Схема принципиальная блока питания: Блок питания своими руками ⋆ diodov.net

Содержание

Блок питания своими руками ⋆ diodov.net

Программирование микроконтроллеров Курсы

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Блок питания своими руками

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Функциональная схема блока питания

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Трансформатор тороидальный

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

Принцип работы мостового выпрямителя

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Мостовой выпрямитель

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

Диодный мост

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Схема сглаживания выпрямленного напряжения

Отрицательный вывод короче положительного и на корпусе возле первого наносится знак «-».

Конденсатор электролитический

Стабилизатор напряжения LM7805, LM7809, LM7812

Вы наверное замечали, что величина напряжения в розетке не равна 220 В, а изменяется в некоторых пределах. Особенно это ощутимо при подключении мощной нагрузки. Если не применять специальных мер, то оно и на выходе блока питания будет изменяться в пропорциональном диапазоне. Однако такие колебания крайне не желательны, а иногда и недопустимы для многих электронных элементов. Поэтому напряжение после конденсаторного фильтра подлежит обязательной стабилизации. В зависимости от параметров питаемого устройства применяются два варианта стабилизации. В первом случае используются стабилитрон, а во втором – интегральный стабилизатор напряжения. Рассмотрим применение последнего.

В радиолюбительской практике широкое применение получили стабилизаторы напряжения серии LM78xx и LM79xx. Две буквы указывают на производителя. Поэтому вместо LM могут быть и другие буквы, например CM. Маркировка состоит из четырех цифр. Первые две – 78 или 79 означают соответственно положительно или отрицательное напряжение. Две последние цифры, в данном случае вместо них два икса: хх, обозначают величину выходного U. Например, если на позиции двух иксов будет 12, то данный стабилизатор выдает 12 В; 08 – 8 В и т.д.

Для примера расшифруем следующие маркировки:

LM7805 → 5 В, положительное напряжение

LM7912 → 12 В, отрицательное U

Стабилизатор напряжения LM7805

Интегральные стабилизаторы имеют три вывода: вход, общий и выход; рассчитаны на ток 1А.

LM7805 обозначение выводов

Если выходное U значительно превышает входное и при этом потребляется предельный ток 1 А, то стабилизатор сильно нагревается, поэтому его следует устанавливать на радиатор. Конструкция корпуса предусматривает такую возможность.

Если ток нагрузки гораздо ниже предельного, то можно и не устанавливать радиатор.

Схема блока питания

Схема блока питания в классическом исполнении включает: сетевой трансформатор, диодный мост, конденсаторный фильтр, стабилизатор и светодиод. Последний выполняет роль индикатора и подключается через токоограничивающий резистор.

Схема блока питания

Поскольку в данной схеме лимитирующим по тока элементов является стабилизатор LM7805 (допустимое значение 1 А), то все остальные компоненты должны быть рассчитаны на ток не менее 1 А. Поэтому и вторичная обмотка трансформатора выбирается на ток от одного ампера. Напряжение ее должно быть не ниже стабилизированного значения. А по хорошему его следует выбирать из таких соображений, что после выпрямления и сглаживания U должно быть на 2 – 3 В выше, чем стабилизированное, т.е. на вход стабилизатора следует подавать на пару вольт больше его выходного значения. Иначе он будет работать некорректно. Например, для LM7805 входное U = 7 – 8 В; для LM7805 → 15 В. Однако следует учитывать, что при слишком завышенном значении U, микросхема будет сильно нагреваться, поскольку «лишнее» напряжение гасится на ее внутреннем сопротивлении.

Диодный мост можно сделать из диодов типа 1N4007, или взять готовый на ток не менее 1 А.

Сглаживающий конденсатор C1 должен иметь большую емкость 100 – 1000 мкФ и U = 16 В.

Конденсаторы C2 и C3 предназначены для сглаживания высокочастотных пульсаций, которые возникают при работе LM7805. Они устанавливаются для большей надежности и носят рекомендательный характер от производителей стабилизаторов подобных типов. Без таких конденсаторов схема также нормально работает, но поскольку они практически ничего не стоят, то лучше их поставить.

Блок питания своими руками на 78L05, 78L12, 79L05, 79L08

Часто необходимо питать только одну или пару микросхем или маломощных транзисторов. В таком случае применять мощный блок питания не рационально. Поэтому лучшим вариантом будет применение стабилизаторов серии 78L05, 78L12, 79L05, 79L08 и т.п. Они рассчитаны на максимальный ток 100 мА = 0,1 А, но при этом очень компактные и по размерам не больше обычного транзистора, а также не требует установки на радиатор.

78L05 обозначение выводов

Маркировка и схема подключения аналогичны, рассмотренной выше серии LM, только отличается расположением выводов.

LM7805

Для примера изображена схема подключения стабилизатора 78L05. Она же подходит и для LM7805.

LM7805

Схема включения стабилизаторов отрицательно напряжения приведена ниже. На вход подается -8 В, а на выходе получается -5 В.

Блок питания с отрицательным напряжением

Как видно, сделать блок питания своими руками очень просто. Любое напряжение можно получить путем установки соответствующего стабилизатора. Следует также помнить о параметрах трансформатора. Далее мы рассмотри, как сделать блок питания с регулировкой напряжения.

Электроника для начинающих

Еще статьи по данной теме

Схемы блоков питания | 2 Схемы

Схемы самодельных блоков питания на различные напряжения и ток — простые БП для начинающих и мощные двухканальные регулируемые лабораторные источники питания со всеми защитами.

Разрешите представить на суд уважаемых радиолюбителей и читателей сайта 2Схемы довольно необычный лабораторный источник питания с регулировками напряжения 0 — 20 В и током защиты …

Блок питания — комплект для самостоятельной сборки из одного зарубежного радиоконструктора, только тут трансформатор 2x 9 В 2,5 A, соответственно снижен в 2 раза предел …

Предпосылкой к проекту было создать простой и дешевый преобразователь напряжения. Постоянное напряжение 12 В при выходном переменном значении около 220 В и нагрузочной способности до …

Радиопередатчик, которым по долгу службы иногда пользуюсь, имеет напряжение 12 В, поэтому блок питания к нему требуется достаточной мощности. Купить готовый можно, но это же …

Разрешите представить на суд читателей сайта 2Схемы универсальный источник питания для радиомастерской, изготовленный из блока питания ATX с контроллером TL494. БП был создан быстро из …

Источник питания для некоторых планшетов, например Asus Eee, имеет нестандартное напряжение 9,5 В, 2,3 А. На рынке нет стабилизатора для этого напряжения, поэтому схема должна …

Понижающий преобразователь постоянного напряжения на TL494 представляет собой типичный ШИМ-контроллер и силовые транзисторы IRFZ44N. Катушка 40 мкГн участвует в преобразовании входного напряжения 12 Вольт в …

