Солнечные батареи: как это работает
Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.
История создания
Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.
Солнечная термальная электростанция в испанском городе СевильяСолнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).
Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.
Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.
Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей
Принцип работы
Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.
Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.
Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.
Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементовНа каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.
Мобильный телефон Samsung E1107 оснащен солнечной батареей
Существующие разновидности
Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.
Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.
В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.
Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).
Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).
Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западногоНа работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.
А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.
«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф
Крупнейшие производители
Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.
Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.
Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.
Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.
Выводы
Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.
Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».
как устроена и работает солнечная панель
Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.
Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?
Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.
Содержание статьи:
- Солнечные батареи: терминология
- Внутреннее устройство гелиобатареи
- Виды кристаллов фотоэлементов
- Принцип работы солнечной панели
- Эффективность батарей гелиосистемы
- Схема электропитания дома от солнца
- Выводы и полезное видео по теме
Солнечные батареи: терминология
В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.
По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.
Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается
Вначале следует разобраться в существующих разновидностях оборудования для гелиоэнергетики. Солнечные батареи и солнечные коллекторы – это два принципиально разных устройства. Оба они преобразуют энергию лучей солнца.
Однако в первом случае на выходе потребитель получает энергию электрическую, а во втором тепловую в виде нагретого теплоносителя, т.е. солнечные панели используют для отопления дома.
Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.
Солнечной панелью генерируется постоянный электроток. Чтобы преобразовать его в переменный (используемый в быту), в схеме должен присутствовать инвертор
Солнечные батареи предназначены исключительно для генерации электрического тока. Он, в свою очередь, накапливается для снабжения дома электричеством ночью, когда солнце опускается за горизонт, уже в присутствующих дополнительно в схеме энергообеспечения объекта аккумуляторах.
Батарея здесь подразумевается в контексте некой совокупности однотипных компонентов, собранных в нечто единое целое. Фактически это просто панель из нескольких одинаковых фотоэлементов.
Внутреннее устройство гелиобатареи
Постепенно солнечные батареи становятся все дешевле и эффективней. Сейчас они применяются для подзарядки аккумуляторов в уличных фонарях, смартфонах, электроавтомобилях, частных домах и на спутниках в космосе. Из них стали даже строить полноценные солнечные электростанции (СЭС) с большими объемами генерации.
Гелиобатарея состоит из множества фотоэлементов (фотоэлектрических преобразователей ФЭП), преобразующих энергию фотонов с солнца в электроэнергию
Каждая солнечная батарея устроена как блок из энного количества модулей, которые объединяют в себе последовательно соединенные полупроводниковые фотоэлементы. Чтобы понять принципы функционирования такой батареи, необходимо разобраться в работе этого конечного звена в устройстве гелиопанели, созданного на базе полупроводников.
Виды кристаллов фотоэлементов
Вариантов ФЭП из разных химических элементов существует огромное количество. Однако большая их часть – это разработки на начальных стадиях. В промышленных масштабах сейчас выпускаются пока что только панели из фотоэлементов на основе кремния.
Кремниевые полупроводники используются при изготовлении солнечных батарей из-за своей дешевизны, особо высоким КПД они похвастаться не могут
Обычный фотоэлемент в гелиопанели – это тонкая пластина из двух слоев кремния, каждый из которых имеет свои физические свойства. Это классический полупроводниковый p-n-переход с электронно-дырочными парами.
При попадании на ФЭП фотонов между этими слоями полупроводника из-за неоднородности кристалла образуется вентильная фото-ЭДС, в результате чего возникает разность потенциалов и ток электронов.
Кремниевые пластины фотоэлементов различаются по технологии изготовления на:
Первые имеют более высокий КПД, но и себестоимость их производства выше, нежели у вторых. Внешне один вариант от другого на солнечной панели можно различить по форме.
У монокристаллических ФЭП однородная структура, они выполняются в виде квадратов со срезанными углами. В отличие от них поликристаллические элементы имеют строго квадратную форму.
Поликристаллы получаются в результате постепенного охлаждения расплавленного кремния. Метод этот предельно прост, поэтому такие фотоэлементы и стоит недорого.
Но производительность в плане выработки электроэнергии из солнечных лучей у них редко превышает 15%. Связано это с “нечистотой” получаемых кремниевых пластин и внутренней их структурой. Здесь чем чище p-слой кремния, тем более высокий выходит КПД у ФЭП из него.
Чистота монокристаллов в этом отношении гораздо выше, нежели у поликристаллических аналогов. Их делают не из расплавленного, а из искусственно выращенного цельного кристалла кремния. Коэффициент фотоэлектрического преобразования у таких ФЭП уже достигает 20-22%.
В общий модуль отдельные фотоэлементы собираются на алюминиевой раме, а для защиты их сверху закрывают прочным стеклом, которое нисколько не препятствует солнечным лучам
Обращенный к солнцу верхний слой пластинки-фотоэлемента делается из того же кремния, но уже с добавлением фосфора. Именно последний будет источником избыточных электронов в системе p-n-перехода.
Принцип работы солнечной панели
При падении солнечных лучей на фотоэлемент в нем генерируются неравновесные электронно-дырочные пары. Избыточные электроны и «дырки» частично переносятся через p-n-переход из одного слоя полупроводника в другой.
В итоге во внешней цепи появляется напряжение. При этом на контакте p-слоя формируется положительный полюс источника тока, а на n-слоя – отрицательный.
Разность потенциалов (напряжение) между контактами фотоэлемента появляется из-за изменения числа «дырок» и электронов с разных сторон p-n-перехода в результате облучения n-слоя солнечными лучами
Подключенные к внешней нагрузке в виде аккумулятора фотоэлементы образуют с ним замкнутый круг. В результате солнечная панель работает, как своеобразное колесо, по которому вместе белки “бегают” электроны. А аккумуляторная батарея при этом постепенно набирает заряд.
Стандартные кремниевые фотоэлектрические преобразователи являются однопереходными элементами. Переток в них электронов происходит только через один p-n-переход с ограниченной по энергетике фотонов зоной этого перехода.
То есть каждый такой фотоэлемент способен генерировать электроэнергию только от узкого спектра солнечного излучения. Вся остальная энергия пропадает впустую. Поэтому-то и эффективность у ФЭП так низка.
Чтобы повысить КПД солнечных батарей, кремниевые полупроводниковые элементы для них в последнее время стали делать многопереходными (каскадными). В новых ФЭП переходов уже несколько. Причем каждый из них в этом каскаде рассчитан на свой спектр солнечных лучей.
Суммарная эффективность преобразования фотонов в электроток у таких фотоэлементов в итоге возрастает. Но и цена их значительно выше. Здесь либо простота изготовления с невысокой себестоимостью и низким КПД, либо более высокая отдача вкупе с высокой стоимостью.
Солнечная батарея может работать как летом, так и зимой (ей нужен свет, а не тепло) – чем меньше облачность и ярче светит солнце, тем больше гелиопанель сгенерирует электрического тока
При работе фотоэлемент и вся батарея постепенно греется. Вся та энергия, что не пошла на генерацию электротока, трансформируется в тепло. Часто температура на поверхности гелиопанели поднимается до 50–55 °С. Но чем она выше, тем менее эффективно работает фотогальванический элемент.
В итоге одна и та же модель солнечной батареи в жару генерирует тока меньше, нежели в мороз. Максимум КПД фотоэлементы показывают в ясный зимний день. Тут сказываются два фактора – много солнца и естественное охлаждение.
При этом если на панель будет падать снег, то электроэнергию она генерировать все равно продолжит. Более того, снежинки даже не успеют на ней особо полежать, растаяв от тепла нагретых фотоэлементов.
Эффективность батарей гелиосистемы
Один фотоэлемент даже в полдень при ясной погоде выдает совсем немного электроэнергии, достаточной разве что для работы светодиодного фонарика.
Чтобы повысить выходную мощность, несколько ФЭП объединяют по параллельной схеме для увеличения постоянного напряжения и по последовательной для повышения силы тока.
Эффективность солнечных панелей зависит от:
- температуры воздуха и самой батареи;
- правильности подбора сопротивления нагрузки;
- угла падения солнечных лучей;
- наличия/отсутствия антибликового покрытия;
- мощности светового потока.
Чем ниже температура на улице, тем эффективней работают фотоэлементы и гелиобатарея в целом. Здесь все просто. А вот с расчетом нагрузки ситуация сложнее. Ее следует подбирать исходя из выдаваемого панелью тока. Но его величина меняется в зависимости от погодных факторов.
Гелиопанели выпускаются с расчетом на выходное напряжение, кратное 12 В – если на аккумулятор надо подать 24 В, то две панели к нему придется подсоединить параллельно
Постоянно отслеживать параметры солнечной батареи и вручную корректировать ее работу проблематично. Для этого лучше воспользоваться контроллером управления, который в автоматическом режиме сам подстраивает настройки гелиопанели, чтобы добиться от нее максимальной производительности и оптимальных режимов работы.
Идеальный угол падения лучей солнца на гелиобатарею – прямой. Однако при отклонении в пределах 30-ти градусов от перпендикуляра эффективность панели падает всего в районе 5%. Но при дальнейшем увеличении этого угла все большая доля солнечного излучения будет отражаться, уменьшая тем самым КПД ФЭП.
Если от батареи требуется, чтобы она максимум энергии выдавала летом, то ее следует сориентировать перпендикулярно к среднему положению Солнца, которое оно занимает в дни равноденствия по весне и осени.
Для московского региона – это приблизительно 40–45 градусов к горизонту. Если максимум нужен зимой, то панель надо ставить в более вертикальном положении.
И еще один момент – пыль и грязь сильно снижают производительность фотоэлементов. Фотоны сквозь такую “грязную” преграду просто не доходят до них, а значит и преобразовывать в электроэнергию нечего. Панели необходимо регулярно мыть либо ставить так, чтобы пыль смывалась дождем самостоятельно.
