фактором, например, в авиастроении или консервной промышленности.Поскольку цветные металлы не содержат железа, они обладают более высокой устойчивостью к ржавчине и коррозии, поэтому вы найдете эти материалы для изготовления водостоков, водопроводных труб, кровли и дорожных знаков. Наконец, они также немагнитны, что делает их идеальными для использования в небольшой электронике и в качестве электропроводки.
Что касается вторичной переработки, алюминий является третьим по величине вторичным материалом в мире. Однако многие другие цветные металлы, такие как медь, латунь и свинец, относительно дефицитны, и металлурги в значительной степени полагаются на переработку металлолома для изготовления новых. Что подводит нас к…
Разница в цене
Независимо от того, являетесь ли вы индивидуальным сборщиком металлолома или крупной компанией, производящей лом в результате строительства или сноса, скорее всего, вы заинтересованы в продаже этого металла. Так чего же ожидать, когда речь идет о цене, которую вы получите за свои материалы?
По большей части, лом черных металлов обычно находится в хорошем предложении, поэтому цены, как правило, ниже, чем на большинство цветных металлов. Поскольку сталь и железные сплавы постоянно перерабатываются в больших объемах по всему миру, цены на эти материалы остаются довольно постоянными из месяца в месяц, снижаясь или повышаясь лишь незначительно.
Лом цветных металлов, как мы упоминали ранее, труднее достать и труднее создать. Это увеличивает спрос, что приводит к повышению цены за фунт по сравнению с черными металлами. Хотя цены на алюминий не часто меняются из-за усилий по переработке, другие цены, такие как медь и латунь, могут резко измениться всего за месяц в зависимости от потребностей рынка.
Если вы физическое лицо, которое хочет продавать лом, всегда лучше проконсультироваться с дилером металлолома в вашем районе, чтобы узнать, какие цены они предлагают, прежде чем вы принесете свои материалы на склад.Не стесняйтесь позвонить нам, чтобы узнать самые свежие тарифы.
Если у вас есть промышленный, коммерческий бизнес или бизнес по сносу, свяжитесь со своим продавцом металлолома и узнайте, выйдут ли они и оценит вашу конкретную ситуацию с ломом. Они не только помогут определить, что у вас есть, но и смогут дать оценку для сбора и продажи ваших черных или цветных металлов.
Но хватит об отличиях
В конце концов, наибольшее сходство черных и цветных металлов заключается в их важности для индустрии вторичной переработки.Работая вместе с вашим местным дилером металлолома над созданием плана управления ломом, который помогает поддерживать стабильный поток обоих типов лома, мы можем продолжать создавать новые материалы, которые приносят пользу всей нашей жизни.