Очередная полезная покупка с сайта AliExpress — электронная нагрузка с тестером емкости аккумуляторов, хотя производитель дал модулю другое название: «тестер разрядки аккумулятора». Куплено было устройство …

Нужен мощный БП на ток более 10 Ампер? Вот одна из самых простых схем источников питания, которую можно собрать предварительно протестировав и отрегулировав. Исходные предположения …

Это обзор китайского блока питания на 2,5 А, где есть плавная регулировка напряжения в диапазоне 3-24 В. Существуют и другие версии этого блока питания, например: …

Трудно назвать проект полностью самодельным, если всего-то надо спаять между собой несколько готовых модулей, но для начинающих радиолюбителей такой подход будет вполне оправдан, поэтому редакция …

Данное электронное устройство предназначено для преобразования низкого постоянного напряжения в диапазоне 8-32 В в более высокое постоянное напряжение на выходе (до 410 В) [1-2]. Устройство …

Здравствуйте все посетители сайта 2 Схемы. Представляем очередной девайс для самостоятельное сборки, которое работает как зарядное устройство гелевой батареи. Представленное ЗУ состоит из трансформатора ТС25/6 …

Как раньше делали радиосхемы и электронные устройства? Радиолюбители сами изготавливали печатные платы и сами паяли каждую деталь, но времена меняются и теперь соединив пару-тройку покупных …

Построить нерегулируемый лабораторный блок питания на несколько различных напряжений можно на основе двойного триггера D-типа (микросхема CD4013) и старого блока питания ATX, взятого из любого …

Если у вас завалялись в радиозакромах пару транзисторов 2N3055 с радиаторами, блок питания и китайский цифровой вольтметр — возможно собрать из всего этого такую нужную …

Очень популярная схема блока питания для лабораторного источника питания, который может обеспечить питание 0-30 В вызвала такой интерес, что несколько китайских поставщиков выпустили набор со …

При всём обилии различной электроники из Китая, иногда возникают вопросы о дешевом источнике питания. Иногда лучше даже вообще собрать его своими руками из того что …

Представляем маломощный стабилизированный блок питания с возможностью регулировки напряжения и тока, изготовленный на знаменитой LM317. Себестоимость конструкции копеечная, поскольку все детали, как и стрелочный вольтметр …

Как-то достался отличный трансформатор 24 В с током около 3 А, поэтому решено было сделать хороший универсальный регулируемый источник питания на основе стабилизатора LM350. Характеристики …

Блок питания на стабилитроне и транзисторе своими руками

Рассмотренный далее стабилизированный блок питания является одним из первых устройств, которые собираются начинающими радиолюбителями. Это очень простой, но весьма полезный прибор. Для его сборки не нужны дорогостоящие компоненты, которые достаточно легко подобрать новичку в зависимости от требуемых характеристик блока питания.
Материал будет также полезен тем, кто желает более детально разобраться в назначении и расчете простейших радиодеталей. В том числе, вы подробно узнаете о таких компонентах блока питания, как:
  • силовой трансформатор;
  • диодный мост;
  • сглаживающий конденсатор;
  • стабилитрон;
  • резистор для стабилитрона;
  • транзистор;
  • нагрузочный резистор;
  • светодиод и резистор для него.

Также в статье детально рассказано, как подобрать радиодетали для своего блока питания и что делать, если нет нужного номинала. Наглядно будет показана разработка печатной платы и раскрыты нюансы этой операции. Несколько слов сказано конкретно о проверке радиодеталей перед пайкой, а также о сборке устройства и его тестировании.

Типовая схема стабилизированного блока питания


Всевозможных схем блоков питания со стабилизацией напряжения существует сегодня очень много. Но одна из самых простых конфигураций, с которой и стоит начинать новичку, построена всего на двух ключевых компонентах – стабилитроне и мощном транзисторе. Естественно, в схеме присутствуют и другие детали, но они вспомогательные.

Схемы в радиоэлектронике принято разбирать в том направлении, в котором по ним протекает ток. В блоке питания со стабилизацией напряжения все начинается с трансформатора (TR1). Он выполняет сразу несколько функций. Во-первых, трансформатор понижает сетевое напряжение. Во-вторых, обеспечивает работу схемы. В-третьих, питает то устройство, которое подключено к блоку.
Диодный мост (BR1) – предназначен для выпрямления пониженного сетевого напряжения. Если говорить другими словами, то в него заходит переменное напряжение, а на выходе получается уже постоянное. Без диодного моста не будет работать ни сам блок питания, ни устройства, которые будут к нему подключаться.
Сглаживающий электролитический конденсатор (C1) нужен для того, чтобы убирать пульсации, присутствующие в бытовой сети. На практике они создают помехи, которые отрицательно сказываются на работе электроприборов. Если для примера взять усилитель звука, запитанный от блока питания без сглаживающего конденсатора, то эти самые пульсации будут отчетливо слышны в колонках в виде постороннего шума. В других приборах помехи могут привести к некорректной работе, сбоям и прочим проблемам.
Стабилитрон (D1) – это компонент блока питания, который стабилизирует уровень напряжения. Дело в том, что трансформатор будет выдавать желаемые 12 В (например) только тогда, когда в сетевой розетке будет ровно 230 В. Однако на практике таких условий не бывает. Напряжение может как просаживаться, так и повышаться. То же самое трансформатор будет давать и на выходе. Благодаря своим свойствам стабилитрон выравнивает пониженное напряжение независимо от скачков в сети. Для корректной работы этого компонента нужен токоограничивающий резистор (R1). О нем более детально сказано ниже.
Транзистор (Q1) – нужен для усиления тока. Дело в том, что стабилитрон не способен пропускать через себя весь потребляемый прибором ток. Более того, корректно он будет работать только в определенном диапазоне, например, от 5 до 20 мА. Для питания каких-либо приборов этого откровенно мало. С данной проблемой и справляется мощный транзистор, открывание и закрывание которого управляется стабилитроном.
Сглаживающий конденсатор (C2) – предназначен для того же, что и вышеописанный C1. В типовых схемах стабилизированных блоков питания присутствует также нагрузочный резистор (R2). Он нужен для того, чтобы схема сохраняла работоспособность тогда, когда к выходным клеммам ничего не подключено.
В подобных схемах могут присутствовать и другие компоненты. Это и предохранитель, который ставится перед трансформатором, и светодиод, сигнализирующий о включении блока, и дополнительные сглаживающие конденсаторы, и еще один усиливающий транзистор, и выключатель. Все они усложняют схему, однако, повышают функциональность устройства.