Некоторые солнечные батареи имеют встроенные линзы для концентрирования излучения на ФЭП. При ясной погоде это приводит к повышению КПД. Однако при сильной облачности эти линзы приносят только вред.
Если обычная панель в такой ситуации будет продолжать генерировать ток пусть и в меньших объемах, то линзовая модель работать прекратит практически полностью.
Солнце батарею из фотоэлементов в идеале должно освещать равномерно. Если один из ее участков оказывается затемненным, то неосвещенные ФЭП превращаются в паразитную нагрузку. Они не только в подобной ситуации не генерируют энергию, но еще и забирают ее у работающих элементов.
Панели устанавливать надо так, чтобы на пути солнечных лучей не оказалось деревьев, зданий и иных преград.
Схема электропитания дома от солнца
Система солнечного электроснабжения включает:
Контроллер в этой схеме защищает как солнечные батареи, так и АКБ. С одной стороны он препятствует протеканию обратных токов по ночам и в пасмурную погоду, а с другой – защищает аккумуляторы от чрезмерного заряда/разряда.
Аккумуляторные батареи для гелиопанелей следует подбирать одинаковые по возрасту и емкости, иначе зарядка/разрядка будут происходить неравномерно, что приведет к резкому снижению срока их службы
Для трансформации постоянного тока на 12, 24 либо 48 Вольта в переменный 220-вольтовый нужен инвертор. Автомобильные аккумуляторы применять в такой схеме не рекомендуется из-за их неспособности выдерживать частые перезарядки. Лучше всего потратиться и приобрести специальные гелиевые AGM либо заливные OPzS АКБ.
Выводы и полезное видео по теме
Принципы работы и схемы подключения солнечных батарей не слишком сложны для понимания. А с собранными нами ниже видеоматериалами разобраться во всех тонкостях функционирования и установки гелиопанелей будет еще проще.
Доступно и понятно, как работает фотоэлектрическая солнечная батарея, во всех подробностях:
Как устроены солнечные батареи смотрите в следующем видеоролике:
Сборка солнечной панели из фотоэлементов своими руками:
Каждый элемент в системе солнечного электроснабжения коттеджа должен быть подобран грамотно. Неизбежные потери мощности происходят на аккумуляторах, трансформаторах и контроллере. И их обязательно надо сократить до минимума, иначе и так достаточно низкая эффективность гелиопанелей окажется сведена вообще к нулю.
В ходе изучения материала появились вопросы? Или вы знаете ценную информацию по теме статьи и можете сообщить ее нашим читателям? Пожалуйста, оставляйте свои комментарии в расположенном ниже блоке.
Источник sovet-ingenera.com
Принцип работы и устройство солнечной батареи
Принцип работы и устройство солнечной батареи
В профессиональных кругах панели, преобразующие солнечный свет в электроэнергию, называют фотоэлектрическими преобразователями, которые в разговорной речи или при написании понятных для широких масс статей принято называть солнечными батареями. Принцип работы этих устройств, первые рабочие экземпляры которых появились достаточно давно, на самом деле достаточно простой для понимания человеком, имеющим только знания со школьной скамьи.
Не секрет, что p-n переход может преобразовывать свет в электроэнергию. В школьных опытах нередко проводят эксперимент с транзистором со спиленной верхней крышкой, позволяющей свету падать на p-n переход. Подключив к нему вольтметр, можно зафиксировать, как при облучении светом такой транзистор выделяет мизерный электрический ток. А если увеличить площадь p-n перехода, что в таком случае произойдет? В ходе научных экспериментов прошлых лет, специалисты изготовили p-n переход с пластинами большой площади, вызвав тем самым появление на свет фотоэлектрических преобразователей, называемых солнечными батареями.
Принцип действия современных солнечных батарей сохранился, несмотря на многолетнюю историю их существования. Усовершенствованию подверглась лишь конструкция и материалы, используемые в производстве, благодаря которым производители постепенно увеличивают такой важный параметр, как коэффициент фотоэлектрического преобразования или КПД устройства. Стоит также сказать, что величина выходного тока и напряжения солнечной батареи напрямую зависит от уровня внешней освещенности, который воздействует на неё.
В структуре солнечной батареи используется p-n переход и пара электродов для снятия выходного напряжения
На картинке выше можно видеть, что верхний слой p-n перехода, который обладает избытком электронов, соединен с металлическими пластинами, выполняющими роль положительного электрода, пропускающими свет и придающими элементу дополнительную жесткость. Нижний слой в конструкции солнечной батареи имеет недостаток электронов и к нему приклеена сплошная металлическая пластина, выполняющая функцию отрицательного электрода.
Технология, по которой изготовлена солнечная батарея, влияет на её КПД
Считается, что в идеале солнечная батарея имеет близкий к 20 % КПД. Однако на практике и по данным специалистов сайта www.sun-battery.biz он примерно равен всего 10 %, при том, что для каких солнечных батарей больше, для каких то меньше. В основном это зависит от технологии, по которой выполнен p-n переход. Самыми ходовыми и имеющими наибольший процент КПД продолжают являться солнечные батареи, изготовленные на основе монокристалла или поликристалла кремния. Причем вторые из-за относительной дешевизны становятся все распространеннее. К какому типу конструкции солнечная батарея относится можно определить невооруженным глазом. Монокристаллические светопреобразователи имеют исключительно чёрно-серый цвет, а модели на основе поликристалла кремния выделяет синяя поверхность. Поликристаллические солнечные батареи, изготавливаемые методом литья, оказались более дешевыми в производстве. Однако и у поли- и монокристаллических пластин есть один недостаток — конструкции солнечных батарей на их основе не обладают гибкостью, которая в некоторых случаях не помешает.
Ситуация меняется с появлением в 1975 году солнечной батареи на основе аморфного кремния, активный элемент которых имеет толщину от 0,5 до 1 мкм, обеспечивая им гибкость. Толщина обычных кремниевых элементов достигает 300 мкм. Однако, несмотря на светопоглощаемость аморфного кремния, которая примерно в 20 раз выше, чем у обычного, эффективность солнечных батарей такого типа, а именно КПД не превышает 12 %. Для моно- и поликристаллических вариантов при всем этом он может достигать 17 % и 15 % соответственно.
Материал, из которого изготовлены пластины, влияет на характеристики солнечных батарей
Чистый кремний в производстве пластин для солнечных батарей практически не используется. Чаще всего в качестве примесей для изготовления пластины, вырабатывающей положительный заряд, используется бор, а для отрицательно заряженных пластин мышьяк. Кроме них при производстве солнечных батарей все чаще используются такие компоненты, как арсенид, галлий, медь, кадмий, теллурид, селен и другие. Благодаря ним солнечные батареи становятся менее чувствительными к перепадам окружающих температур.
Большинство солнечных батарей могут накапливать энергию, представляя собой системы
В современном мире отдельно от других устройств солнечные батареи используются все реже, чаще представляя собой так называемые системы. Учитывая, что фотоэлектрические элементы вырабатывают электрический ток только при прямом воздействии солнечных лучей или света, ночью или в пасмурный день они становятся практически бесполезными. С системами на солнечных батареях всё иначе. Они оборудованы аккумулятором, способным накапливать электрический ток днем, когда солнечная батарея его вырабатывает, а ночью, накопленный заряд может отдавать потребителям.
Солнечная система представляет собой совокупность солнечной батареи и аккумулятора
Для увеличения мощности, выходного напряжения и тока на основе солнечных батарей создаются панели, где отдельные элементы соединяются последовательно или параллельно.
Принцип работы солнечных батарей
11.03.2019
Солнечные батареи сегодня применяются практически во всех сферах нашей жизни, зарядные устройства, уличные фонари, электромобили и много других областей где востребована солнечная энергия. Если вы хотите подробнее разобраться, как же работают эти устройства, из чего состоят и на что способны, читайте нашу статью.
Немного истории солнечной энергетики
Самым первым изобретенным устройством преобразующем были солнечные коллектора, которые изначально использовались как термальные электростанции, на которых электричество вырабатывается от нагретой до температуры кипения воды. Их использовали на термальных станциях, где с помощью вращения водяным паром турбины получали электричество.
Но немного позже, был изобретен более эффективный путь добычи электроэнергии из солнечных лучей – солнечные батареи. При прямой переработке лучей в энергию, потери значительно меньше, а эффективность намного выше.
На сегодняшний день солнечные батареи состоят из набора фотоэлементов, связанных в цепь. Фотоэлемент – это полупроводниковое устройство, которое непосредственно превращает луч в электрический ток. Этот процесс в физике называется фотоэлектрическим эффектом.
Фотоэлектрический эффект был открыт Александром Беккерелем в 19 веке, однако в то время это была лишь теория. Спустя полвека был создан первый фотоэлемент, который сконструировал А. Столетов.
Солнечная батарея: принцип работы
А теперь немного физики.
Полупроводник – это материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип).
Исходя из этого свойства полупроводника и был создан фотоэлемент, который вмещает в себя два слоя с разной проводимостью: n-слой – используется как катод, а p-слой – как анод.
А сам процесс выглядит так: лишние электроны с n-слоя покидают свои атомы, в то время как p-слой их собирает. А лучи солнечного света вытесняют электроны из атомов n-слоя, которые тут же захватывает p-слой. Дальше все происходит по кругу, выходя с p –слоя электроны проходят через нагрузку (в данном примере через аккумулятор) и возвращаются на n-слой.
После понимания какие перспективы за этим стоят, ученые стали искать, какой же материал лучше всего подойдет для этих процессов. И первый современный фотоэлектрический элемент сделали из селена. После проведения ряда экспериментов, было выявлено что КПД процесса с использованием селена, еле достигал 1%, что конечно было не эффективно. Поиски нужного материала и эксперименты продолжались.
Современный фотоэлемент состоит из кремния, он достаточно эффективен (КПД от 15 до 25%) и доступен для массового производства. Однако разработки в этом направлении не прекращаются. Целью на сегодняшний день является упрощение и удешевление процесса производства фотоэлементов, а также повышение КПД.