Расчет и подбор радиокомпонентов для простейшего блока питания


Трансформатор подбирается по двум основным критериям – напряжению вторичной обмотки и по мощности. Есть и другие параметры, но в рамках материала они не особо важны. Если вам нужен блок питания, скажем, на 12 В, то трансформатор нужно подбирать такой, чтобы с его вторичной обмотки можно было снять чуть больше. С мощностью все то же самое – берем с небольшим запасом.
Основной параметр диодного моста – это максимальный ток, который он способен пропускать. На эту характеристику и стоит ориентироваться в первую очередь. Рассмотрим примеры. Блок будет использоваться для питания прибора, потребляющего ток 1 А. Это значит, что диодный мост нужно брать примерно на 1,5 А. Допустим, вы планируете питать какой-либо 12-вольтовый прибор мощностью 30 Вт. Это значит, что потребляемый ток будет около 2,5 А. Соответственно, диодный мост должен быть, как минимум, на 3 А. Другими его характеристиками (максимальное напряжение и прочее) в рамках такой простой схемы можно пренебрегать.

Дополнительно стоит сказать, что диодный мост можно не брать уже готовый, а собрать его из четырех диодов. В таком случае каждый из них должен быть рассчитан на ток, проходящий по схеме.
Для расчета емкости сглаживающего конденсатора применяются достаточно сложные формулы, которые в данном случае ни к чему. Обычно берется емкость 1000-2200 мкФ, и этого для простого блока питания будет вполне достаточно. Можно взять конденсатор и побольше, но это существенно удорожит изделие. Другой важный параметр – максимальное напряжение. По нему конденсатор подбирается в зависимости от того, какое напряжение будет присутствовать в схеме.
Здесь стоит учитывать, что на отрезке между диодным мостом и стабилитроном после включения сглаживающего конденсатора напряжение будет примерно на 30% выше, чем на выводах трансформатора. То есть, если вы делаете блок питания на 12 В, а трансформатор выдает с запасом 15 В, то на данном участке из-за работы сглаживающего конденсатора будет примерно 19,5 В. Соответственно, он должен быть рассчитан на это напряжение (ближайший стандартный номинал 25 В).
Второй сглаживающий конденсатор в схеме (C2) обычно берется небольшой емкости – от 100 до 470 мкФ. Напряжение на этом участке схемы будет уже стабилизированным, например, до уровня 12 В. Соответственно, конденсатор должен быть рассчитан на это (ближайший стандартный номинал 16 В).
А что делать, если конденсаторов нужных номиналов нет в наличии, и в магазин идти неохота (или банально нет желания их покупать)? В таком случае вполне возможно воспользоваться параллельным подключением нескольких конденсаторов меньшей емкости. При этом стоит учесть, что максимальное рабочее напряжение при таком подсоединении суммироваться не будет!
Стабилитрон подбирается в зависимости от того, какое напряжение нам нужно получить на выходе блока питания. Если подходящего номинала нет, то можно соединить несколько штук последовательно. Стабилизируемое напряжение, при этом, будет суммироваться. Для примера возьмем ситуацию, когда нам надо получить 12 В, а в наличии есть только два стабилитрона на 6 В. Соединив их последовательно мы и получим желаемое напряжение. Стоит отметить, что для получения усредненного номинала параллельное подключение двух стабилитронов не сработает.
Максимально точно подобрать токоограничивающий резистор для стабилитрона можно только экспериментально. Для этого в уже рабочую схему (например, на макетной плате) включается резистор номиналом примерно 1 кОм, а между ним и стабилитроном в разрыв цепи ставится амперметр и переменный резистор. После включения схемы нужно вращать ручку переменного резистора до тех пор, пока через участок цепи не потечет требуемый номинальный ток стабилизации (указывается в характеристиках стабилитрона).
Усиливающий транзистор подбирается по двум основным критериям. Во-первых, для рассматриваемой схемы он обязательно должен быть n-p-n структуры. Во-вторых, в характеристиках имеющегося транзистора нужно посмотреть на максимальный ток коллектора. Он должен быть немного больше, чем максимальный ток, на который будет рассчитан собираемый блок питания.
Нагрузочный резистор в типовых схемах берется номиналом от 1 кОм до 10 кОм. Меньшее сопротивление брать не стоит, так как в случае, когда блок питания не будет нагружен, через этот резистор потечет слишком большой ток, и он сгорит.

Разработка и изготовление печатной платы


Теперь вкратце рассмотрим наглядный пример разработки и сборки стабилизированного блока питания своими руками. В первую очередь, необходимо найти все присутствующие в схеме компоненты. Если нет конденсаторов, резисторов или стабилитронов нужных номиналов – выходим из ситуации вышеописанными путями.

Далее нужно будет спроектировать и изготовить печатную плату для нашего прибора. Начинающим лучше всего использовать для этого простое и, самое главное, бесплатное программное обеспечение, например, Sprint Layout.
Размещаем на виртуальной плате все компоненты согласно выбранной схемы. Оптимизируем их расположение, корректируем в зависимости от того, какие конкретно детали есть в наличии. На этом этапе рекомендуется перепроверять реальные размеры компонентов и сравнивать их с добавляемыми в разрабатываемую схему. Особое внимание обратите на полярность электролитических конденсаторов, расположение выводов транзистора, стабилитрона и диодного моста.
Если вы заходите добавить в блок питания сигнальный светодиод, то его можно будет включить в схему как до стабилитрона, так и после (предпочтительнее). Чтобы подобрать для него токоограничивающий резистор, необходимо выполнить следующий расчет. Из напряжения участка цепи вычитаем падение напряжения на светодиоде и делим результат на номинальный ток его питания. Пример. На участке, к которому мы планируем подключать сигнальный светодиод, имеется стабилизированные 12 В. Падение напряжения у стандартных светодиодов около 3 В, а номинальный ток питания 20 мА (0,02 А). Получаем, что сопротивление токоограничивающего резистора R=450 Ом.

Проверка компонентов и сборка блока питания


После разработки платы в программе переносим ее на стеклотекстолит, травим, лудим дорожки и удаляем излишки флюса.






После этого выполняем установку радиокомпонентов. Здесь стоит сказать, что не лишним будет сразу же перепроверить их работоспособность, особенно, если они не новые. Как и что проверять?
Обмотки трансформатора проверяются омметром. Где сопротивление больше – там первичная обмотка. Далее его нужно включить в сеть и убедиться, что он выдает требуемое пониженное напряжение. При его измерении соблюдайте предельную осторожность. Также учтите, что напряжение на выходе переменное, потому на вольтметре включается соответствующий режим.
Резисторы проверяются омметром. Стабилитрон должен «звониться» только в одном направлении. Диодный мост проверяем по схеме. Встроенные в него диоды должны проводить ток только в одном направлении. Для проверки конденсаторов потребуется специальный прибор для измерения электрической емкости. В транзисторе n-p-n структуры ток должен протекать от базы к эмиттеру и к коллектору. В остальных направлениях он протекать не должен.
Начинать сборку лучше всего с мелких деталей – резисторов, стабилитрона, светодиода. Затем впаиваются конденсаторы, диодный мост.
Особое внимание обращайте на процесс установки мощного транзистора. Если перепутать его выводы – схема не заработает. Кроме того, этот компонент будет достаточно сильно греется под нагрузкой, потому его необходимо устанавливать на радиатор.
Последним устанавливается самая большая деталь – трансформатор. Далее к выводам его первичной обмотки припаивается сетевая вилка с проводом. На выходе блока питания тоже предусматриваются провода.