Солнечная панель – состоит из набора фотоэлементов, связанных в электрическую сеть, так как по одному они мало эффективны. В зависимости от количества таких элементов, определяется и мощность всей панели или солнечной батареи.
Конструкция самой батареи состоит из рамы, на которой располагаются фотоэлементы, закрепленные таким образом, чтобы имелась возможность из заменить по одному, и сверху защитная прозрачная панель из стекла или сверхпрочного пластика, который защищает панель от атмосферных осадков и других объектов.
Разновидности солнечных батарей
Классификация солнечных панелей происходит по мощности и типу используемых элементов.
Элементы могут быть монокристаллические (из цельного кристалла кремния), поликристаллические (из сплава нескольких кусочков кремния) и аморфные (то есть гибкие).
Для того чтобы на примере рассмотреть работу солнечных батарей, определим мощность солнечного потока. На экваторе мощность солнечных лучей достигает 1 кВт, в нашем регионе при пасмурной погоде она может опускаться ниже отметки 100 Вт. Для примера возьмем среднее значение в 500 Вт.
Гибкие или аморфные солнечные батареи, изготавливаются на гибкой основе и могут покрывать неровные радиусные поверхности. При их производстве используются органические или химические элементы. У них самый низкий КПД около 5-10% . То есть такая панель, площадью 1 м2 при мощности солнечных лучей 500 Вт произведет 25 – 50 Вт электроэнергии.
Монокристаллические и поликристаллический батареи как упоминалось выше, изготовлены из кремниевых полупроводников. Их коэффициент преобразования 20-25%. Панель размером 1м2 выработает около 125 Вт энергии.
Ученые и дальше продолжают работать над сплавами, которые могут повысить эффективность солнечных батарей. Передовыми разработками на сегодняшний день являются решения на основе арсенида галлия, который способен повысить эффективность батарей до 35-40%.
В зависимости от нужной мощности батареи имеют разные типоразмеры. От совсем маленьких на 10-50 Вт (портативные, которые подходят для туризма, позволяют заряжать телефоны, планшеты и фотоаппараты) до больших 200 — 300 Вт (1-1,5м2), которые обычно устанавливают стационарно для снабжения электричеством дома или дачи.
Стабильность работы солнечной батареи и эффективность зависит от окружающей температуры, затенения, угла установки, смены сезона – все эти факторы могут значительно снизить производительность.
Например, при очень высоких температурах, производительность фотоэлемента сильно снижается. А если часть элементов на панели затенить, то производительность упадет у всех, даже хорошо освещенных.
Поэтому важно правильно выбирать место и способ установки таких панелей.
Крупнейшие производители солнечных батарей
Мировыми лидерами среди производителей являются китайские заводы, такие как Suntech, Yingli, Trina Solar.
Также не сдают позиции США- First Solar и японская компания Sharp, с ее солнечным подразделением Sharp Solar.
Все эти компании имеют большие заводы, лаборатории разработки и испытаний произведенных модулей.
Американская компания First Solar кроме производства принимает активное участие в проектировании и строительстве крупнейших солнечных станций в Америке. Например инженеры этой компании спроектировали мощнейшую в мире СЭС Агуа-Калиенте, которая находится в штате Аризона.
В Украине также наметилась положительная тенденция для солнечной энергетики. Самой крупной станцией считается СЭС «Перово» расположенная в Крыму общая мощность которой 105,56 МВт. Построена австрийской компании производителем солнечных панелей Activ Solar.
Крупная китайская компания Suntech известна тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.
Солнечные батареи принцип работы, подключение для частного дома
Одним из преимуществ загородного коттеджа и дачного домика является возможность их последующей модификации, включая полную или частичную модернизацию централизованной сети электроснабжения. Для этого широко используются автономные системы, работающие на альтернативных источниках энергии. И больше всего привлекает людей солнечная энергия. Технология, которая изначально разрабатывалась для нужд космической промышленности, доступна сегодня и в гражданском строительстве.
Эксперты в области мировой энергетики сходятся во мнении, что применение в быту стационарных электростанций, функционирующих на солнечных батареях, — самый «безболезненный» для экологии способ добычи природных ресурсов. Единственной проблемой, с которой сталкиваются владельцы частных домов, является выбор оптимальной конструкции и модели гелиосистемы с учетом экономической выгоды и прироста показателей КПД.
В этой статье мы затронем принцип действия солнечных панелей, рассмотрим популярные способы монтажа гелиоустановок и расскажем о важных аспектах эксплуатации оборудования, которые помогут определиться с выбором конфигурации электростанции для бытового использования.
Принцип работы «домашней» гелиосистемы
Рабочими элементами солнечной батареи для частного дома выступают фотоэлектрические пластины. Они поглощают инфракрасное излучение от солнца и генерируют бесплатные природные экоресурсы в постоянный электрический ток.
Чтобы фотопанели работали исправно и обеспечивали необходимую мощность, их соединяют между собой, чередуя параллельный и последовательный методы подключения. Постоянный электрический ток, в зависимости от конструкции, поступает на инвертор, где преобразуется в переменный ток 220 V, или временно «оседает» в аккумулирующих емкостях.
Второй вариант более практичный, так как накопление электроэнергии «на запас» позволяет:
- исключить резкие перепады напряжения в домашней сети;
- рационально использовать полученные ресурсы;
- автоматически или вручную регулировать интенсивность работы электростанции.
При правильном монтаже КПД современных гелиосистем держится на уровне 35–40%. Модульные солнечные батареи для дома демонстрируют максимальные показатели эффективности в южных регионах России, где хорошая погода стоит больше 200 дней в году.
При установке солнечных батарей для частного дома крайне важно учитывать не только район, но и географическую широту, поскольку ближе к полюсам излучение солнца менее интенсивно. Но даже в северных и восточных регионах использование альтернативной энергии позволит вам сэкономить на потреблении традиционно «домашних» ресурсов.
Варианты фотоэлектрических элементов
Как было сказано ранее, генерация электрического тока происходит в момент соприкосновения лучей солнца с поверхностью фотоэлементов. Воздействие инфракрасного излучения смещает электроны с их «родных» орбит, в результате чего создается направленное движение заряженных ионов. При грамотном монтаже одна солнечная панель площадью 10 кв. м способна вырабатывать порядка 1 кВт энергии. На мощность бытовых гелиосистем оказывают влияние характеристики фотоэлемента.
1) Монокристаллический кремний
Такие солнечные батареи для дома отличаются достаточно легким весом, компактными размерами, а также продолжительным сроком эксплуатации. Их очень удобно монтировать, вот только монокристаллические фотоэлементы требовательны к интенсивности солнечного излучения и направленности лучей. Даже небольшая облачность критична для солнечной батареи, поскольку практически всегда приводит к прекращению генерации электричества от солнца.
Толщина панелей колеблется в пределах 200–300 мкм, а КПД при хорошей погоде и правильном расположении конструкции держится на уровне 17–19%. Недостаток — высокая стоимость для частных домов.
2) Поликристаллический кремний
В среднем срок эксплуатации составляет 15-20 лет, КПД – 14%. По электрическим характеристикам поликристаллические фотоэлементы уступают монокристаллу.
Но благодаря тому, что кристаллы кремния направлены в разные стороны, пластины на солнечных батареях хорошо улавливают рассеянные световые пучки, а потому намного меньше «страдают» при отсутствии солнца.
3) Тонкопленочные панели
В данном случае используется светопоглощающая пленка, которая «впитывает» энергию солнца даже при пасмурной погоде. Вот только КПД у них держится на уровне 8–10%, но этот недостаток с лихвой компенсируется низкой стоимостью.
Тонкопленочные фотоэлементы можно установить в любом удобном месте кровли или стены здания. Они не притягивают пыль и даже работают при неблагоприятных условиях окружающей среды, но при малой интенсивности солнечного излучения КПД снижается на 15%. Недостаток — требуется большая площадь для монтажа.
Различают также фотоэлементы из аморфного кремния, которые представляют собой эконом-вариант для дачных домиков (КПД 7–8%), и панели из теллуида кадмия, изготовленные по пленочной технологии, — КПД в районе 9–11%.
Схемы подключения солнечных батарей
Выделяют несколько основных категорий фотоэлектрических систем энергоснабжения частного дома (ФСЭ), которые различаются между собой по техническим параметрам и функциональным характеристикам.
К первой группе относят полностью автономные (закрытые) системы, которые не интегрированы в централизованную сеть электроснабжения. Солнечные генераторы функционируют в собственном контуре, а бытовые приборы подключены напрямую. Показатели КПД возрастают после установки аккумуляторных батарей и контроллера заряда.
Вторую группу представляет система солнечных батарей открытого типа. По умолчанию аккумулирующие емкости в ней не предусмотрены. ФСЭ подключены к централизованной сети электроснабжения через инвертор. При допустимом значении потребляемой мощности работают только фотопанели, которые генерируют ток напрямую. Если нагрузка возрастает, потребление электричества производится из традиционных источников. Такие гелиосистемы стоят недорого, но и не отличаются высокой эффективностью.
К третьей категории относят комбинированные ФСЭ, которые обладают характеристиками гелиосистем открытого и закрытого типа. Такие конструкции отличаются высокой стоимостью, поскольку их работа связана с использованием аккумуляторных батарей повышенной емкости и сетевых многофункциональных преобразователей.
Обогрев дома при помощи солнечных панелей
Для автономного отопления частного дома стандартные гелиосистемы применяют в основном на юге России, где тепловая энергия является первоосновным источником электричества. Владельцам дачных домов и небольших коттеджей целесообразнее приобретать для нагрева воды бытовой коллектор.
Выбор конкретной схемы подключения напрямую зависит от условий эксплуатации оборудования и личных потребностей. Как показывает практика, использование солнечных батарей в зимний период дает возможность сэкономить на традиционных энергоносителях до 25% всех затрат, в зависимости от температуры окружающей среды.