Осталось только хорошенько перепроверить правильность установки всех компонентов, смыть остатки флюса и включить блок питания в сеть. Если все сделано правильно, то светодиод будет светиться, а на выходе мультиметр покажет желаемое напряжение.

Импульсный блок питания своими руками: принцип работы, схемы

В большинстве современных электронных устройств практически не используются аналоговые (трансформаторные) блоки питания, им на смену пришли импульсные преобразователи напряжения. Чтобы понять, почему так произошло, необходимо рассмотреть конструктивные особенности, а также сильные и слабы стороны этих устройств. Мы также расскажем о назначении основных компонентов импульсных источников, приведем простой  пример реализации, который может быть собран своими руками.

Конструктивные особенности и принцип работы

Из нескольких способов преобразования напряжения для питания электронных компонентов, можно выделить два, получивших наибольшее распространение:

  1. Аналоговый, основным элементом которого является понижающий трансформатор, помимо основной функции еще и обеспечивающий гальваническую развязку.
  2. Импульсный принцип.

Рассмотрим, чем отличаются эти два варианта.

БП на основе силового трансформатора

Рассмотрим упрощенную структурную схему данного устройства. Как видно из рисунка, на входе установлен понижающий трансформатор, с его помощью производится преобразование амплитуды питающего напряжения, например из 220 В получаем 15 В. Следующий блок – выпрямитель, его задача преобразовать синусоидальный ток в импульсный (гармоника показана над условным изображением). Для этой цели используются выпрямительные полупроводниковые элементы (диоды), подключенные по мостовой схеме. Их принцип работы можно найти на нашем сайте.

Упрощенная структурная схема аналогового БПУпрощенная структурная схема аналогового БП

Следующий блок играет выполняет две функции: сглаживает напряжение (для этой цели используется конденсатор соответствующей емкости) и стабилизирует его. Последнее необходимо, чтобы напряжение «не проваливалось» при увеличении нагрузки.

Приведенная структурная схема сильно упрощена, как правило, в источнике данного типа имеется входной фильтр и защитные цепи, но для объяснения работы устройства это не принципиально.

Все недостатки приведенного варианта прямо или косвенно связаны с основным элементом конструкции – трансформатором. Во-первых, его вес и габариты, ограничивают миниатюризацию. Чтобы не быть голословным приведем в качестве примера понижающий трансформатор 220/12 В номинальной мощностью 250 Вт. Вес такого агрегата – около 4-х килограмм, габариты 125х124х89 мм. Можете представить, сколько бы весила зарядка для ноутбука на его основе.

Понижающий трансформатор ОСО-0,25 220/12Понижающий трансформатор ОСО-0,25 220/12

Во-вторых, цена таких устройств порой многократно превосходит суммарную стоимость остальных компонентов.

Импульсные устройства

Как видно из структурной схемы, приведенной на рисунке 3, принцип работы данных устройств существенно отличается от аналоговых преобразователей, в первую очередь, отсутствием входного понижающего трансформатора.

Структурная схема импульсного блока питанияРисунок 3. Структурная схема импульсного блока питания

Рассмотрим алгоритм работы такого источника:

  • Питание поступает на сетевой фильтр, его задача минимизировать сетевые помехи, как входящие, так и исходящие, возникающие вследствие работы.
  • Далее вступает в работу блок преобразования синусоидального напряжения в импульсное постоянное и сглаживающий фильтр.
  • На следующем этапе к процессу подключается инвертор, его задача связана с формированием прямоугольных высокочастотных сигналов. Обратная связь с инвертором осуществляется через блок управления.
  • Следующий блок – ИТ, он необходим для автоматического генераторного режима, подачи напряжения на цепи, защиты, управления контроллером, а также нагрузку. Помимо этого в задачу ИТ входит обеспечение гальванической развязки между цепями высокого и низкого напряжения.

В отличие от понижающего трансформатора, сердечник этого устройства изготавливается из ферримагнитных материалов, это способствует надежной передачи ВЧ сигналов, которые могут быть в диапазоне 20-100 кГц. Характерная особенность ИТ заключается в том, что при его подключении критично включение начала и конца обмоток. Небольшие размеры этого устройства позволяют изготавливать приборы миниатюрных размеров, в качестве примера можно привести электронную обвязку (балласт) светодиодной или энергосберегающей лампы.

Пример миниатюрных импульсных БППример миниатюрных импульсных БП
  • Далее вступает в работу выходной выпрямитель, поскольку он работает с высокочастотным напряжением, для процесса необходимы быстродействующие полупроводниковые элементы, поэтому для этой цели применяют диоды Шоттки.
  • На завершавшей фазе производится сглаживание на выгодном фильтре, после чего напряжение подается на нагрузку.

Теперь, как и обещали, рассмотрим принцип работы основного элемента данного устройства – инвертора.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналовСтруктурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

Сильные и слабые стороны импульсных источников

Если сравнивать аналоговые и импульсные устройства одинаковой мощности, то у последних будут следующие преимущества:

  • Небольшие размеры и вес, за счет отсутствия низкочастотного понижающего трансформатора и управляющих элементов, требующих отвода тепла при помощи больших радиаторов. Благодаря применению технологии преобразования высокочастотных сигналов можно уменьшить емкость конденсаторов, используемых в фильтрах, что позволяет устанавливать элементы меньших габаритов.
  • Более высокий КПД, поскольку основные потери вызывают только переходные процессы, в то время как в аналоговых схемам много энергии постоянно теряется при электромагнитном преобразовании. Результат говорит сам за себя, увеличение КПД до 95-98%.
  • Меньшая стоимость за счет применения мене мощных полупроводниковых элементов.
  • Более широкий диапазон входного напряжения. Такой тип оборудования не требователен к частоте и амплитуде, следовательно, допускается подключение к различным по стандарту сетям.
  • Наличие надежной защиты от КЗ, превышения нагрузки и других нештатных ситуаций.

К недостаткам импульсной технологии следует отнести:

Наличие ВЧ помех, это является следствием работы высокочастотного преобразователя. Такой фактор требует установки фильтра, подавляющего помехи. К сожалению, его работа не всегда эффективна, что накладывает некоторые ограничения на применение устройств данного типа в высокоточной аппаратуре.