Стандартный комплект оборудования
Чтобы обеспечить частный дом электроэнергией по «зеленым» тарифам, одних только солнечных панелей недостаточно. Базовая комплектация, помимо фотоэлементов, в обязательном порядке подразумевает применение вспомогательного оборудования:
- аккумулирующие емкости;
- сетевой инвертор;
- контроллер заряда АКБ.
Если вы решили самостоятельно сделать электростанцию, работающую от солнечных батарей, не выбирайте для накопления электроэнергии автомобильные аккумуляторы — их срок службы при интенсивной нагрузке составляет всего 2-3 года, поэтому такие «батарейки» придется регулярно менять.
Гелиосистемы на основе вакуумного коллектора или солнечного модуля для нагрева воды дополнительно комплектуются насосом для постоянной циркуляции теплоносителя, водяным котлом емкостью до 1000 л и электрическими тэнами.
Таким образом, солнечные энергоресурсы можно использовать для электроснабжения, горячего водоснабжения или отопления, включая систему «теплый пол». Чтобы подобрать наиболее подходящий вариант для автономного дома, надо предварительно рассчитать суммарную мощность потребления бытовых приборов, а также обязательно учесть уровень инсоляции, месторасположение и угол наклона фотопанелей, среднее количество солнечных дней в году.
Способы монтажа бытовых гелиоустановок
В установке солнечных батарей нет ничего сложного. Самое главное — грамотно разместить модули. При монтаже важно придерживаться определенного угла наклона, который должен соответствовать географической широте местности. В процессе установки нужно также соблюдать азимут. Для северо-восточных он составляет 180 градусов.
Зимой КПД электростанции с солнечными батареями может упасть до минимальных значений, поскольку обильные снегопады будут препятствовать попаданию лучей солнца на наружную поверхность фотоэлектрических элементов. Поэтому при монтаже важно учесть, что на крыше потребуется свободное место для очистки конструкции от налипшего снега и грязи. Впрочем, этих хлопот можно избежать, если зафиксировать солнечные панели на поверхности южной стены под углом 60–80 градусов. На практике для коттеджей применяют разные варианты расположения фотоэлектрических модулей:
- кровля — дополнительно потребуется установка надежной опорной конструкции из металлопрофилей или направляющих рельс;
- стены — в данном случае на фасад здания монтируется рамная система для удержания фотопанелей «на весу»;
- приусадебная территория — альтернативный вариант расположения батарей, когда кровля дома сильно затенена или не рассчитана на дополнительную нагрузку.
Свободное размещение имеет множество преимуществ, но требует наличия достаточного пространства на приусадебном участке. Чтобы автоматизировать процесс наклона и движения фотоэлектрических панелей по ходу солнца, дополнительно рекомендуется использовать специальные шарнирные конструкции с электроприводом.
Окупаемость и срок эксплуатации
Применение солнечных батарей позволит сэкономить на освещении и отоплении, независимо от времени года. Самые большие показатели энгергоэффективности гелиосистемы демонстрируют в южных широтах, где количество солнечных дней преобладает. Это и неудивительно, так как обязательным условием высокопродуктивной работы электростанции является стабильное поступление инфракрасного излучения и видимого света на поверхность фотоэлектрических элементов.
По статистике, солнечные батареи для частного дома мощностью 4–5 кВт при постоянном использовании окупают себя за 8–10 лет, после чего работают впрок. При этом срок эксплуатации составляет в среднем 20-25 лет, а вот аккумуляторные батареи придется менять через каждые 5-6 лет. Многим такие сроки окупаемости покажутся большими, но в действительности оно того стоит, учитывая, что в скором времени ископаемых ресурсов на планете практически не останется, а стоимость одного киловатта электроэнергии возрастет в разы.
Доступными словами принципы работы солнечных батарей
Почти 100% всей энергии, которую мы используем в повседневной жизни – это энергия солнца, так или иначе преобразованная. Уголь – это умершие растения, которые жили благодаря фотосинтезу, нефть – растения и животные, которые вымерли миллионы лет назад и росли за счет энергии солнца. Даже когда вы сжигаете дрова – вы даете выход солнечной энергии, которую в себя впитала древесина. По сути, любая тепловая электростанция преобразовывает аккумулированную в виде угля, нефти, газа и др. ископаемых солнечную энергию в электричество.
Солнечная батарея просто делает это напрямую, без участия «посредников». Электричество – наиболее удобная форма применения солнечной энергии. Весь быт человечества сейчас построен вокруг электричества, и цивилизацию без него очень сложно представить. Несмотря на то, что первые фотоэлементы появились более полувека назад, солнечная энергетика пока не нашла должного распространения. Почему? Об этом в конце статьи, а пока разберемся, как это все работает.
Все дело в кремнии
Солнечные батареи состоят из ячеек меньшего размера – фотоэлементов, которые сделаны из кремния.
Солнечная панель состоит из нескольких фотоэлементов.
Важно. Кремний – наиболее распространенный полупроводник на Земле (около 30% всей земной коры)
Кремний располагается между двумя токопроводящими слоями.
«Сэндвич» из кремния и токопроводящих слоев
Каждый атом кремния соединен с соседними четырьмя сильными связями, которые удерживают электроны на месте, поэтому так ток течь не может.
Структура атомов кремния
Для того, чтобы получить ток используют два различных слоя кремния:
- Кремний N-типа имеет избыток электронов
- Кремний Р-типа – дополнительные места для электронов (дырки)
Кремний Р и N типа
Там, где соединяются два типа кремния, электроны могут перемещаться через Р-N переход, оставляя положительный заряд на одной стороне и отрицательный на другой.
Чтобы это было легче представить, лучше думать о свете, как о потоке частиц (фотонов), которые ударяются о нашу ячейку настолько сильно, что выбивает электрон из его связи, оставляя дырку. Отрицательно заряженный электрон и место положительно заряженной дырки теперь могут свободно перемещаться, но т.к. мы имеем электрическое поле на Р-N переходе, они движутся только в одном направлении. Электрон – в сторону N-проводника, дырка стремится на Р — сторону пластины.
После «освобождения» электрон стремится к проводнику
Все электроны собираются металлическими проводниками вверху ячейки и уходят во внешнюю сеть, питая токоприемники, аккумуляторы для солнечных батарей или электрический стул для хомяка 🙂 . После проведенной работы электроны возвращаются к обратной стороне пластины и занимают места в тех самых «дырках».
Работа фотоэлемента
Стандартная пластина, 150х150 мм номинально вырабатывает только 0,5 вольта, но если объединить их в одну большую панель, то можно получить бо́льшую мощность и вольтаж. Для зарядки мобильника нужно объединить 12 таких пластин. Для питания дома нужно затратить гораздо больше пластин и панелей.
Благодаря тому, что в фотоэлементах единственной подвижной частью являются электроны, солнечные панели не нуждаются в обслуживании и могут служить 20-25 лет не изнашиваясь и не ломаясь.
Почему человек не перешел на солнечную энергию полностью?
Можно много рассуждать о политике, бизнесе и прочей конспирологии, но в рамках этой статьи хотелось бы рассказать о других проблемах.
- Неравномерное распределение солнечной энергии по поверхности планеты. Одни области более солнечные, чем другие и это тоже непостоянною. Солнечной энергии гораздо меньше в пасмурные дни и совсем нет ночью. И чтобы полностью рассчитывать на солнечную энергию, необходимы эффективные способы получения электричества для всех областей.
- КПД. В лабораторных условиях удалось достичь результата в 46%. Но коммерческие системы не достигают даже 25% эффективности.
- Хранение. Самым слабым звеном в солнечной энергетике является отсутствие эффективного и дешевого способа сохранять полученную электроэнергию. Существующие аккумуляторные батареи тяжелы и значительно снижают эффективность и без того слабые показатели солнечной системы. В целом, хранить 10 тонн угля проще и удобнее, чем 46 мегаватт, выработанных этим же углем или солнцем.
- Инфраструктура. Для того, чтобы питать мегаполисы – площадей крыш этих городов будет недостаточно, чтобы удовлетворить все запросы, поэтому для внедрения солнечной энергетики нужно транспортировать энергию, а для этого необходимо строить новые энергетические объекты
Видео о том, как производят солнечные батареи.
В ролике подробно описывается процесс изготовления поликристаллических солнечных батарей, принцип их работы в системе солнечных электростанций, принцип работы контроллера заряда и инвертора.
Бестопливный генератор — способ заработать на безграмотности Плюсы и минусы вертикальных ветрогенераторов, их виды и особенности Как выбрать солнечную панель — обзор важных параметров Ветряк для частного дома — игрушка или реальная альтернатива
Устройство солнечной батареи. Теория
Состав и устройство солнечной батареи, ее элементов определяют эффективность выработки энергии готовым изделием. В настоящее время, для генерации электрической энергии используются солнечные панели на основе кремния (с-Si, mc-Si & кремниевые тонкопленочные батареи), теллурида кадмия CdTe, соединения медь-индий (галлий)-селен Cu(InGa)Se2, а также концентраторные батареи на основе арсенида галлия (GaAs). Ниже будут даны краткие описания каждой из них.
Солнечные батареи основе кремния
Солнечные батареи (СБ) на основе кремния составляют на сегодняшний день порядка 85% всех выпускаемых солнечных панелей. Исторически это обусловлено тем, что при производстве СБ на основе кремния использовался обширный технологический задел и инфраструктура микроэлектронной промышленности, основной «рабочей лошадкой» которой также является кремний. В результате, многие ключевые технологии микроэлектронной промышленности такие как выращивания кремния, нанесения покрытий, легирования, удалось адаптировать для производства кремниевых батарей с минимальными изменениями и инвестициями. Кроме того, кремний – один из самых распространенных элементов земной коры и составляет по разным данным 27-29% по массе. Таким образом, нет никаких физических ограничений для производства значительной доли электроэнергии Земли с имеющимися запасами Si.
Различают два основных типа кремниевых СБ – на основе монокристаллического кремния (crystalline-Si, c-Si) и на основе мультикристаллического (multicrystalline-Si, mc-Si) или поликристаллического. В первом случае используется высококачественный (и, соответственно, более дорогой) кремний выращенный по методу Чохральского, который является стандартным методом для получения кремниевых пластин-заготовок для производства микропроцессоров и микросхем. Эффективность СБ изготовленных из монокристаллического кремния составляет обычно 19-22%. Не так давно, фирма Panasonic заявила о начале промышленного выпуска СБ с эффективностью 24,5% (что вплотную приближается к максимально возможному теоретически значению ~30%).
Во втором случае для производства СБ используется более дешевый кремний произведенный по методу направленной кристаллизации в тигле (block-cast), специально разработанного для производства СБ. Получаемые в результате кремниевые пластины состоят из множества мелких разнонаправленных кристаллитов (типичные размеры 1-10мм) разделенных границами зерен. Подобные неидеальности кристаллической структуры (дефекты) приводят к снижению эффективности – типичные значения эффективности СБ из mc-Si составляют 14-18%. Снижение эффективности данных СБ компенсируется их меньшей ценой, так что цена за один ватт произведенной электроэнергии оказывается примерно одинаковой для солнечных панелей как на основе c-Siтак и mc-Si.
Тонкопленочные солнечные панели
Возникает вопрос – зачем разрабатывать другие типы модулей, если солнечные панели на основе моно- и мультикристаллического кремния уже созданы и показывают неплохие результаты? Очевидный ответ — чтобы добиться еще большего снижения стоимости и улучшения технологичности и эффективности, по сравнению с обычными c-Si и mc-Siсолнечными батареями.
Дело в том, что обычные кремниевые фотоэлектрические модули наряду с преимуществами, перечисленными выше, обладают и рядом недостатков. Кемний из-за своих особых электрофизических свойств (непрямозонный полупроводник) обладает довольно низким коэффициентом поглощения, особенно в области инфракрасных длин волн. Таким образом, толщина кремниевой пластины для эффективного поглощения солнечного излучения должна составлять довольно внушительные 100-300 мкм. Более толстые пластины означают больший расход материала, что ведет к удорожанию СБ.
В то же время, прямозонные полупроводники на вроде GaAs, CdTe, Cu(InGa)Se2, и даже некоторые модифицированные формы Si, способны поглощать требуемое количество солнечной энергии при толщине всего в несколько микрон. Открывается заманчивая перспектива сэкономить на расходных материалах, а также на электроэнергии, которой требуется значительно меньше для изготовления более тонкого слоя полупроводника. Еще одной положительной чертой СБ на основе вышеназванных полупроводников – в отличие от СБ на основе c-Si и mc-Si– является их способность не снижать эффективность преобразования солнечной энергии в электрическую даже в условиях рассеянного излучения (облачный день или в тени).
Исследования СБ на основе теллурида кадмия (CdTe) начались еще в 1970х годах ввиду их потенциального использования в качестве перспективных для космических аппаратов. А первое широкое применение «на земле» подобные СБ нашли в качестве элементов питания карманных микрокалькуляторов.
Данные элементы представляют собой гетероструктуру из тонких слоев p-CdTe / n-CdS (суммарная толщина 2-8 мкм) напыленных на стеклянную подложку (основу). Эффективность современных фотоэлектрических элементов данного типа равняется 15-17%. Основным (и фактически единственным) производителем СБ на основе теллурида кадмия является американская фирма FirstSolar, которая занимает 4-5% всего рынка.
К сожалению, есть проблемы с обоими элементами входящими в состав соединения CdTe. Кадмий – это экологически вредный тяжелый метал, который требует особых методов обращения и ставит сложный вопросутилизации старых изделий. В виду этого, законодательство многих стран ограничивает свободную продажу гражданам СБ этого типа (строятся только масштабных солнечных электростанций под гарантии утилизации от фирмы производителя). Второй элемент – теллур, довольно редко встречается в земной коре. Уже в настоящее время более половины всего добываемого теллура идет на изготовление солнечных панелей, а перспективы нарастить добычу – довольно призрачны.
Солнечные батареи на основе соединения медь-индий (галлий)-селен Cu(InGa)Se2 (иногда обозначаются как CIGS) являются новичками на рынке солнечной энергетики. Несмотря на то, что начало исследований элементов этого типа было положено еще в середине 70х, в настоящее время коммерческий выпуск в боле-менее солидных масштабах ведет всего лишь фирма SolarFrontierKKиз Японии. Отчасти это связано с технически сложным и дорогим процессом изготовления, хотя в некоторых (удачных!) случаях их эффективность может достигать 20%.
Несмотря на отсутствие экологически вредных элементов в составе этого соединения, значительному расширению производства данных солнечных модулей в будущем угрожает дефицит индия. Ведутся исследования с целью заменить дорогой In на более дешевые элементы и может быть скоро появятся новые изделия на основе соединения Cu2ZnSn(S,Se)4.
Фотоэлектрические модули на основе аморфного кремния a-Si:H. Тонкопленочные солнечные батареи могут быть построены также и на основе хорошо известного кремния, если удастся каким-либо образом улучшить его способности к поглощению солнечного света. Применяются две основные методики:
— увеличить путь прохождения фотонов посредством многократного внутреннего переотражения;
— использовать аморфный кремний (a-Si), обладающий гораздо большим коэффициентом поглощения чем обычный кристаллический кремний (с-Si).
По первому пути пошла австралийская фирма CSGSolarLtd, разработавшая СБ с эффективностью 10-13% при толщине слоя кремния всего 1,5 мкм. По второму – швейцарская OerlikonSolar (которую сейчас перекупили японцы), создавшая комбинированные солнечные панели на основе слоев аморфного и кристаллического кремния a-Si / с-Si эффективность которых также составляет 11-13%. Своеобразной особенностью СБ из аморфного кремния является снижение эффективности их работы при понижении температуры окружающего воздуха (у всех остальных — наоборот). Так, фирма производитель рекомендует устанавливать данные модули в странах с жарким климатом.
Концентраторные солнечные модули
Наиболее совершенные и самые дорогие на сегодняшний день солнечные модули обладают эффективностью фотоэлектрического преобразования до 44%. Они представляют собой многослойные структуры из разных полупроводников последовательно выращенных друг на друге слой за слоем. Наиболее успешной является структура состоящая из трех слоев: Ge (нижний полупроводник и подложка), GaAsи GaInP. Благодаря тому, что в подобной комбинации каждый отдельный полупроводниковый слой поглощает наиболее эффективно свой определенный диапазон солнечного спектра (определяемый шириной запрещенной зоны полупроводника), достигается наиболее полное поглощение солнечного света во всем диапазоне длин волн, недостижимое для СБ состоящих из одного типа полупроводника. К сожалению, процесс изготовления подобных многослойных полупроводниковых слоев очень сложен технически и, как следствие, весьма дорог.
Если солнечные батареи стоят очень дорого, фокусировка солнечного излучения на меньшей площади СБ может применяться как эффективный способ снижения финансовых затрат. Например, собрав при помощи линзы солнечный свет с 10 см2 и сфокусировав его на 1 см2 солнечной батареи, можно получить тоже количество электроэнергии, что и от элемента площадью 10 см2 без концентратора, но экономя при этом целых 90% площади! Но при этом, набор подобных ячеек (солнечная батарея + линза) должен быть смонтирован на подвижной механической системе, которая будет ориентировать оптику в направлении солнца в то время как оно движется по небу в течении дня, что увеличивает стоимость системы.
В настоящее время экономически оправдано использовать подобные дорогие концентраторные солнечные модули только в тех странах и регионах земного шара, где круглый год имеется в достатке прямое солнечное излучение (рассеянное излучение не может быть сфокусировано линзой). Так, французская фирма-производитель концентраторных СБ SOITEC устанавливает свои СБ в Калифорнии, ЮАР, на юге Франции (Прованс), в Испании.
Органические солнечные батареи и модули фотосенсибилизованные красителем
Но есть и новый тип тонкопленочных солнечных батарей, такой как сенсибилизированные красителем солнечные элементы, которые работают на совершенно ином принципе, чем все модули рассмотренные выше, на принципе больше напоминающем фотосинтез у растений. Но их пока нет в коммерческой продаже.
Трушин М.В. Ph.D
Солнечная Энергетическая Система — Как это работает?
Излишне говорить, что Солнце — самый большой источник возобновляемой энергии для Земли. Дело в том, что хотя Земля получает только часть энергии, генерируемой Солнцем (то есть солнечной энергии), эта часть солнечной энергии также чрезвычайно велика. Земля получает солнечную энергию в виде света и тепла. Но в современном мире слова «мощность» и «энергия» больше склоняются к «электричеству». В этой статье объясняется, как электричество извлекается из солнечной энергии и как оно используется.Как работает солнечная энергия?
Электроэнергия может быть получена из солнечной энергии с помощью фотоэлектрических или концентрированных систем солнечной энергии.