Особые требования к нагрузке, она не должна быть пониженной или повышенной. Как только уровень тока превысит верхний или нижний порог, характеристики напряжения на выходе начнут существенно отличаться от штатных. Как правило, производители (в последнее время даже китайские) предусматривают такие ситуации и устанавливают в свои изделия соответствующую защиту.

Сфера применения

Практически вся современная электроника запитывается от блоков данного типа, в качестве примера можно привести:

  • различные виды зарядных устройств; Зарядки и внешние БПЗарядки и внешние БП
  • внешние блоки питания;
  • электронный балласт для осветительных приборов;
  • БП мониторов, телевизоров и другого электронного оборудования.
Импульсный модуль питания монитораИмпульсный модуль питания монитора

Собираем импульсный БП своими руками

Рассмотрим схему простого источника питания, где применяется вышеописанный принцип работы.

Принципиальная схема импульсного БППринципиальная схема импульсного БП

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – от 150 кОм до 300 кОм (подбирается), R3 – 1 кОм.
  • Емкости: С1 и С2 – 0,01 мкФ х 630 В, С3 -22 мкФ х 450 В, С4 – 0,22 мкФ х 400 В, С5 – 6800 -15000 пФ (подбирается),012 мкФ, С6 — 10 мкФ х 50 В, С7 – 220 мкФ х 25 В, С8 – 22 мкФ х 25 В.
  • Диоды: VD1-4 – КД258В, VD5 и VD7 – КД510А, VD6 – КС156А, VD8-11 – КД258А.
  • Транзистор VT1 – KT872A.
  • Стабилизатор напряжения D1 — микросхема КР142 с индексом ЕН5 – ЕН8 (в зависимости от необходимого напряжения на выходе).
  • Трансформатор Т1 – используется ферритовый сердечник ш-образной формы размерами 5х5. Первичная обмотка наматывается 600 витков проводом Ø 0,1 мм, вторичная (выводы 3-4) содержит 44 витка Ø 0,25 мм, и последняя – 5 витков Ø 0,1 мм.
  • Предохранитель FU1 – 0.25А.

Настройка сводится к подбору номиналов R2 и С5, обеспечивающих возбуждение генератора при входном напряжении 185-240 В.

Источники питания

Стабилизатор напряжения на мощном полевом транзисторе

И. НЕЧАЕВ, г. Курск

В статье описан аналоговый стабилизатор напряжения для блока питания повышенной мощности. Автору удалось значительно улучшить параметры стабилизатора, применив в качестве силового элемента мощный переключательный полевой транзистор.

При построении сильноточных стабилизаторов напряжения радиолюбители обычно используют специализированные микросхемы серии 142 и аналогичные, «усиленные» одним или несколькими, включенными параллельно, биполярными транзисторами. Если для этих целей применить мощный переключательный полевой транзистор, то удастся собрать более простой сильноточный стабилизатор.

Схема одного из вариантов такого стабилизатора приведена на рис.1. В нем в качестве силового применен мощный полевой транзистор IRLR2905. Хотя он и предназначен для работы в ключевом (переключательном) режиме, в данном стабилизаторе он используется в линейном режиме. Транзистор имеет в открытом состоянии весьма малое сопротивление канала (0,027 Ом), обеспечиваетток до 30 А при температуре корпуса до 100 °С, обладает высокой крутизной и требует для управления напряжения на затворе всего 2,5…3 В [1]. Мощность, рассеиваемая транзистором, может достигать 110 Вт.

Полевым транзистором управляет микросхема параллельного стабилизатора напряжения КР142ЕН19 (TL431). Ее назначение, устройство и параметры подробно описаны в статье [2]. Работает стабилизатор (рис. 1) следующим образом. При подключении сетевого трансформатора Т1 к сети на его вторичной обмотке появляется переменное напряжение около 13 В (эффективное значение). Оно выпрямляется диодным мостом VD1, и на сглаживающем конденсаторе большой емкости (обычно несколько десятков тысяч микрофарад) выделяется постоянное напряжение около 16 В.

Электрические схемы и схемы — инструментальные средства

Для чтения и интерпретации электрических схем и схем необходимо понимать основные символы и условные обозначения, используемые на чертеже. В этой статье основное внимание уделяется тому, как электрические компоненты представлены на схемах и схемах.

Символика

Чтобы читать и интерпретировать электрические схемы и схемы, читатель должен сначала хорошо разбираться в том, что представляют собой многие символы. В этой главе обсуждаются общие символы, используемые для обозначения многих компонентов электрических систем.После усвоения эти знания должны позволить читателю успешно понять большинство электрических схем и схем.

Следующая информация предоставляет подробные сведения об основных символах, используемых для обозначения компонентов в схемах и схемах электрической передачи, коммутации, управления и защиты.

Transformer Symbols

Рисунок 1 Основные символы трансформатора

Трансформаторы

Основные символы для различных типов трансформаторов показаны на Рисунке 1 (A).На рис. 1 (B) показано, как изменяется основной символ трансформатора для обозначения конкретных типов и применений трансформатора.

Помимо самого символа трансформатора, иногда используются метки полярности для обозначения протекания тока в цепи. Эта информация может использоваться для определения фазового соотношения (полярности) между входными и выходными клеммами трансформатора. Метки обычно отображаются в виде точек на символе трансформатора, как показано на Рисунке 2.

Transformer Polarity

Рисунок 2 Полярность трансформатора

На первичной стороне трансформатора точка указывает ток в; на вторичной стороне точка указывает текущий выход.

Если в данный момент ток течет в трансформатор на точечном конце первичной катушки, он будет вытекать из трансформатора на отмеченном пунктиром конце вторичной катушки. Ток, протекающий через трансформатор с использованием точечных символов, показан на рисунке 2.

Переключатели

На рисунке 3 показаны наиболее распространенные типы переключателей и их символы. Термин «полюс», используемый для описания переключателей на рисунке 3, относится к количеству точек, в которых ток может поступать на переключатель.

Показаны однополюсные и двухполюсные переключатели, но переключатель может иметь столько полюсов, сколько требуется для выполнения своей функции. Термин «бросок», используемый на рисунке 3, относится к количеству цепей, которые каждый полюс переключателя может замкнуть или контролировать.

Electrical Switches Pictorial Diagrams

Electrical Switch Symbols

Рисунок 3 Переключатели и символы переключателей

На рисунке 4 представлены общие символы, которые используются для обозначения автоматических переключателей, и поясняется, как символ указывает состояние переключателя или срабатывание.

Switch Status Symbology

Рисунок 4 Коммутатор и символы состояния коммутатора

Предохранители и выключатели

На рис. 5 показаны основные символы предохранителей и автоматических выключателей для однофазных систем.

Помимо графического символа, на большинстве чертежей рядом с символом также указан номинал предохранителя. Рейтинг обычно выражается в амперах.

Fuse Symbol

Thermal Circuit Breaker Magnetic Type Circuit Breaker

Рисунок 5 Обозначения предохранителей и автоматических выключателей

Когда в трехфазных системах используются предохранители, прерыватели или переключатели, трехфазный символ объединяет однофазный символ в трех экземплярах, как показано на рисунке 6.

Также показан символ съемного выключателя, который представляет собой стандартный символ выключателя, помещенный между набором шевронов. Шевроны представляют собой точку, в которой выключатель отключается от цепи при удалении.

Three-phase and Removable Breaker Symbols

Рисунок 6 Обозначения трехфазного и съемного выключателя

Реле, контакты, соединители, линии, резисторы и прочие электрические компоненты

На рисунке 7 показаны общие символы для реле, контактов, разъемов, линий, резисторов и других различных электрических компонентов.

Electrical Component Symbols

Рисунок 7 Общие символы электрических компонентов

Крупные компоненты

Символы на рисунке 8 используются для обозначения более крупных компонентов, которые можно найти на электрической схеме или схеме. Детали, используемые для этих символов, будут отличаться при использовании в системных диаграммах.

Обычно количество деталей отражает относительную важность компонента для конкретной диаграммы.

Motors and Generators Symbols

Electrical Motor Symbols

Рисунок 8 Крупные общие электрические компоненты

Типы электрических схем или схем

Есть три способа показать электрические цепи.Это электрические схемы, схемы и графические схемы. Два наиболее часто используемых — это электрическая схема и принципиальная схема.

Использование этих двух типов диаграмм сравнивается в таблице 1.

Comparison Between Wiring and Schematic Diagrams

Графическая диаграмма обычно не используется в инженерных приложениях по причинам, указанным в следующем примере. На рис. 9 представлен простой пример сравнения схематической диаграммы с графическим эквивалентом.

Как видно, графическая версия не так полезна, как схематическая, особенно если вы пытались получить достаточно информации для ремонта схемы или определения ее работы.

Comparison of an Electrical Schematic and a Pictorial Diagram

Рисунок 9 Сравнение электрической схемы и графической схемы

На рис. 10 показан пример взаимосвязи между принципиальной схемой (рис. 10А) и схемой электрических соединений (рис. 10В) для воздухоосушителя. Более сложный пример, электрическая схема автомобиля, показан в формате электрической схемы на рисунке 11 и в схематическом формате на рисунке 12.

Обратите внимание, что на схеме подключения (Рисунок 11) используются как графические изображения, так и схематические символы.На схеме (рис. 12) отсутствуют все графические изображения, а электрическая система изображена только в виде символов.

Electrical Schematic Wiring Diagram

Рисунок 10 Сравнение электрической схемы и схемы соединений

Car Electrical Circuit

Рисунок 11 Схема электрических соединений автомобиля

Car wiring circuit

Рисунок 12 Схема электрической цепи автомобиля

При работе с большой системой распределения электроэнергии используется особый тип схематической диаграммы, называемый отдельной электрической линией, чтобы показать всю или часть системы.На диаграмме этого типа показаны основные источники питания, выключатели, нагрузки и защитные устройства, что дает полезный общий вид потока мощности в большой системе распределения электроэнергии.

На одиночных линиях распределения электроэнергии, даже если это трехфазная система, каждая нагрузка обычно представлена ​​только простым кружком с описанием нагрузки и ее номинальной мощностью (потребляемой мощностью). Если не указано иное, обычно используются киловатты (кВт). На Рисунке 13 показана часть системы распределения электроэнергии на атомной электростанции.

Electrical Single Line Diagram - SLD

Рисунок 13 Пример однолинейного электрического подключения

.

Электронные схемы, отпечатки и схемы

Чтобы прочитать и понять электронную схему или электронную схему, необходимо понимать основные символы и условные обозначения.

Электронные оттиски делятся на две основные категории: электронные схемы и блок-схемы. Электронные схемы представляют собой наиболее подробную категорию электронных чертежей. Они отображают каждый компонент в цепи, техническую информацию о компоненте (например, его номинальные характеристики) и то, как каждый компонент подключен к цепи.

Блок-схемы — это простейший вид чертежей. Как следует из названия, блок-схемы представляют любую часть, компонент или систему в виде простой геометрической формы, причем каждый блок может представлять отдельный компонент (например, реле) или всю систему. Предполагаемое использование чертежа определяет уровень детализации каждого блока. В этой статье будут рассмотрены основные символы и условные обозначения, используемые в обоих типах рисунков.

Символика для электронных схем

Из всех различных типов электронных чертежей электронные схемы предоставляют наиболее подробную информацию о схеме.Каждый электронный компонент в данной схеме будет изображен, и в большинстве случаев будут предоставлены его номинальные характеристики или другая применимая информация о компонентах. Этот тип чертежа обеспечивает уровень информации, необходимой для поиска и устранения неисправностей электронных схем.

Электронные схемы представляют собой наиболее сложный для чтения тип чертежей, поскольку они требуют очень высокого уровня знаний о том, как каждый из электронных компонентов влияет на электрический ток или на него влияет. В этой статье рассматриваются только символы, обычно используемые для изображения многих компонентов электронных систем.После усвоения эти знания должны позволить читателю получить функциональное представление о большинстве электронных отпечатков и схем.

На рисунках 1 и 2 показаны наиболее распространенные электронные символы, используемые в электронных схемах.

Electronic Symbols

Рисунок 1: Электронные символы

Electronic Components Symbols

Рисунок 2: Электронные компоненты

Примеры электронных схем
В электронных схемах

используются символы для каждого компонента электрической цепи, независимо от его размера.На схемах не показано размещение или масштаб, только функции и поток. Исходя из этого, можно определить фактическую работу электронного оборудования. Рисунок 3 представляет собой пример электронной принципиальной схемы.

Examples of Electronic Schematic Diagrams

Рисунок 3 Пример электронной принципиальной схемы

Второй тип электронной принципиальной схемы, наглядная схема компоновки, на самом деле является не столько электронной схемой, сколько иллюстрацией того, как на самом деле выглядит электронная схема.Эти рисунки показывают фактическое расположение компонентов на печатной плате. Это обеспечивает двухмерный чертеж, обычно смотрящий сверху вниз, с подробным описанием расположения компонентов.

На рисунке 4 показана схема схемы и той же схемы, нарисованная в графическом или топологическом формате для сравнения. Обычно графический макет сопровождается списком деталей.

Circuit Diagram Schematic

Рисунок 4 A: Принципиальная электрическая схема

Printed Circuit Board Layout

Рисунок 4 B: Схема печатной платы

Рис. 4 Сравнение электронной принципиальной схемы и ее графической схемы

Чтение электронных отпечатков, диаграмм и схем

Для правильного чтения распечаток и схем считыватель должен определять состояние показанных компонентов, а также следить за событиями, которые происходят при работе схемы.Как и в случае с электрическими системами, показанные реле и контакты всегда находятся в обесточенном состоянии. Современные электронные системы обычно содержат мало реле или контактов, если они вообще есть, поэтому они обычно играют второстепенную роль.