Фотогальваника (PV)
Фотогальваника напрямую преобразует солнечной энергии в электричество . Они работают по принципу фотоэлектрического эффекта. Когда некоторые материалы подвергаются воздействию света, они поглощают фотоны и выделяют свободные электроны. Это явление называется фотоэлектрическим эффектом. Фотоэлектрический эффект — это метод производства электричества постоянного тока, основанный на принципе фотоэлектрического эффекта.На основе принципа фотоэлектрического эффекта изготавливаются солнечные элементы или фотоэлектрические элементы. Они преобразуют солнечный свет в электричество постоянного тока. Но один фотоэлектрический элемент не производит достаточного количества электроэнергии. Таким образом, количество фотоэлектрических элементов смонтированы на опорной раме и электрически соединены друг с другом с образованием фотогальванический модуль или панель солнечных батарей . Обычно доступные солнечные панели варьируются от нескольких сотен ватт (скажем, 100 ватт) до нескольких киловатт (слышали когда-нибудь о солнечной панели мощностью 5 кВт?).Они доступны в разных размерах и в разных ценовых диапазонах. Солнечные панели или модули предназначены для подачи электроэнергии при определенном напряжении (скажем, 12 В), но вырабатываемый ими ток напрямую зависит от падающего света. На данный момент ясно, что фотоэлектрические модули вырабатывают электричество постоянного тока. Но в большинстве случаев нам требуется питание переменного тока, и, следовательно, солнечная энергетическая система также состоит из инвертора.Фотоэлектрическая солнечная энергетическая установка
В соответствии с требованиями к мощности несколько фотоэлектрических модулей электрически соединяются вместе, чтобы сформировать фотоэлектрическую матрицу и достичь большей мощности.Существуют разные типы фотоэлектрических систем в зависимости от их реализации.
- Фотоэлектрические системы прямого действия: Эти системы питают нагрузку только тогда, когда светит солнце. Нет накопления генерируемой энергии и, следовательно, отсутствуют батареи. Инвертор может использоваться или не использоваться в зависимости от типа нагрузки.
- Автономные системы: Этот тип системы обычно используется в местах, где питание от сети недоступно или ненадежно. Внесетевые солнечные энергосистемы не подключены ни к какой электросети.Он состоит из солнечных панелей, аккумуляторных батарей и инверторных схем.
- Системы, подключенные к сети: Эти солнечные энергетические системы связаны с сетями, так что избыточная требуемая мощность может быть получена из сети. Они могут питаться или не питаться батареями.
Концентрированная солнечная энергия
Как следует из названия, в этом типе солнечной энергетической системы солнечные лучи концентрируются (фокусируются) на небольшой площади путем размещения зеркал или линз на большой площади. Из-за этого в фокусируемой области выделяется огромное количество тепла.Это тепло можно использовать для нагрева рабочей жидкости, которая может дополнительно приводить в действие паровую турбину. Существуют различные типы технологий, которые основаны на концентрированной солнечной энергии для производства электроэнергии. Некоторые из них — параболический желоб, тарелка Стирлинга, башня солнечной энергии и т. Д. На следующей схеме показано, как работает башня солнечной энергии.солнечных батарей | Определение, принцип работы и развитие
Солнечный элемент , также называемый фотоэлектрическим элементом , любое устройство, которое напрямую преобразует энергию света в электрическую посредством фотоэлектрического эффекта.Подавляющее большинство солнечных элементов изготавливается из кремния — с повышением эффективности и снижением стоимости, поскольку материалы варьируются от аморфных (некристаллических) до поликристаллических и кристаллических (монокристаллических) форм кремния. В отличие от батарей или топливных элементов, в солнечных элементах не используются химические реакции и не требуется топливо для производства электроэнергии, и, в отличие от электрических генераторов, они не имеют движущихся частей.
диаграмма структуры солнечного элементаОбычно используемая структура солнечного элемента.Во многих таких ячейках абсорбирующий слой и задний переходный слой изготовлены из одного и того же материала.
Encyclopædia Britannica, Inc.Солнечные элементы можно объединять в большие группы, называемые массивами. Эти массивы, состоящие из многих тысяч отдельных ячеек, могут функционировать как центральные электростанции, преобразовывая солнечный свет в электрическую энергию для распределения между промышленными, коммерческими и бытовыми пользователями. Солнечные элементы в гораздо меньшей конфигурации, обычно называемые панелями солнечных батарей или просто солнечными панелями, были установлены домовладельцами на своих крышах, чтобы заменить или увеличить их обычное электроснабжение.Панели солнечных батарей также используются для выработки электроэнергии во многих удаленных земных точках, где обычные источники электроэнергии либо недоступны, либо чрезмерно дороги в установке. Поскольку у них нет движущихся частей, которые могли бы нуждаться в обслуживании, или топлива, которое потребовало бы пополнения, солнечные элементы обеспечивают питание для большинства космических установок, от спутников связи и метеорологических спутников до космических станций. (Однако солнечной энергии недостаточно для космических зондов, отправляемых к внешним планетам Солнечной системы или в межзвездное пространство, из-за рассеивания лучистой энергии по мере удаления от Солнца.) Солнечные элементы также используются в потребительских товарах, таких как электронные игрушки, карманные калькуляторы и портативные радиоприемники. Солнечные элементы, используемые в устройствах такого типа, могут использовать искусственный свет (например, от ламп накаливания и люминесцентных ламп), а также солнечный свет.
Международная космическая станцияМеждународная космическая станция (МКС) была построена секциями, начиная с 1998 года. К декабрю 2000 года основные элементы частично завершенной станции включали построенный в США соединительный узел Unity и два блока российского производства — «Заря». силовой модуль, а также начальные жилые помещения «Звезда».Российский космический корабль, на борту которого находился первый экипаж из трех человек, пришвартован в конце «Звезды». Фотография сделана с космического корабля «Индевор».
Национальное управление по аэронавтике и исследованию космического пространстваХотя общее производство фотоэлектрической энергии мизерно, оно, вероятно, увеличится по мере сокращения ресурсов ископаемого топлива. Фактически, расчеты, основанные на прогнозируемом мировом потреблении энергии к 2030 году, показывают, что глобальные потребности в энергии будут удовлетворяться за счет солнечных панелей, работающих с 20-процентной эффективностью и покрывающих лишь около 496 805 квадратных километров (191 817 квадратных миль) поверхности Земли.Потребности в материалах будут огромными, но выполнимыми, поскольку кремний является вторым по распространенности элементом в земной коре. Эти факторы побудили сторонников солнечной энергии предвидеть будущую «солнечную экономику», в которой практически все потребности человечества в энергии будут удовлетворяться за счет дешевого, чистого, возобновляемого солнечного света.
Структура и работа солнечных элементов
Солнечные элементы, независимо от того, используются ли они в центральной электростанции, спутнике или калькуляторе, имеют одинаковую базовую структуру. Свет проникает в устройство через оптическое покрытие или антиотражающий слой, который сводит к минимуму потери света на отражение; он эффективно улавливает свет, падающий на солнечный элемент, способствуя его передаче нижним слоям преобразования энергии.Антиотражающий слой обычно представляет собой оксид кремния, тантала или титана, который образуется на поверхности ячейки методом центрифугирования или вакуумного осаждения.
солнечная энергия; солнечная батареяСолнечная энергетическая установка производит мегаватты электроэнергии. Напряжение генерируется солнечными элементами, изготовленными из специально обработанных полупроводниковых материалов, таких как кремний.
Предоставлено Национальной лабораторией возобновляемых источников энергии Получите подписку Britannica Premium и получите доступ к эксклюзивному контенту.Подпишись сейчасТри слоя преобразования энергии под антиотражающим слоем — это верхний переходной слой, абсорбирующий слой, составляющий сердцевину устройства, и задний переходный слой. Два дополнительных электрических контактных слоя необходимы для отвода электрического тока к внешней нагрузке и обратно в элемент, замыкая электрическую цепь. Слой электрического контакта на поверхности ячейки, куда проникает свет, обычно присутствует в виде некоторой сетки и состоит из хорошего проводника, такого как металл.Поскольку металл блокирует свет, линии сетки должны быть настолько тонкими и широко разнесенными, насколько это возможно, без ухудшения сбора тока, производимого элементом. Задний электрический контактный слой не имеет таких диаметрально противоположных ограничений. Он должен просто функционировать как электрический контакт и, таким образом, покрывать всю заднюю поверхность ячеистой структуры. Поскольку задний слой также должен быть очень хорошим проводником электричества, он всегда делается из металла.
Поскольку большая часть энергии солнечного света и искусственного света находится в видимом диапазоне электромагнитного излучения, поглотитель солнечных элементов должен эффективно поглощать излучение на этих длинах волн.Материалы, которые сильно поглощают видимое излучение, относятся к классу веществ, известных как полупроводники. Полупроводники толщиной около одной сотой сантиметра или меньше могут поглощать весь падающий видимый свет; Поскольку переходные и контактные слои намного тоньше, толщина солнечного элемента по существу равна толщине поглотителя. Примеры полупроводниковых материалов, используемых в солнечных элементах, включают кремний, арсенид галлия, фосфид индия и селенид индия меди.
Когда свет падает на солнечный элемент, электроны в слое поглотителя возбуждаются из «основного состояния» с более низкой энергией, в котором они связаны с определенными атомами в твердом теле, в более высокое «возбужденное состояние», в котором они может двигаться сквозь твердое тело.В отсутствие слоев, образующих переход, эти «свободные» электроны находятся в беспорядочном движении, и поэтому не может быть ориентированного постоянного тока. Однако добавление слоев, образующих переход, индуцирует встроенное электрическое поле, которое создает фотоэлектрический эффект. Фактически, электрическое поле обеспечивает коллективное движение электронам, которые проходят через слои электрического контакта во внешнюю цепь, где они могут выполнять полезную работу.
Материалы, используемые для двух слоев, образующих переход, должны отличаться от поглотителя, чтобы создавать встроенное электрическое поле и пропускать электрический ток.Следовательно, это могут быть разные полупроводники (или один и тот же полупроводник с разными типами проводимости), или они могут быть металлом и полупроводником. Материалы, используемые для создания различных слоев солнечных элементов, по существу те же, что и материалы, используемые для производства диодов и транзисторов твердотельной электроники и микроэлектроники ( см. Также Electronics: Optoelectronics). Солнечные элементы и микроэлектронные устройства используют одну и ту же базовую технологию. Однако при изготовлении солнечных элементов стремятся создать устройство большой площади, поскольку вырабатываемая мощность пропорциональна освещаемой площади.В микроэлектронике цель, конечно, состоит в создании электронных компонентов все меньших размеров, чтобы увеличить их плотность и скорость работы в полупроводниковых кристаллах или интегральных схемах.