Электронные схемы сложнее читать, чем электрические схемы, особенно при использовании твердотельных устройств (в Фундаментальном справочнике по электронной науке подробно рассматриваются электрические схемы). Знание работы этих устройств необходимо для определения протекания тока.В этом разделе будут рассмотрены только основы, которые помогут развить навыки чтения.

Первое наблюдение при работе с подробной электронной схемой — это источник и полярность питания. Обычно мощность отображается одним из двух способов: либо как входной трансформатор, либо как числовое значение. Когда питание подается от трансформатора, отметки полярности помогут определить ток. В этом соглашении точки на первичной и вторичной обмотках указывают ток, протекающий в первичной обмотке и из вторичной обмотки в данный момент времени.На рисунке 5 ток идет в верхнюю часть первичной обмотки и выходит из нижней части вторичной обмотки.

Transformer Polarity Markings

Рисунок 5 Маркировка полярности трансформатора

Обычно источник электроэнергии указывается в той точке, где он входит в конкретную схему. Эти значения указаны численно с заданной полярностью (+15 В, -15 В). Эти отметки обычно находятся вверху и внизу схемы, но не всегда.

В примере, показанном на Рисунке 6, мощность показана сверху и снизу в цепи, использующей два источника питания.Если не указан источник питания переменного тока (AC), напряжения обычно могут приниматься за постоянный ток (DC).

Electronic Diagrams and Schematics

Рисунок 6 Схема соединений источника питания

В любой цепи должно быть установлено заземление для создания полного пути тока. Земля обычно изображается с помощью символа земли, который был показан ранее. Направление тока можно определить, соблюдая полярность источников питания. Когда показаны полярности, можно установить ток, а заземление не всегда отображается.

Установив источники питания и точку заземления, можно определить работу устройств.

Наиболее распространенными полупроводниковыми устройствами являются транзистор и диод. Они сделаны из таких материалов, как силикон и германий, и обладают промежуточными электрическими свойствами между проводниками и изоляторами. Полупроводник будет одной из двух разновидностей: PNP или NPN. Обозначение указывает направление движения электронов через устройство. Направление стрелки указывает тип, как показано на рисунке 2.Однако существует множество различных способов установки транзистора для достижения различных рабочих характеристик. Их слишком много, чтобы их здесь описать, поэтому будет показана только самая распространенная и базовая конфигурация (общий эмиттер).

Даже несмотря на то, что транзисторы содержат несколько переходов из материала p- или n-типа, ток обычно течет в одном направлении. При обычном протекании тока (т. Е. От + до -) ток будет проходить через транзистор от наиболее положительного к наименее положительному и в направлении стрелки на эмиттере.На рисунке 7 транзистор имеет положительный источник питания с заземлением на эмиттере. Если вход также положительный, транзистор будет проводить.

NPN Transistor Conducting

Рисунок 7 NPN-проводящий транзистор

Если входной сигнал становится отрицательным, как на рисунке 8, проводимость устройства прекращается, потому что вход, или в данном случае базовый переход, контролирует состояние транзистора. Обратите внимание, что когда ток течет, он движется в направлении стрелки.

NPN Transistor Non-conducting

Рисунок 8 Непроводящий NPN-транзистор

На рис. 9 используется транзистор PNP.Применяются те же правила, что и выше, за исключением того, что на этот раз полярности мощности должны измениться, чтобы позволить току течь.

PNP Transistor

Рисунок 9 PNP-транзистор

Те же правила, что и для транзисторов, справедливы и для диодов. Однако диоды проще транзисторов, потому что они имеют только один переход и проводят только в одном направлении, как показано на рисунке 10. Символ диода, как и символ транзистора, показывает направление проводимости направлением стрелки, которая от положительный на отрицательный.

Diode Current Flow

Рисунок 10 Диод

Хотя эти простые правила не позволят вам прочитать все электронные схемы, они помогут понять некоторые из основных концепций.

Элемент, который может вызвать путаницу при чтении электронных распечаток или схем, — это маркировка, используемая для отображения бистабильной работы. В большинстве случаев бистабли будут обозначены прямоугольником или кружком, как показано на Рисунке 11 (A). Линии внутри или вокруг этих бистаблей не только обозначают их как бистабли, но также показывают, как они функционируют.

Bistable Symbols

Рисунок 11 Бистабильные символы

На рисунке 11 (B) показаны различные условные обозначения, используемые для обозначения бистабильной работы. Обычно одна схема взаимодействует с другими схемами, для чего требуется метод, позволяющий считывающему устройству следовать по одному проводу или пути прохождения сигнала от первого рисунка ко второму. Это можно сделать разными способами, но обычно линия или проводник, который необходимо продолжить, заканчиваются на клеммной колодке. Эта доска будет помечена и пронумерована с указанием продолжения рисунка (для каждой линии может существовать отдельный рисунок).При наличии следующего чертежа для продолжения нужно найти только клеммную колодку, которая соответствует предыдущему номеру.

В тех случаях, когда клеммные колодки не используются, провод должен заканчиваться номером (обычно одной цифрой), а также следующим номером чертежа. Чтобы облегчить определение местоположения продолжения, на некоторых чертежах указаны координаты, которые указывают местоположение продолжения на втором чертеже. Точка продолжения на втором чертеже также будет ссылаться на первый рисунок и координаты продолжения.

Символика чертежей блока

Не все печатные издания электроники прорисованы с такой степенью детализации, как отдельные резисторы и конденсаторы, и не всегда такой уровень информации необходим. Эти более простые рисунки называются блок-схемами. Блок-схемы позволяют представить любой тип электронной схемы или системы в простом графическом формате.

Блок-схемы

предназначены для представления потоковой или функциональной информации о цепи или системе, а не подробных данных о компонентах.Символы, показанные на рисунке 12, используются в блок-схемах.

Block Drawing Symbology

Рисунок 12 Пример

Блоки Когда используются блок-схемы, основные блоки, показанные выше (рис. 12), можно использовать практически для чего угодно. Что бы ни представлял блок, будет написано внутри. Обратите внимание, что блок-схемы представлены в этой статье вместе с электронными схемами, потому что блок-схемы обычно встречаются вместе со сложными схематическими диаграммами, которые помогают представить или обобщить их поток или функциональную информацию.

Использование блок-схем не ограничивается электронными схемами. Блок-схемы широко используются для отображения сложных инструментальных каналов и других сложных систем, когда важен только путь прохождения сигнала.