Фотогальванический процесс имеет определенное сходство с фотосинтезом, процессом, с помощью которого энергия света преобразуется в химическую энергию в растениях. Поскольку солнечные элементы, очевидно, не могут производить электроэнергию в темноте, часть энергии, которую они вырабатывают при свете, сохраняется во многих приложениях для использования, когда свет недоступен.Одним из распространенных способов хранения этой электроэнергии является зарядка электрохимических аккумуляторных батарей. Эта последовательность преобразования энергии света в энергию возбужденных электронов, а затем в запасенную химическую энергию поразительно похожа на процесс фотосинтеза.
Solar 101: Как работает солнечная энергия (шаг за шагом)
Вы когда-нибудь смотрели на солнечные панели на крышах и задавались вопросом, что именно они делают и как? Что ж, эти высокотехнологичные пространства мерцающего стекла на самом деле являются всего лишь одним компонентом в сложной сети, которая использует возобновляемую энергию солнца для доставки электричества в дом.
Давайте просто и пошагово рассмотрим, как работает солнечная энергия.
Как солнечные панели вырабатывают электричество?
ШАГ 1: Панели активируются солнечным светом.
Стойко-панельная солнечная система
Каждая отдельная панель состоит из слоя кремниевых ячеек, металлического каркаса, стеклянного корпуса, окруженного специальной пленкой, и проводки. Для максимального эффекта панели группируются в «массивы» (упорядоченная серия) и размещаются на крышах или на больших открытых площадках.Солнечные элементы, также называемые фотоэлектрическими элементами , поглощают солнечный свет в дневное время.
ШАГ 2: Ячейки вырабатывают электрический ток.
Кремниевый слиток и пластина
Внутри каждого солнечного элемента находится тонкая полупроводниковая пластина, сделанная из двух слоев кремния. Один слой заряжен положительно, а другой — отрицательно, образуя электрическое поле. Когда световая энергия солнца попадает на фотоэлектрический солнечный элемент, он возбуждает в нем энергию и заставляет электроны «отрываться» от атомов внутри полупроводниковой пластины.Эти свободные электроны приводятся в движение электрическим полем, окружающим пластину, и это движение создает электрический ток.
ШАГ 3: Преобразуется электрическая энергия.
Солнечный инвертор. Изображение предоставлено SMA Solar Technology AG
Теперь у вас есть солнечные панели, эффективно преобразующие солнечный свет в электричество, но генерируемое электричество называется электричеством постоянного (или постоянного) тока, а это не тот тип электричества, который питает большинство домов, а именно электричество переменного тока (или переменного тока).К счастью, электричество постоянного тока можно легко преобразовать в электричество переменного тока с помощью устройства, называемого инвертором. В современных солнечных системах эти инверторы могут быть сконфигурированы как один инвертор для всей системы или как отдельные микроинверторы, прикрепленные за панелями.
ШАГ 4: Преобразованная электроэнергия питает ваш дом.
Солнечный микроинвертор
После преобразования солнечной энергии из постоянного в переменный ток она проходит через вашу электрическую панель и распределяется по дому для питания ваших приборов.Он работает точно так же, как электроэнергия, вырабатываемая через сеть вашей электроэнергетической компанией, поэтому ничего в доме не нужно менять. Поскольку вы по-прежнему остаетесь подключенными к своей традиционной энергетической компании, вы можете автоматически получать дополнительную электроэнергию, чтобы восполнить любую нехватку солнечной энергии из сети.
ШАГ 5: Счетчик нетто измеряет использование.
Умный электросчетчик
В пасмурные дни и в ночное время ваша солнечная черепица или панели могут не улавливать достаточно солнечного света для использования в качестве источника энергии; и наоборот, в середине дня, когда никого нет дома, они могут накапливать излишки энергии — больше, чем вам нужно для работы вашего дома.Вот почему счетчик используется для измерения расхода электроэнергии в обоих направлениях — в ваш дом и из него. Ваша коммунальная компания часто предоставляет кредиты за любую избыточную мощность, которую вы отправляете обратно в сеть. Это известно как чистое измерение .
Заключение
Теперь, когда вы знаете основы солнечной энергии, вы можете поразиться тому, как современные фотоэлектрические технологии могут использовать огромную энергию солнца для управления домом. Возможно, это и не ракетостроение, но это определенно проявление человеческой изобретательности в лучшем виде.
Заинтересованы в солнечной кровле для вашего дома? Изучите наши солнечные продукты или найдите сертифицированного установщика солнечных батарей в вашем регионе.
|
|
Как работают солнечные панели? | Фотоэлектрические элементы
Проще говоря, солнечная панель работает, позволяя фотонам или частицам света выбивать электроны из атомов, создавая поток электричества.Солнечные панели на самом деле состоят из множества небольших блоков, называемых фотоэлектрическими элементами. (Фотоэлектрические элементы просто означают, что они преобразуют солнечный свет в электричество.) Многие элементы, соединенные вместе, составляют солнечную панель.
Каждый фотоэлектрический элемент представляет собой сэндвич, состоящий из двух пластин полупроводящего материала, обычно кремния — того же материала, что и в микроэлектронике.
Для работы фотоэлектрическим элементам необходимо создать электрическое поле. Подобно магнитному полю, которое возникает из-за противоположных полюсов, электрическое поле возникает, когда противоположные заряды разделены.Чтобы получить это поле, производители «смешивают» кремний с другими материалами, придавая каждому кусочку сэндвича положительный или отрицательный электрический заряд.
В частности, они вводят фосфор в верхний слой кремния, который добавляет к этому слою дополнительные электроны с отрицательным зарядом. Между тем, нижний слой получает дозу бора, что приводит к меньшему количеству электронов или положительному заряду. Все это складывается в электрическое поле на стыке между слоями кремния. Затем, когда фотон солнечного света выбивает электрон, электрическое поле выталкивает этот электрон из кремниевого перехода.
Пара других компонентов ячейки превращает эти электроны в полезную энергию. Металлические проводящие пластины по бокам ячейки собирают электроны и переносят их на провода. В этот момент электроны могут течь, как любой другой источник электричества.
Недавно исследователи создали ультратонкие гибкие солнечные элементы толщиной всего 1,3 микрона — примерно 1/100 ширины человеческого волоса — и в 20 раз легче листа офисной бумаги. На самом деле, элементы настолько легкие, что могут находиться на вершине мыльного пузыря, и при этом они производят энергию с такой же эффективностью, как и солнечные элементы на основе стекла, сообщили ученые в исследовании, опубликованном в 2016 году в журнале Organic Electronics.Такие более легкие и гибкие солнечные элементы могут быть интегрированы в архитектуру, аэрокосмические технологии или даже в носимую электронику.
Существуют и другие типы технологий солнечной энергии, в том числе солнечная тепловая и концентрированная солнечная энергия (CSP), которые работают иначе, чем фотоэлектрические солнечные панели, но все они используют энергию солнечного света для производства электричества или нагрева воды или воздуха. .
Примечание редактора : эта статья была первоначально опубликована 7 декабря.16 декабря 2013 г., и 6 декабря 2017 г. он был обновлен, чтобы включить последние достижения в области солнечных технологий.
Оригинальная статья о Live Science.
Что такое солнечная энергия и как работают солнечные панели?
Перейти к разделу «Как работают солнечные панели»
Что такое солнечная энергия?
Проще говоря, солнечная энергия — это самый распространенный источник энергии на Земле. Около 173 000 тераватт солнечной энергии поражает Землю в любой момент времени, что более чем в 10 000 раз превышает общие потребности мира в энергии.
Улавливая солнечную энергию и превращая ее в электричество для вашего дома или бизнеса, солнечная энергия является ключевым решением в борьбе с текущим климатическим кризисом и сокращении нашей зависимости от ископаемого топлива.
Как работает солнечная энергия?
Наше солнце — это естественный ядерный реактор. Он испускает крошечные пакеты энергии, называемые фотонами, которые преодолевают расстояние 93 миллиона миль от Солнца до Земли примерно за 8,5 минут. Каждый час на нашу планету воздействует достаточно фотонов, чтобы произвести достаточно солнечной энергии, чтобы теоретически удовлетворить глобальные потребности в энергии в течение всего года.
В настоящее время фотоэлектрическая энергия составляет лишь пять десятых одного процента энергии, потребляемой в Соединенных Штатах. Но солнечные технологии улучшаются, и стоимость перехода на солнечную энергию быстро падает, поэтому наша способность использовать изобилие солнечной энергии растет.
В 2017 году Международное энергетическое агентство показало, что солнечная энергия стала самым быстрорастущим источником энергии в мире — это первый раз, когда рост солнечной энергии превысил рост всех других видов топлива.С тех пор солнечная энергия продолжает расти и бить рекорды по всему миру.
Как погода влияет на солнечную энергию?
Погодные условия могут влиять на количество электроэнергии, производимой солнечной системой, но не совсем так, как вы думаете.
Идеальные условия для производства солнечной энергии включают, конечно же, ясный солнечный день. Но, как и большая часть электроники, солнечные батареи более эффективны в холодную погоду, чем в теплую погоду. Это позволяет панели производить больше электроэнергии за то же время.При повышении температуры панель вырабатывает меньше напряжения и вырабатывает меньше электроэнергии.
Но даже несмотря на то, что солнечные батареи более эффективны в холодную погоду, они не обязательно производят больше электроэнергии зимой, чем летом. Более солнечная погода часто бывает в более теплые летние месяцы. В дополнение к меньшему количеству облаков солнце обычно не светит большую часть дня. Таким образом, даже если ваши панели могут быть менее эффективными в теплую погоду, они все равно, вероятно, будут производить больше электроэнергии летом, чем зимой.
Получают ли одни государства больше солнечной энергии, чем другие?
Очевидно, в одних штатах солнца больше, чем в других. Итак, реальный вопрос: если погода может повлиять на производство солнечной энергии, являются ли одни государства лучшими кандидатами на использование солнечной энергии, чем другие? Короткий ответ — да, но не обязательно из-за погоды.
Возьмем, к примеру, облака. Любой, кто получил солнечный ожог в пасмурный день, знает, что солнечное излучение проникает сквозь облака. По той же причине солнечные панели все еще могут производить электричество в пасмурные дни.Но в зависимости от облачности и качества солнечных панелей эффективность производства электроэнергии солнечными панелями обычно снижается с 10 до 25 процентов или более по сравнению с солнечным днем.
Другими словами, солнечная энергия может работать в обычно облачных и холодных местах. Нью-Йорк, Сан-Франциско, Милуоки, Бостон, Сиэтл — во всех этих городах ненастная погода, от дождя и тумана до метели, но это также города, где люди получают огромную экономию за счет использования солнечной энергии.
Независимо от того, где вы живете, солнечная энергия может быть отличным вложением средств и отличным способом помочь в борьбе с изменением климата. Сколько вы сэкономите — и как быстро вы увидите окупаемость своих инвестиций в конкретном штате — зависит от многих факторов, таких как стоимость электроэнергии, доступные солнечные льготы, чистые измерения и качество ваших солнечных панелей.
Как работают солнечные панели?
Когда фотоны попадают в солнечный элемент, они выбивают электроны из их атомов.Если проводники присоединены к положительной и отрицательной сторонам ячейки, она образует электрическую цепь. Когда электроны проходят через такую цепь, они вырабатывают электричество. Несколько ячеек составляют солнечную панель, а несколько панелей (модулей) могут быть соединены вместе, чтобы сформировать солнечную батарею. Чем больше панелей вы можете развернуть, тем больше энергии вы можете ожидать.
Из чего сделаны солнечные панели?
Фотоэлектрические (PV) солнечные панели состоят из множества солнечных элементов. Солнечные элементы сделаны из кремния, как и полупроводники.Они состоят из положительного и отрицательного слоев, которые вместе создают электрическое поле, как в батарее.
Как солнечные батареи вырабатывают электричество?
фотоэлектрических панелей солнечных батарей вырабатывают электричество постоянного тока (DC). При использовании электричества постоянного тока электроны движутся по цепи в одном направлении. В этом примере показана батарея, питающая лампочку. Электроны движутся с отрицательной стороны батареи через лампу и возвращаются к положительной стороне батареи.
При использовании электричества переменного тока (переменного тока) электроны толкаются и притягиваются, периодически меняя направление, подобно цилиндру двигателя автомобиля. Генераторы создают электричество переменного тока, когда катушка проволоки вращается рядом с магнитом. Многие различные источники энергии могут «повернуть ручку» этого генератора, например, газ или дизельное топливо, гидроэлектроэнергия, атомная энергия, уголь, ветер или солнце.
Электроэнергия переменного токабыла выбрана для электросети США, в первую очередь потому, что ее дешевле передавать на большие расстояния.Однако солнечные панели создают электричество постоянного тока. Как получить электроэнергию постоянного тока в сеть переменного тока? Используем инвертор.
Для чего нужен солнечный инвертор?
Солнечный инвертор принимает электричество постоянного тока от солнечной батареи и использует его для создания электричества переменного тока. Инверторы подобны мозгу системы. Наряду с преобразованием постоянного тока в переменный, они также обеспечивают защиту от замыканий на землю и статистику системы, включая напряжение и ток в цепях переменного и постоянного тока, выработку энергии и отслеживание точки максимальной мощности.
Центральные инверторы доминируют в солнечной промышленности с самого начала. Внедрение микроинверторов — один из самых больших технологических сдвигов в фотоэлектрической индустрии. Микроинверторы оптимизируются для каждой отдельной солнечной панели, а не для всей солнечной системы, как это делают центральные инверторы.
Это позволяет каждой солнечной панели работать с максимальным потенциалом. Когда используется центральный инвертор, проблема с одной солнечной панелью (возможно, она находится в тени или испачкалась) может снизить производительность всей солнечной батареи.Микроинверторы, такие как те, что используются в домашней солнечной системе Equinox компании SunPower, делают это несложным. Если одна солнечная панель неисправна, остальная часть солнечной батареи по-прежнему работает эффективно.
Как работает система солнечных батарей?
Вот пример того, как работает домашняя солнечная энергетическая установка. Сначала солнечный свет попадает на солнечную батарею на крыше. Панели преобразуют энергию в постоянный ток, который течет к инвертору. Инвертор преобразует электричество из постоянного тока в переменный, который затем можно использовать для питания вашего дома.Это красиво, просто и чисто, и со временем становится все более эффективным и доступным.
Однако что произойдет, если вы не дома, чтобы использовать электроэнергию, которую вырабатывают солнечные батареи каждый солнечный день? А что происходит ночью, когда ваша солнечная система не вырабатывает электроэнергию в реальном времени? Не волнуйтесь, вы все равно можете получить выгоду от системы, называемой «нетто-учет».
Типичная фотоэлектрическая система, подключенная к сети, в часы пик в дневное время часто производит больше энергии, чем нужно одному потребителю, так что избыточная энергия возвращается в сеть для использования в другом месте.Заказчик, имеющий право на чистое измерение, может получать кредиты за произведенную избыточную энергию и может использовать эти кредиты для получения электроэнергии из сети в ночное время или в пасмурные дни. Счетчик нетто регистрирует отправленную энергию по сравнению с энергией, полученной из сети. Прочтите нашу статью о чистых счетчиках и о том, как это работает.
Добавление накопителей в солнечную систему еще больше усиливает эти преимущества. С помощью системы хранения солнечной энергии клиенты могут хранить свою собственную энергию на месте, что еще больше снижает их зависимость от электросети и сохраняет способность обеспечивать электроэнергией свой дом в случае отключения электроэнергии.Если система хранения включает программный мониторинг, это программное обеспечение контролирует производство солнечной энергии, использование энергии в домашних условиях и тарифы на коммунальные услуги, чтобы определить, какой источник энергии использовать в течение дня — максимизируя использование солнечной энергии, предоставляя заказчику возможность снизить пиковую плату и возможность сохранять электроэнергию для последующего использования во время отключения электроэнергии.
Если вы хотите узнать, сколько может сэкономить ваш дом или бизнес, запланируйте время, чтобы мы разработали индивидуальный дизайн и потенциальную экономию.
Похожие сообщения
Как работает солнечная энергия | Специалисты по солнечной энергии
Солнечная энергия работает путем преобразования солнечного света в электричество. Затем это электричество можно использовать в вашем доме или экспортировать в сеть, когда в нем нет необходимости. Это делается путем установки солнечных панелей на крыше, которые вырабатывают электричество постоянного тока. Затем он подается в солнечный инвертор, который преобразует электричество постоянного тока от ваших солнечных панелей в электричество переменного тока.
Как работает солнечная энергия
1. Ваши солнечные панели состоят из кремниевых фотоэлектрических элементов. Когда солнечный свет попадает на ваши солнечные панели, солнечные фотоэлементы поглощают солнечные лучи, и за счет фотоэлектрического эффекта вырабатывается электричество. Электроэнергия, производимая вашими панелями, называется электричеством постоянного тока (DC), и она не подходит для использования в вашем доме вашими приборами. Вместо этого электричество постоянного тока направляется в ваш центральный инвертор (или микроинвертор, в зависимости от настройки вашей системы).
2. Ваш инвертор может преобразовывать электричество постоянного тока в электричество переменного тока (AC), которое можно использовать в вашем доме. Отсюда электричество переменного тока направляется на ваш распределительный щит.
3. Распределительный щит позволяет подавать полезную электроэнергию переменного тока на бытовые приборы в вашем доме. Ваш распределительный щит всегда будет гарантировать, что ваша солнечная энергия будет использоваться в первую очередь для питания вашего дома, и будет получать доступ к дополнительной энергии из сети только тогда, когда вашего солнечного производства недостаточно.
4. Все домохозяйства, использующие солнечную энергию, должны иметь двунаправленный счетчик (счетчик коммунальных услуг), который вам установит продавец электроэнергии. Двунаправленный счетчик может регистрировать всю мощность, потребляемую в доме, но также записывать количество солнечной энергии, которая экспортируется обратно в сеть. Это называется нетто-счетчиком.
5. Вся неиспользованная солнечная электроэнергия затем отправляется обратно в сеть. Экспорт солнечной энергии обратно в сеть принесет вам кредит на счет за электроэнергию, называемый зеленым тарифом (FiT).В ваших счетах за электроэнергию будет учитываться электроэнергия, которую вы покупаете из сети, а также кредиты на электроэнергию, вырабатываемую вашей солнечной энергетической системой, которую вы не используете.
Благодаря солнечной энергии вам не нужно включать ее утром или выключать на ночь — система сделает это плавно и автоматически. Вам также не нужно переключаться между солнечной энергией и сетью, поскольку ваша солнечная система может определить, когда лучше всего это сделать, в зависимости от количества энергии, потребляемой в вашем доме.На самом деле солнечная система требует очень небольшого обслуживания (поскольку в ней нет движущихся частей), а это значит, что вы вряд ли узнаете, что она там есть. Это также означает, что качественная солнечная энергетическая система прослужит долгое время.
Ваш солнечный инвертор (обычно установленный в вашем гараже или в доступном месте) может предоставить вам такую информацию, как количество электроэнергии, произведенной в любой конкретный момент времени, или сколько она вырабатывалась за день или в целом с тех пор, как это произошло. работает. Многие качественные инверторы имеют беспроводную связь и сложный онлайн-мониторинг.
Если это кажется сложным, не волнуйтесь; Один из экспертов Infinite Energy Energy Consultant проведет вас через процесс работы солнечной энергии по телефону, электронной почте или через бесплатную домашнюю консультацию.