Примеры блок-схем

Блок-схема является самой простой и простой для понимания из всех типов инженерной печати. Он состоит из простых блоков, которые могут представлять столько, сколько нужно. Пример блок-схемы показан на рисунке 13.

Эта конкретная блок-схема представляет инструментальный канал, используемый для измерения нейтронного потока, индикации измеренного потока и генерации выходных сигналов для использования другими системами.

Example Block Diagram

Рисунок 13 Пример блок-схемы

Каждый блок представляет собой этап в развитии сигнала, который используется для отображения на измерителе внизу или для отправки в системы за пределами чертежа. Обратите внимание, что не все блоки равны. Некоторые представляют несколько функций, в то время как другие представляют только простой каскад или одну бистабильную схему в более крупном компоненте.Создатель блок-схемы определяет содержание каждого блока в зависимости от предполагаемого использования чертежа.

Каждый из типов чертежей, рассмотренных в этом и предыдущих модулях, не всегда отличается и отличается. Во многих случаях два или более типов рисунков будут объединены в один отпечаток. Это позволяет представить необходимую информацию в ясном и кратком формате.

На рисунке 14 приведен пример того, как можно комбинировать различные типы рисунков.В этом примере механические символы используются для обозначения технологической системы и клапанов, управляемых электрической схемой; электрические однолинейные символы используются для обозначения электромагнитных реле и контактов, используемых в системе; символы электронных блоков используются для контроллеров, сумматоров, I / P преобразователя и бистаблей.

Electronic Block Diagram

Рисунок 14 Пример комбинированного чертежа, КИПиА, однопроводной электрической и электронной блок-схемы

На рисунке 15 показано использование электронной блок-схемы в сочетании с однолинейной электрической схемой.На этом чертеже представлена ​​часть схемы защиты генератора атомной электростанции.

Combination Diagram of Electrical Single Line, and Block Diagram

Рисунок 15 Пример комбинированной схемы одиночной электрической линии и блок-схемы

Примеры:

Пример 1 Чтобы облегчить понимание чтения символов и схем, ответьте на следующие вопросы, касающиеся следующих рисунков. Ответы на каждый пример даются на странице вопросов, касающихся следующих вопросов.

Electronic Diagrams and Schematics

Рисунок 16 Пример 1

Обратитесь к Рисунку 16, чтобы ответить на следующие вопросы:

1. Укажите номер, соответствующий указанному компоненту

  • а. катушка или индуктор
  • г. Транзистор PNP
  • г. диод положительный
  • г. блок питания
  • e. постоянный резистор
  • ф. конденсатор
  • г. Транзистор NPN
  • ч. переменный резистор
  • и. отрицательный источник питания
  • Дж.цепь заземления
  • к. потенциометр

2. Какая стоимость R13? (Включите единицы).

3. Будет ли транзистор проводящим или непроводящим, если на входе Q1 будет напряжение -15 В? Почему?

4. Каково значение C1? (Включая единицы)

Ответы:

Ответы на вопросы по рисунку 16

  1. а. 10 д. 7 b.2 e.4 c.3 f.9 g.1 j. 11 ч. 6 к. 5 i.8
  2. 3,3 кОм, или 3300 Ом.
  3. Непроводящий, потому что потенциал базы (-15 В) не является положительным относительно эмиттера (-15 В).
  4. 50 микрофарад или 0,000050 фарад.
Пример 2

Circuit Diagram Questions

Рисунок 17 Пример 2

Обратитесь к Рисунку 17, чтобы ответить на следующие вопросы:

а. Сколько резисторов в цепи?

г. Сколько там транзисторов? , а это транзисторы PNP или NPN?

г. Что такое CR 4?

г. Сколько блоков питания питает схему и ее компоненты?

e. Сколько конденсаторов в цепи?

ф.Q2 будет проводить, когда на выходе U 2 будет положительное или отрицательное напряжение?

Ответы:

Ответы на вопросы по рисунку 17

а. Семь резисторов, R11, R13, R14, R20, R12, Rl, RL

г. Два, оба являются транзисторами типа NPN.

г. Диод

г. Два источника питания, 1-5 В постоянного тока для усилителя U2 и батарея 24 В постоянного тока в цепи.

e. Один, C7

ф. Транзисторы NPN проводят, когда их базовый переход положительный

.Принципиальная схема

— Электронная схема и конструкция печатной платы

Switched Bike Light

У вас есть велосипед ..? почему бы не попробовать построить эту схему ..?. Работает от батарейки 3-6В. Эта трасса поможет водителю велосипеда ночью и поможет другим людям узнать о вашем присутствии. Схема включения велосипедного фонаря: Список компонентов: R1 = Фоторезистор (любого типа) R2 = 22K 1 / 2W Trimmer Cermet… Подробнее »

3A Switching Power Supply

Это принципиальная схема импульсного стабилизатора питания 3А: Простая и дешевая, схема построена на базе известного IC-стабилизатора LM317 с усилителем тока силового транзистора 2N3782.Не забудьте добавить радиатор специально для силового транзистора 2N3782.

Это схема полосового фильтра звукового сигнала, которая фильтрует звуковую частоту от 300 Гц до 2500 Гц. Нижняя и верхняя звуковые частоты будут обрезаться. Скачать объяснение здесь

Remote Control Tester Circuit Electronic

Вот схема тестера дистанционного управления. Эта схема действительно является простым и легким тестером для проверки основных операций инфракрасного пульта дистанционного управления. Он недорогой и очень простой в строительстве.Тестер разработан на основе модуля инфракрасного приемника TSOP1738. Работа пульта дистанционного управления определяется звуковым сигналом от… Подробнее »

doubling electric current output for 78xx regulator

Это принципиальная схема умножителя токового выхода, разработанного для регулятора IC LM78xx. По умолчанию регулятор серии ID 78xx выдает максимальный выходной ток 1–1,5 А. Чтобы увеличить выходной ток этого регулятора, вы можете подумать о создании этой схемы. Схема проста, легка в сборке и недорога. Список запчастей: R1,… Подробнее »

4-transistor FM tracking transmitter

На следующей диаграмме показан передатчик слежения FM на 4 транзисторах.Никаких дополнительных примечаний к этой схеме передатчика слежения, попробуйте обнаружить эту схему самостоятельно .. 🙂 Список компонентов: R1 = 100 кОм R2 = 10 Ом R3 = 47 кОм R4 = 220 Ом C1 = 4,7 мкФ / 16 В C2, C5 = 1 нФ C3 =… Подробнее »

White line follower circuit electronic

Это принципиальная схема игрушки-последователя белой линии. Привод игрушки — двигатель постоянного тока. Эту схему можно использовать для «игрушечного автомобиля, который следует белой» линии, эту схему также называют очень простым роботом: «повторитель линии без микроконтроллера». Мотор — тип? 3v с передачей для управления автомобилем или… Подробнее »

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *