Защита блока питания компьютера от перегрузки: для лабораторного и регулируемого, как сделать своими руками

Содержание

для лабораторного и регулируемого, как сделать своими руками

Автор Акум Эксперт На чтение 8 мин Просмотров 5.8к. Опубликовано Обновлено


Практически каждый автолюбитель имеет в своем арсенале сетевое зарядное устройство. Но, к сожалению, далеко не все подобные приборы оснащены защитой от короткого замыкания. То же самое можно сказать о лабораторных блоках питания – обязательном инструменте любого радиотехника. В этой статье мы рассмотрим схемы защиты от КЗ для блока питания и зарядного устройства.

3 схемы на транзисторах и тиристорах

Для начала рассмотрим схемы защиты блока питания на полупроводниковых компонентах. Они просты, надежны и, главное, обладают большим, чем у схем с электромагнитным реле быстродействием.

Простейшая на биполярном транзисторе

Эта несложная для повторения конструкция подойдет для относительно маломощного (до 5-6 А) блока питания или зарядного устройства. В качестве управляющего ключа в блоке защиты используется довольно распространенный и недорогой кремниевый  транзистор КТ819.

Схема защиты от КЗ на биполярном транзисторе

Пока ток, протекающий через токоизмерительный резистор R3 в нагрузку не превышает допустимого, управляющий транзистор Т2 закрыт. А Т1 благодаря напряжению смещения с резистора R1 открыт. Нагрузка получает питание. При перегрузке или коротком замыкании на выходе схемы напряжение, вызванное падением на токоизмерительном резисторе R3, открывает T2. Тот в свою очередь запирает ключ Т1, одновременно зажигая светодиод LED1 «Перегрузка». В этом состоянии схема будет находиться до тех пор, пока ток потребления нагрузкой не войдет в допустимый диапазон.

На месте Т1 могут работать транзисторы 2N5490, 2N6129, 2N6288, 2SD1761, BD291, BD709, BD953, КТ729.  Т2 – любой маломощный кремниевый транзистор типа n-p-n. К примеру, популярный  КТ315 с любой буквой. Светодиод – любой индикаторный. Наладка схемы сводится к подбору номинала резистора R3, выполненного из куска нихромового провода. Чем ниже сопротивление резистора, тем выше ток, при котором сработает защита. Силовой транзистор Т1 нужно установить на радиатор с эффективной площадью рассеивания не менее 300 мм2.

Схема устойчиво работает при напряжении  от 8 до 25 В. Если оно иное, придется подобрать номиналы резисторов. R1 должен надежно отпирать силовой транзистор Т1 при отсутствии перегрузки. От номиналов R2, R3 будет зависеть порог срабатывания схемы по току.

На полевом транзисторе

В этой конструкции в качестве силового ключа используется полевой транзистор, имеющий меньшее, чем биполярный падение напряжения и способный коммутировать больший ток.

Схема защиты от КЗ на полевом транзисторе 

Пока ток через нагрузку не превышает критический, падение напряжения на токоизмерительном резисторе R1 невелико, транзистор Т2 закрыт. Т1 открывается напряжением, которое подаётся через LED1. В это время ток, протекающий через светодиод и резистор R4 очень мал и светодиод не светится.

При коротком замыкании или перегрузке падение напряжения на токоизмерительном резисторе увеличивается, транзистор Т2 открывается и запирает полевой транзистор, отключая нагрузку. При этом ток через светодиод увеличивается и последний начинает светиться, указывая на перегрузку. Налаживание конструкции сводится к подбору номинала токоизмерительного резистора R1 – чем его сопротивление ниже, тем при большем токе нагрузки включится защита.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Если вместо постоянного резистора R4 установить подстроечный номиналом около 10 кОм, то регулировать ток срабатывания схемы можно им в достаточно широком диапазоне и без подбора R1. При указанных на схеме элементах и выходном напряжении 13-14 В (ЗУ для автомобильного аккумулятора) ток срабатывания защиты составляет около 8 А.

В узле можно использовать практически любые полевые транзисторы, выдерживающие ток 15-20 А и соответствующее напряжение. Подойдут, к примеру, IRFZ40, IRFZ44, IRFZ46, IRFZ48. Если ток через нагрузку не будет превышать 8 А транзистору радиатор не нужен. Т2 – любой маломощный кремниевый n-p-n проводимости, скажем КТ315 или КТ3102.

На тиристоре

Эта схема предназначена для защиты от короткого замыкания зарядного устройства, но может работать с любым трансформаторным блоком питания без сглаживающих конденсаторов.

Схема защиты зарядного устройства на тиристоре 

Пока ток через нагрузку не превышает нормальный, T1 открыт. При этом при каждой полуволне напряжения коллекторным током открытого транзистора открывается тиристор, питая нагрузку. При коротком замыкании выходное напряжение падает, Т1 закрывается и запирает тиристор. Критическое напряжение, а значит, и порог срабатывания настраивается потенциометром Р1. В схеме можно использовать любой тиристор серии КУ202, Транзистор КТ814 можно заменить на BD136, BD138, BD140. Тиристор необходимо установить на радиатор площадью не менее 300 см2.

При необходимости сглаживающие конденсаторы можно установить после блока и использовать конструкцию в качестве обычного БП. Но в этом случае на выходе конструкции нужно установить токоограничивающий резистор номиналом 0.1 – 1 Ом. В противном случае схема  будет срабатывать от перегрузки во время зарядки конденсаторов.

Схема защиты на реле

А теперь перейдем к конструкциям, в которых в качестве управляющего элемента используется электромагнитное реле. С одной стороны это несколько снижает надежность – контакты реле при больших токах могут подгорать. Но с другой такие схемы достаточно просты и могут использоваться с БП, рассчитанные на разное выходное напряжение – достаточно подобрать реле нужного типа.

На одном реле

Конструкция исключительно проста, содержит минимум деталей и не нуждается в настройке. Единственно, как было отмечено выше, необходимо подобрать реле по напряжению срабатывания и соответствующей мощности.

Блок защиты от короткого замыкания на одном реле

Работает устройство следующим образом. В исходном положении горит светодиод LED2, нагрузка обесточена. При нажатии на кнопку S2 на обмотку реле К1 поступает питание и оно срабатывает, подключая нагрузку к источнику питания и одновременно отключая кнопку и светодиод LED2. При этом конденсатор С1 служит для задержки отключения реле на время переключения его контактов. Вместе с нагрузкой питание через диод D1 поступает на обмотку К1 и оно становится на самоблокировку. Кнопку можно отпустить. Загорится светодиод LED1, сигнализируя о том, что нагрузка питается.

При коротком замыкании напряжение в цепи питания реле падает, и его отпускает, отключая нагрузку и снова подключая кнопку. LED1 гаснет, LED2 загорается. Для того, чтобы перезапустить узел необходимо устранить перегрузку и снова нажать кнопку S1.

Важно! При указанном на схеме реле устройство можно использовать с 12-ти вольтовым БП или зарядным устройством. Если напряжение источника отличается, необходимо подобрать реле, срабатывающего от этого напряжения.

На реле и однопереходном транзисторе

Эта схема несколько сложнее предыдущей, но она позволяет регулировать ток срабатывания защиты.

Защита от перегрузки с регулировкой порога срабатывания

Пока ток через нагрузку не превышает определенного значения, составной транзистор T1, T2 закрыт. При увеличении тока падение напряжения на токоизмерительном резисторе R1 заставляет открыться Т1 и Т2, а вслед за ними и сработать реле К1. Реле отключает нагрузку и подключает к плюсовой шине резистор R4, не позволяющий отключиться реле.

Чтобы привести конструкцию в исходное состояние, достаточно нажать на кнопку S2. Реле отключится, нагрузка снова получит питание. Если причина КЗ не устранена, то после отпускания кнопки защита сработает вновь. Величину тока срабатывания можно регулировать при помощи переменного резистора P1.

Важно! Не рекомендуется держать кнопку S2 длительное время. Если причина КЗ не устранена, то БП будет перегружен и сгорит, так как узел защиты будет принудительно отключен.

В блоке можно использовать транзисторы КТ805 с любой буквой, 2SC2562, 2N3054 (Т2) и любые маломощные кремниевые транзисторы структуры p-n-p. Напряжение срабатывания реле должно быть несколько ниже напряжения источника питания. LED1 «Перегрузка» – любой индикаторный.

Регулируемый блок питания с защитой от кз своими руками

Этот лабораторный блок питания собран на специализированной  микросхеме LM723. Он позволяет регулировать выходное напряжение от 2 до 30 В, имеет защиту от короткого замыкания и обеспечивает ток до 20 А.

Схема лабораторного блока питания с защитой от КЗ

Сердцем устройства является микросхема, представляющая собой регулятор напряжения с защитой от перегрузки. Поскольку выходная мощность микросхемы невелика, она оснащена мощным ключом, собранным на транзисторах VT1-VT5. Резисторы R4, R6, R8, R10 – токовыравнивающие. Они компенсируют разброс коэффициентов передачи транзисторных ключей.

Датчик тока собран на резисторах R5, R7, R9, R11, включенных параллельно. Он подключен к выводам 2 и 3 микросхемы. Как только напряжение на этих выводах станет больше 0.6 В, сработает защита по току и закроет силовые транзисторы. Резистор R2 служит для регулировки выходного напряжения. Мощные транзисторы установлены на общий радиатор площадью около 1000 см2. Изолировать их от радиатора не нужно.

Вместо указанных на схеме 2N3055 можно установить КТ819. Выпрямительные диоды должны выдерживать ток 30 А и обратное напряжение не ниже 50 В. Трансформатор выдает напряжение 35 В и обеспечивает ток 25 А.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Не следует путать защиту от перегрузки со стабилизацией тока. Эта схема не обеспечивает стабилизацию на заданном уровне, а просто отключает нагрузку при превышении определенного тока.

Вот мы и закончили краткий обзор схем защиты от КЗ, которые можно использовать в блоках питания и зарядных устройствах. Несмотря на то, что конструкции довольно простые, они вполне справятся со своей задачей и спасут жизнь блоку питания при небрежном с ним обращении.

Спасибо, помогло!7Не помогло1

Схемы защиты на блоке питания компьютера — Ответы на вопросы

Имеют ли блоки питания компьютера схемы защиты и какие, и что обозначают OVP, UVP, SCP, OCP и OTP в описании?

При покупке БП, в первую очередь необходимо посмотреть на наличие сертификатов и на соответствие его современным международным стандартам.
В спецификации качественного блока питания должны быть указаны меры защиты, такие как: UVP, OVP, SCP, OPP, OCP, OTP.

В характеристиках дешевых блоков питания могут быть указаны не все схемы защиты или вообще не указываться.
Если производитель не упомянул о схемах защиты, то это не значит, что они отсутствуют.

В дешевых блоках питания чаще всего используют OPP и SCP — т.е. обычный предохранитель, но такой защиты не всегда может хватить и в случае ЧП, придется заниматься ремонтом материнской платы, блока питания и т.д.

Определить какие схемы защит установлены в вашем блоке питания можно по спецификации производителя.

Качественные блоки питания оснащены всеми схемами защиты, которые перечислены ниже:

— UVP (Under Voltage Protection) — защита от проседания выходных напряжений.
Срабатывает защита после преодоления 20-25% барьера.
Недостаток напряжения влияет на работу жесткого диска, не давая ему раскрутиться.

— OVP (Over Voltage Protection) — защита от перегрузки по напряжению (от превышения выходных напряжений) блока по выходным напряжениям.
Согласно документу ATX12V Power Supply Design Guide, наличие OVP обязательно.
Срабатывает защита при 20-25% превышении выходного напряжения на любом канале.

— SCP (Short Circuit Protection) — защита от короткого замыкания на выходе блока.
Защита обязательна для всех блоков питания стандарта ATX12V.
— OPP (Over Power Protection) или OLP — защита от перегрузки по суммарной мощности по всем каналам (разъемов).

— OCP (Over Current Protection) — защищает от скачков тока при перегрузке любого из выходов.
Позволяет отключать блок питания, не подвергая опасности возникновения короткого замыкания.

— OTP (Over Temperature Protection) — защита от перегрева.
Максимальная температура во время работы не должна быть выше +50 °С.

Кроме того могут быть указаны:

— Dual core CPU support — поддержка многоядерных процессоров.

— Industial class components — в блоке питания используются детали, способные работать в диапазоне от -45 до +105 °C.

Double transformer design — указывает на наличие двух силовых трансформаторов (встречается в блоках большой мощности).

FCC — соответствие нормам электромагнитных наводок (EMI) и радионаводок (RFI), генерируемых блоком питания.

CB — международный сертификат соответствия своим техническим характеристикам.

CE — сертификат, который показывает, что блок питания соответствует строжайшим требованиям директив европейского комитета.

УСТРОЙСТВО ЗАЩИТЫ ДЛЯ ЛЮБОГО БЛОКА ПИТАНИЯ


   Это небольшой блок универсальной защиты от короткого замыкания, что предназначен для использования в сетевых источниках питания. Она специально разработана так, чтобы вписаться в большинство блоков питания без переделки их схемы. Схема, несмотря на наличие микросхемы, очень проста для понимания. Сохраните её на компьютер, чтоб увидеть в лучшем размере.

Схема блока защиты БП

   Чтобы спаять схему вам понадобится:

  1. 1 — TL082 сдвоенный ОУ
  2. 2 — 1n4148 диод
  3. 1 — tip122 транзистор NPN
  4. 1 — BC558 PNP транзистор BC557, BC556
  5. 1 — резистор 2700 ом
  6. 1 — резистор 1000 ом
  7. 1 — резистор 10 ком
  8. 1 — резистор 22 ком
  9. 1 — потенциометр 10 ком
  10. 1 — конденсатор 470 мкф
  11. 1 — конденсатор 1 мкф
  12. 1 — нормально закрытый выключатель
  13. 1 — реле модели Т74 «G5LA-14»

Подключение схемы к БП

   Здесь резистор с низким значением сопротивления соединен последовательно с выходом источника питания. Как только ток начинает течь через него, появится небольшое падение напряжения и мы будем использовать это падение напряжения, чтобы определить, является ли питание результатом перегрузки или короткого замыкания. В основе этой схемы операционный усилитель (ОУ) включенный в качестве компаратора.

  • Если напряжение на неинвертирующем выходе выше, чем на инвертирующем, то на выходе устанавливается «высокий» уровень.
  • Если напряжение на неинвертирующем выход ниже, чем на инвертирующем, то на выходе устанавливается «низкий» уровень.

   Правда это не имеет ничего общего с логическим 5 вольтовым уровнем обычных микросхем. Когда ОУ находится в «высоком уровне», его выход будет очень близким к положительному потенциалу напряжения питания, поэтому, если питание +12 В, «высокий уровень» будет приближаться к +12 В. Когда ОУ находится в «низком уровне», его выход будет почти на минусе напряжения питания, поэтому, близко к 0 В.

   При использовании ОУ в качестве компараторов, мы обычно имеем входной сигнал и опорное напряжение для сравнения этого входного сигнала. Итак, у нас есть резистор с переменным напряжением, которое определяется в соответствии с током, который течет через него и опорным напряжением. Этот резистор является наиболее важной частью схемы. Он подключен последовательно с питанием выходного. Вам необходимо выбрать резистор, падение напряжения на котором составляет примерно 0.5~0.7 вольт при перегрузке тока, проходящего через него. Ток перегрузки появляется в тот момент, когда схема защиты срабатывает и закрывает выход питания для предотвращения повреждений на нем.

   Вы можете выбрать резистор, используя закон Ома. Первое, что нужно определить, является перегрузка током блока питания. Для этого надо знать максимальный допустимый ток блока питания.

   Допустим, ваш блок питания может выдать 3 ампера (при этом напряжение блока питания не имеет значения). Итак, мы получили Р= 0,6 В / 3 А. Р = 0.2 Ом. Следующее, что вы должны сделать, это рассчитать рассеиваемую мощность на этом резисторе по формуле: Р=V*I. Если мы используем наш последний пример, то получим: Р=0.6 В * 3 А. Р = 1,8 Вт — 3 или 5 Вт резистора будет более чем достаточно.

   Чтобы заставить работать схему, вы должны будете подать на неё напряжение, которое может быть от 9 до 15 В. Для калибровки подайте напряжение на инвертирующий вход ОУ и поверните потенциометр. Это напряжение будет увеличиваться или уменьшаться в зависимости от стороны, куда вы поворачиваете его. Значение необходимо скорректировать согласно коэффициента усиления входного каскада 0.6 Вольт (что-то около 2.2 до 3 вольт если ваш усилительного каскада похож на мой). Эта процедура занимает некоторое время, и лучший способ для калибровки это метод научного тыка. Вам может потребоваться настроить более высокое напряжение на потенциометре, так чтоб защита не срабатывала на пиках нагрузки. Скачать файл проекта.


Поделитесь полезными схемами

НИЗКОВОЛЬТНЫЙ ПАЯЛЬНИК СВОИМИ РУКАМИ

   Чтобы удобно и качественно паять различные миниатюрные детали и микросхемы, включая SMD компоненты, разработана конструкция миниатюрного низковольтного паяльника. Напряжение паяльника — 6 В, мощность около 15-ти Ватт. Диаметр нагревательного элемента пол сантиметра. 


РАБОТА ТРИГГЕРА

     Триггер определяется, как бистабильный элемент, то есть логическое устройство с обработанными связями, которое может находиться в одном из двух устойчивых состояний, обеспечиваемых этими связями. Входами триггера R, T и S служат кнопки SB1 – SB3, нажатием которых подается напряжение высокого уровня. Индикаторами выходов Q и Q– являются лампы HL1 и HL2. При включении питания триггера загорается одна из ламп, например HL2. Если теперь на вход R подать 1, нажав кнопку SB1, триггер перейдет в другое устойчивое состояние – загорится лампа HL1, а лампа HL2 погаснет.   





Блок питания ATX 450W PowerCool 120mm (SCP)\(OVP)\(OCP)\(UVP)\24+8\+4 20+4 pin, ATX 12V v.2.3 BOX

ATX V2.3 STANDART 120mm : Блок питания ATX 450W PowerCool 120mm (SCP)\(OVP)\(OCP)\(UVP)\24+8\+4 20+4 pin, ATX 12V v.2.3 BOX

тел: +7(495) 946-99-05
E-mail: [email protected]

Блок питания ATX 450W PowerCool 120mm (SCP)\(OVP)\(OCP)\(UVP)\24+8\+4 20+4 pin, ATX 12V v.2.3 BOX Описание

Кабель питания (компьютер — розетка) с коннектором IEC-320-C13 в комплекте.

Блок питания ATX 450W PowerCool 120mm (SCP)\(OVP)\(OCP)\(UVP)\24+8\+4 20+4 pin, ATX 12V v.2.3 BOX 

Вентилятор голубого цвета из специального композитного политерефталата с добовлением дибутилфталата и дибутилсебацината -данный пластик имеет молекулярную функцию «АНТИПЫЛЬ» которая предотвращает налипание пыли даже в самых сложных местах эксплуатации , тем самым предотвращает разбалансировку вентилятора и в последствии продлевает срок эксплуатации блока питания.

Охлаждение блока питания Вентилятор 120х120 мм
Входное напряжение 230 В
Блок питания ATX 12V v.2.3
Мощность блока питания 450 Вт
Длина шлейфа кабелей 0,45 м
Совместимость Поддержка EPS 12V v.2.93
Коннектор питания мат.платы 24+4+4(8),24+4 pin, 20+4 pin(разборный 24-pin коннектор. 4-pin могут отстегиваться в случае необходимости)
Коннектор питания видеокарт 1x 6-pin разъем
Разъемы для подключения MOLEX/FDD/SATA 2/0/3
-технология SCP (Short Circuit Protection) — защита от короткого замыкания на выходе блока питания 
-технология OVP (Over Voltage Protection) — защита от перегрузки по напряжению (от превышения выходных напряжений) блока по выходным напряжениям. Срабатывает при 20-25 % превышении выходного напряжения на любом канале. 
-технология UVP (Under Voltage Protection) — защита от проседания выходных напряжений. Срабатывает после преодоления 20-25 % барьера. 
-технология OCP ( Over Current Protection)  — защита от перегрузки по току

 

 

ФИО контактного лица, должность *

Телефон (с кодом города) *

E-mail *

 

О компании

Наименование компании *

Страна, город *

Веб-сайт

Предполагаемый оборот *Менее 5 000$От 5 000$ до 10 000$От 10 000$ до 20 000$От 20 000$ до 50 000$Более 50 000$

Наличие торгового помещения *НетДа

Специализируетесь ли Вы на продажах бытовой техники? *НетДа

Направление деятельности вашей компании *Продажа бытовой техникиПродажа канц-товаров, бизнес-подарков, сувенировПродажа офисной мебелиСистемная интеграцияПродажа цифровой и компьютерной техники

 

Тема обращения

 

Начать сотрудничество

Заявка принята!

Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Подписаться на рассылку PowerCool

Стань другом Powercool

JoomShaper

Производитель оставляет за собой право вносить изменения в конструкцию оборудования, изменять свойства, производить доработку и модернизацию без предварительного уведомления и публикаций.

Защита блока питания от перегрузки

Блок питания ExeGate является высококлассным комплектующим. Коэффициент полезного действия у данной модели достаточно высок, что является неплохим показателем производительности. Помимо всего прочего, необходимо отметить и надежность корпуса, который защитит блок питания от повреждений. Особенности: Кабель V с защитой от выдергивания.


Поиск данных по Вашему запросу:

]]>

Базы онлайн-проектов:

Данные с выставок и семинаров:

Данные из реестров:

Дождитесь окончания поиска во всех базах.
По завершению появится ссылка для доступа к найденным материалам.

Содержание:

ПОСМОТРИТЕ ВИДЕО ПО ТЕМЕ: Простая схема регулируемого блока питания на транзисторах с защитой от перегрузки по току и КЗ

Каталог радиолюбительских схем


Портал QRZ. RU существует только за счет рекламы, поэтому мы были бы Вам благодарны если Вы внесете сайт в список исключений. Мы стараемся размещать только релевантную рекламу, которая будет интересна не только рекламодателям, но и нашим читателям. Отключив Adblock, вы поможете не только нам, но и себе. Предлагаемое устройство целесообразно использовать совместно с регулируемым стабилизатором напряжения, не имеющим специальных узлов защиты. Устройство предназначено для защиты регулирующего элемента стабилизатора напряжения от токовой и температурной перегрузок.

Защита срабатывает при:. Датчик температуры — терморезистор RK1 рис 1 , смонтированный непосредственно на регулирующем элементе стабилизатора. При увеличении температуры сопротивление терморезистора уменьшается, следовательно, уменьшается и напряжение на инвертирующем входе компаратора на ОУ DA1. Резисторы R1 и R2 образуют делитель напряжения, который устанавливает порог срабатывания тепловой защиты -его регулируют подстроечным резистором R2. Если напряжение на инвертирующем входе ОУ станет меньше, чем на прямом сигнал на его выходе скачком изменится от низкого уровня до близкого к напряжению питания Вследствие этого включится светодиод НИ, тринистор VS1 подаст напряжение на реле К1, которое сработает и своими нормально замкнутыми контактами отключит нагрузку, включится светодиод HL2.

Звуковой индикатор издаст кратковременный сигнал. На транзисторе VТ1 собран узел защиты от превышения током нагрузки установленного значения и от замыкания на выходе. Резистор R8 — датчик тока. При значении тока около 1,5 А падение напряжения на нем открывает транзистор, который, в свою очередь, включает тринистор VS1. Кнопки SB1 и SB2 позволяют отключать и подключать нагрузку к источнику питания, что необходимо в процессе налаживания питаемого устройства.

Если защита срабатывает в результате перегрева регулирующего элемента, нагрузка не будет подключена до тех пор, пока не уменьшится его температура, о чем судят по выключению светодиода HL1. Конструктивное исполнение устройства защиты зависит от размеров ис пользуемого блока питания При необходимости звуковой индикатор можно исключить.

В предлагаемом варианте применимы резисторы МЛТ-0,, С Можно также установить несколько резисторов разного сопротивления на различные значения тока срабатывания защиты рис 2. Контакты переключателя SA1 должны быть рассчитаны на максимальный ток нагрузки. Реле К1 следует подобрать таким чтобы оно надежно срабатывало при номинальном напряжении на входе стабилизатора Важно, чтобы и его контакты выдерживали максимальный ток.

Сопротивление резистора R10 подбирают в зависимости от используемого реле. Если рабочее напряжение реле -в пределах В, звуковой индикатор подключают, как показано на рис.

Оксидные конденсаторы — К или аналогичные, остальные — КМ-6 и подобные. Диоды — любые кремниевые маломощные транзистор — также любой маломощный кремниевый, например, серий КТ, КТ Терморезистор — ММТ-4 его крепят скобой непосредственно к регулирующему зле менту стабилизатора, используя при необходимости изоляционную прокладку, так как корпус терморезистора соединен с одним из его выводов.

Правильно собранное устройство налаживания не требует. Рекомендуется лишь экспериментально подобрать сопротивление резистора R8 на определенный ток срабатывания защиты. Резистором R2 устанавливают порог срабатывания тепловой защиты, измеряя температуру регулирующего элемента термометром или, в крайнем случае, наощупь.

Однако будьте внимательны и осторожны чтобы не получить ожог. Для защиты транзистора VТ1 от перегрузки в цепь его вывода базы целесообразно включить резистор сопротивлением Ом. Что-то не так? Пожалуйста, отключите Adblock. Как добавить наш сайт в исключения AdBlock.


Блоки питания — Блоки питания, UPS и защитные фильтры

Бесплатный архив статей статей в Архиве. Алфавитный указатель статей в книгах и журналах. Бесплатная техническая библиотека, Энциклопедия радиоэлектроники и электротехники. Комментарии к статье. Смотрите другие статьи раздела Блоки питания.

Помогите пожалуйста найти данную схему! Срочно надо, искал и ничего не нашел. Заранее.

Схемы защиты на блоке питания компьютера

Блок питания ExeGate является высококлассным комплектующим. Коэффициент полезного действия у данной модели достаточно высок, что является неплохим показателем производительности. Помимо всего прочего, необходимо отметить и надежность корпуса, который защитит блок питания от повреждений. Блок питания максимальным выходным током 8 А, входным напряжением В и диапазоном входных частот Гц. Среднее время наработки на отказ составляет около 50 часов. Помимо всего прочего, нео. Он надежен, а его мощности хватает для всех необходимых операций. Блок подходит для любых материнских плат: как для новых, так и для старых.

ЗАЩИТА ОУ ОТ ПЕРЕГРУЗОК в устройствах на микросхемах. Схема защита по току

В радиолюбительской практике хорошо зарекомендовали себя простые тиристорные устройства защиты блоков питания от перегрузок по току, например описанные в [1] и [2]. Схема, изображенная на рис. Как показала практика, при использовании кремниевых транзисторов и токе нагрузки не более Даже разогретый регулирующий транзистор надежно запирается тиристорной защитой. Это позволило «облегчить» схему — в цепь анода тиристора вместо реле включается светодиод сигнализации перегрузки.

На рынке лабораторных блоков питания предлагается множество серий от различных производителей.

лабораторный блок питания с защитой по току схема

Предлагаемый стабилизатор имеет раздельную защиту от перегрузки по току и КЗ. При КЗ на выходе стабилизатора срабатывает узел защиты на VT3 рис. При перегрузке по току срабатывает защита на VS1 и К1. Узел электронной защиты срабатывает, когда ток нагрузки создает на резисторе R6 падение напряжения, достаточное для открывания тиристора VS1, то есть когда разность напряжений между управляющим электродом и катодом тиристора достигает приблизительно 1 В. Возникающий при этом отрицательный импульс напряжения через диод VD3 поступает на базу транзистора VT3 и практически закрывает его, а следовательно, и регулирующий транзистор VT1. Одновременно диод VD3 защищает транзистор VT3 от попадания на его базу положительного напряжения из анодной цепи тиристора.

Универсальные БП с защитой от перегрузок и К.З.

Очень часто, разрабатывая и или налаживая различные схемы, возникает потребность в блоке питания. Да не простом, а с регулировкой выходного напряжения, защитой от перегрузок и низким уровнем пульсаций. В основном, в таких источниках используются микросхемные стабилизаторы, которые управляют работой регулирующего транзистора. Однако если воспользоваться популярными операционными усилителями, скажем из серии К, то появляется возможность в короткие сроки собрать простой, надежный и удобный блок питания с защитой от короткого замыкания. Принципиальная схема блока питания представлена чуть выше, рассмотрим работу устройства. Сетевое напряжение попадает на первичную обмотку, с нее через магнитопровод оно переходит на вторичную. Далее напряжение преобразуется в постоянное благодаря диодному мосту VD1, а конденсатор C1 служит для сглаживания пульсаций.

r2 — ком (в схему защиты от КЗ не входит присутствует на плате БП) . велосипед» — в компьютерном БП уже имеется защита от перегрузки.

Метод устранения неисправностей и особые указания использования источника электропитания серии APW

Защита блока питания от короткого замыкания MrMihanaha Защита блока питания от короткого замыкания lm lm lab power supply лабораторный блок питания блок питания источник питания электроника electronics бп источник электричества источник энергии variable power supply lab bench power supply power supply защита от кз защита от короткого замыкания защита от перегрузки Power Supply Unit.

Блок питания ExeGate ATX-1200PPX 1200W RTL Black защита от перегрузки OPP OLP

ВИДЕО ПО ТЕМЕ: САМОДЕЛЬНЫЙ ЛАБОРАТОРНЫЙ БЛОК ПИТАНИЯ 0-24V, 3А С ЗАЩИТОЙ ОТ КЗ И ПЕРЕГРУЗКИ ПО ТОКУ.

Вентилятор голубого цвета из специального композитного политерефталата с добовлением дибутилфталата и дибутилсебацината -данный пластик имеет молекулярную функцию «АНТИПЫЛЬ» которая предотвращает налипание пыли даже в самых сложных местах эксплуатации , тем самым предотвращает разбалансировку вентилятора и в последствии продлевает срок эксплуатации блока питания. Начать сотрудничество. Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра. Вопрос производителю Как Вас зовут?

Если блок питания вашего компьютера вышел из строя, не спешите расстраиваться, как показывает практика, в большинстве случаев ремонт может быть выполнен своими силами.

Блок питания осуществляет преобразование сетевого переменного напряжения вольт 50 Герц в постоянное стабилизированное. Предназначен для электрического питания ноутбуков и оборудования от стационарной электрической сети. Это дает следующие преимущества:. Блок питания — универсальное устройство. Его можно использовать для питания любого оборудования к которому он подходит по электрическим характеристикам и выходному разъему. Основные электрические характеристики — номинальное выходное напряжение и максимально допустимый выходной ток. Для того, чтобы считать блок питания совместимым с ноутбуком, необходимо соблюдение следующих условий:.

Новые книги Шпионские штучки: Новое и лучшее схем для радиолюбителей: Шпионские штучки и не только 2-е издание Arduino для изобретателей. Обучение электронике на 10 занимательных проектах Конструируем роботов. Руководство для начинающих Компьютер в лаборатории радиолюбителя Радиоконструктор 3 и 4 Шпионские штучки и защита от них. Сборник 19 книг Занимательная электроника и электротехника для начинающих и не только Arduino для начинающих: самый простой пошаговый самоучитель Радиоконструктор 1


OCP в источнике питания: определение и работа

Самый высокий и самый низкий, все источники питания включают в себя различные механизмы защиты, как для защиты их собственной целостности от возможных изменений электрического тока, так и для защиты компонентов, к которым они подают питание. Раньше мы говорили вам, что OCP, вероятно, является самым важным из них, а теперь мы увидим, почему.

Что такое защита OCP?

OCP — это аббревиатура от Over Current Protection. Эта функция использует одну или несколько цепей, чтобы источник питания не потреблял больше тока (в амперах), чем могут выдержать его цепи и кабели. Следовательно, OCP важен, так как слишком высокий ток может расплавить кабели и поджарить электронные компоненты, а также повредить все типы цепей, через которые проходит электричество.

Этот компонент защиты от скачков тока обычно размещается непосредственно в шинах питания источника; В зависимости от внутренней конструкции его можно разместить сразу после преобразователя переменного / постоянного тока или в преобразователях постоянного / постоянного тока на 12 В, 5 В и 3.3 В (это идеально), хотя иногда, в зависимости от того, как преобразовывается напряжение в источнике, на 12 В постоянного / постоянного тока может быть только один OCP, и все, пока напряжение 5 В и 3.3 В затем снимается с 12 В (не идеально, но обычно работает очень хорошо).

При покупке блока питания вы всегда должны убедиться, что OCP входит в список функций защиты, поскольку обычно электрические компоненты способны работать в довольно широких диапазонах напряжения, но не в силе тока. Например, схема, для работы которой требуется 12 В и 1 А, может выдерживать колебания напряжения от 11.6 до 12.4 В, а также изменения интенсивности ниже 1 А, но никогда не выше 1 А, потому что в этом случае она будет перегружена, нагревается и таять.

Как работает эта защита в линиях питающего напряжения

Представьте себе электрическую панель в вашем доме. На главной панели есть предохранители, которые обеспечивают защиту, не позволяя проводам к каждой стенной розетке выдерживать больше ампер, чем они были предназначены; То же самое происходит с OCP, поскольку он защищает цепи регулирования источника питания (как мы уже говорили, 12 В, 5 В и 3.3 В, а также 5 ВSB, если он есть в источнике питания) и гарантирует, что разъемы, кабели и цепи не плавятся при экстремальных условиях. нагрузки.

Для однолинейных источников питания 12 В особенно важно, чтобы другие функции защиты источника, такие как защита от превышения мощности (OPP), защита от пониженного напряжения (UVP) и защита от короткого замыкания (SCP), работали дополнительно. от самого OCP; например, если к одному разъему приложена очень высокая нагрузка, SCP или UVP отключат источник питания.

Часто блоки питания с несколькими шинами 12 В используют одну шину для передачи питания на материнская плата, CPU / ЦЕНТРАЛЬНЫЙ ПРОЦЕССОР, Порты SATA и порты MOLEX, а для питания оборудования, подключенного через PCIe, используются разные направляющие.

Как правило, несколько источников питания на рельсах имеют свои недостатки (например, необходимость отделять кабели для каждой вещи, а иногда даже необходимость рассчитывать усилители в каждом разъеме, чтобы не переборщить), но одним из преимуществ является то, что они более безопасен за счет наличия независимой защиты OCP для каждой из шин 12 В по сравнению с большим преимуществом однорельсовых источников, которое заключается в том, что они лучше поддерживают пики мощности, необходимые для оборудования с высоким энергопотреблением, такого как разогнанные процессоры или Top-of- разнообразная графика.

OCP против OPP / OLP

Защиту от перегрузки по току (OCP) не следует путать с защитой от перегрузки по мощности (OPP), также известной как защита от перегрузки (OLP). Это еще одна функция защиты, используемая источниками питания, которая заключается в выключении устройства, если требуется больше мощности (в данном случае мы говорим о исходной мощности), чем она способна обеспечить максимальную номинальную мощность.

Например, представьте, что у вас есть блок питания на 500 Вт в вашей системе, но вы установили пару RTX 3090 с нагрузками при нагрузке, которые вместе намного превышают 500 Вт. Сначала ПК запустится и будет работать без каких-либо проблем, потому что потребление будет низким, но в тот момент, когда вы запустите игру или 3D-программу, и два графических процессора начнут потреблять больше энергии от источника питания, это будет система OPP / OLP, который отключит источник питания (и, следовательно, ПК), когда его предел будет превышен.

По этой причине, когда у вас нет достаточно мощного источника питания, система отключается только тогда, когда вы запускаете приложения, требующие высокого потребления от графики или процессора. Без этой системы защиты возник бы ряд проблем, которые могут буквально включать в себя возгорание или взрыв источника питания. В этой ситуации могут задействоваться другие механизмы (например, защита от перегрева), если они есть в источнике, но в любом случае последствия могут быть весьма критическими, если это необходимо.

Как безопасно управлять индуктивной нагрузкой 500 Вт с помощью блока питания компьютера и не допускать скачков напряжения при переключении?

Мне нужно найти безопасный и надежный способ отключения двигателя постоянного тока от источника питания. Мотор большой (т.е. 500 Вт) 14,4 В. Следовательно, требования к току велики, т. Е. 35 А для источника питания 14,4 В.

Я не могу найти такой источник питания для покупки, и мой бюджет невелик. Поэтому я подумал, что смогу использовать блок питания ATX от компьютера. Как правило, они имеют линию 12В с высоким током, которая может выдавать необходимый ток, в данном случае 42А.

Я буду использовать силовой полевой МОП-транзистор для регулирования мощности, поступающей на двигатель, путем его включения и выключения с использованием ШИМ с широтно-импульсной модуляцией. Должны быть созданы огромные индуктивные всплески. Мне нужен способ защитить блок питания от них.

Я думал об использовании нескольких уровней защиты, чтобы быть в безопасности, пока они совместимы друг с другом. Там расположение в том порядке, в котором я их упоминаю, расположено, начиная ближе всего к двигателю и двигаясь в направлении питания. Первая линия защиты — это диод свободного хода, установленный параллельно с двигателем, смещенным вперед от 0 до положительного направления подачи. Кроме того, возможно, RC демпфер также параллельно. Затем 12V противостояние TVS также параллельно в случае отказа двух других. Тем не менее, это приведет к короткому замыканию источника питания, если он сработает. Если источник не имеет защиты от перегрузки по току, он убьет источник. Мне нужен какой-нибудь быстродействующий предохранитель или полисвет, чтобы в качестве ограничителя тока последовательно с источником питания. Я заметил, что полисключатели работают очень медленно. как 9 секунд, чтобы «отключить» линию, и я не хочу использовать предохранитель, который я должен заменить, когда это произойдет. Есть хорошее решение этой проблемы, или это слишком много? То есть я должен просто оставить TVS и polyswitch вне дизайна?

Томас О

Вы рассмотрели защиту поставки, но не FET. FET также будет поражен шипами при выключении. Фактически, поскольку он контролирует подачу, это должно быть единственное устройство, подверженное выбросам. Если у вас есть это на нижней стороне, то это может быть не так.

Кроме того, вы рассматривали возможность использования вывода PS_ON для модуляции коэффициента заполнения вместо внешнего FET? Я не уверен, насколько быстро будет работать источник с этим — для включения может потребоваться 100 мс, и это может ограничить вашу скорость модуляции.

Вы также должны знать о шипах расходных материалов, а также о двигателе. Источник может получить очень большие пики, если внезапно будет сброшен большой груз.

TVS готовит пищу задолго до того, как из-за перегрузки по току перегреется питание. 500 Вт в TVS будет тостом, если будет продолжаться более нескольких секунд.

PSU 101: Защита PSU

Защита блока питания

В этом разделе мы рассмотрим различные средства защиты, которые имеет блок питания, чтобы избежать повреждения не только источника питания, но и системы, в которую он питается. Многие бюджетные блоки питания имеют только необходимую защиту, требуемую спецификацией ATX (OCP, SCP, OVP), в то время как блоки более высокого уровня обычно имеют гораздо большую защиту.

Power Good or PWR_OK Signal

Как указано в спецификации ATX, PSU использует сигнал задержки Power Good или PWR_OK, чтобы указать, что + 5V, +3.Выходы 3 В и +12 В находятся в пределах пороговых значений регулирования источника питания, и что преобразователь сохраняет достаточную энергию сети, чтобы гарантировать непрерывную работу в пределах спецификации, не менее 17 мс при полной нагрузке (16 мс для потерь переменного тока из-за задержки PWR_OK. время). Период задержки PWR_OK согласно спецификации ATX должен быть менее 500 мс, а в идеале — менее 250 мс. В любом случае оно должно быть не менее 100 мс.

(OCP) Защита от перегрузки по току

Защита от перегрузки по току (OCP) — это популярная защита, которая встречается во всех блоках питания с несколькими шинами +12 В, и в большинстве случаев она также защищает второстепенные шины.OCP срабатывает, когда ток в рельсах превышает определенный предел. В спецификации ATX 2.2 указано, что если нагрузка на каждой тестируемой выходной шине достигает или превышает 240 ВА, то OCP должен создавать помехи (параграф 3.4.4). Однако в спецификации ATX 2.31 этот предел отсутствует. Чтобы обойти это, некоторые производители внедрили множество виртуальных шин +12 В, каждая из которых рассчитана на 240 ВА. Однако в большинстве случаев точка срабатывания OCP была установлена ​​намного выше, чтобы выдерживать пиковые токи, которые могут потреблять некоторые системные компоненты (например, видеокарты).

Для реализации OCP в блоке питания необходимы две вещи: шунтирующие резисторы и управляющая ИС, поддерживающая OCP. Шунтирующие резисторы представляют собой высокоточные резисторы с низким сопротивлением, используемые для измерения тока на выходах блока питания, используя падение напряжения, которое эти токи создают на резисторах. Измеряя количество шунтов в блоке питания в области пайки проводов +12 В, мы обычно можем найти реальное количество виртуальных шин +12 В. В некоторых случаях, когда производитель изначально построил блок питания как блок с несколькими шинами +12 В, а затем преобразовал его в один блок с шинами +12 В, шунтирующие резисторы просто закорочены.

Шунтирующие резисторы, используемые в Corsair AX1200i

OVP / UVP (защита от перенапряжения / пониженного напряжения)

В спецификации ATX указано, что схема считывания защиты от перенапряжения и источник опорного напряжения должны находиться в корпусах, отдельных от регулятора. схема управления и справочная информация. Таким образом, ни одна неисправная точка не должна вызывать устойчивое состояние перенапряжения на любом выходе. Другими словами, все блоки питания должны иметь независимую схему защиты и не рассчитывать исключительно на ШИМ-контроллер для контроля выходных напряжений.Мы также должны добавить, что UVP не является обязательным, поскольку он не упоминается в спецификации ATX.

Как вы уже могли догадаться, OVP и UVP постоянно проверяют напряжения на каждой шине и срабатывают, когда эти напряжения превышают или опускаются ниже точки срабатывания. Спецификация ATX предоставляет таблицу с минимальными, номинальными и максимальными значениями для триггерных точек OVP. Спецификация включает шину 5VSB, хотя и заявляет, что защита OVP на этой шине рекомендуется, но не требуется. Ниже вы найдете соответствующую таблицу.

Выход Минимум (В) Номинал (В) Максимум (В)
+12 В постоянного тока (или 12 В 1 и 12 2 постоянного тока) 13,4 15 15,6
+5 В постоянного тока 5,74 6,3 7
+3,3 В постоянного тока 3,76 4,2 4,3
5VSB (опционально) 5.74 6,3 7

Как видите, точки срабатывания слишком высоки. Производитель может установить OVP равным 15,6 для шин +12 В и при этом оставаться в пределах спецификации. Представьте себе, что 15,6 В проходит через компоненты вашей системы!

Поскольку точки срабатывания UVP не охватываются спецификацией ATX, все производители схем защиты IC могут устанавливать свои собственные.

OPP (Защита от превышения мощности)

Защита от превышения мощности (OPP) срабатывает, когда мощность, которую мы получаем от блока питания, превышает его максимальную номинальную мощность.Обычно производители оставляют немного места для перегрузки блока питания, поэтому порог OPP устанавливается на 50–100 Вт (в некоторых случаях даже больше) выше максимальной номинальной мощности блока питания. В блоках питания с одной шиной +12 В, где OCP в большинстве случаев не имеет смысла, OPP берет на себя его роль и отключает блок питания в случае перегрузки шины +12 В.

OTP (Защита от перегрева)

Когда присутствует защита от перегрева (OTP), мы обычно находим термистор, прикрепленный к вторичному радиатору (блок управления вентилятором обычно использует термистор в том же радиаторе).Термистор сообщает схеме защиты о температуре радиатора, и если она превышает заданный порог, блок питания отключается. Повышенная температура может быть результатом перегрузки или отказа охлаждающего вентилятора, поэтому OTP предотвращает (дальнейшее) повреждение блока питания.

В некоторых случаях и из-за того, что OTP не поддерживается большинством доступных в настоящее время ИС супервизора, он может быть реализован другим методом (например, путем активации другой защиты при обнаружении избыточных температурных уровней во внутренних компонентах блока питания).Мы считаем, что OTP является одной из самых важных защит в любом блоке питания, хотя во многих моделях он отсутствует.

SCP (Защита от короткого замыкания)

Защита от короткого замыкания (SCP) постоянно контролирует выходные шины и, если обнаруживает сопротивление менее 0,1 Ом, немедленно отключает источник питания. Другими словами, если каким-либо образом происходит короткое замыкание выходных шин, эта защита срабатывает и отключает блок питания, чтобы предотвратить повреждение или возгорание. Согласно спецификации ATX 2.31, каждая шина +12 В должна иметь отдельное короткое замыкание.Эта защита присутствует практически во всех современных БП (по крайней мере, в брендовых).

SMPS — ЗАЩИТА ОТ ПЕРЕГРУЗКИ




1 ВВЕДЕНИЕ

В компьютерных и профессиональных источниках питания это нормальная практика. для обеспечения полной защиты от перегрузки. Сюда входит защита от короткого замыкания. и ограничения тока на всех выходах.

Методы защиты принимают разные формы, но во всех случаях основная функция предназначен для защиты источника питания независимо от значения или продолжительности от перегрузки, даже в условиях длительного короткого замыкания.

В идеале нагрузка также должна быть защищена. С этой целью текущий лимит значения не должны превышать указанный номинальный ток нагрузки на более 20%, и пользователь должен выбрать рейтинг питания, соответствующий применение.Обычно это гарантирует, что блок питания, разъемы, кабели, печатные дорожки и нагрузки полностью защищены от неисправностей условия.

Полная защита относительно дорога и для небольших маломощных устройств. (особенно расходные материалы) полная защита не всегда необходима. Такие блоки могут использовать простое ограничение первичной мощности и иметь некоторые области уязвимости для необычных условий частичной перегрузки.

2 ВИДЫ ЗАЩИТЫ ОТ ПЕРЕГРУЗКИ

Обычно используются четыре типа защиты от перегрузки:

1.Ограничение мощности

2. Ограничение постоянного выходного тока

3. Предохранители или расцепители

4. Ограничение выходного обратного (возвратного) тока

3 ТИП 1, ОГРАНИЧЕНИЕ ПРЕВОСХОДНОЙ МОЩНОСТИ

Первый тип — это метод защиты с ограничением мощности, часто используемый в устройства обратного хода или поставщики с одним выходом. Это прежде всего сила Поставка техники защиты от короткого замыкания.

Этот и методы, используемые в типах 2 и 4, являются электронными и зависят от о том, что блок питания остается в исправном состоянии.Поставки может быть спроектирован так, чтобы отключаться или перезагружаться при устранении перегрузки.

В этом типе защиты мощность (обычно на первичной стороне преобразователь трансформатора) находится под постоянным контролем. Если эта мощность превышает заданный предел, затем блок питания отключается или переходит в режим работы с ограничением мощности. В модуле с несколькими выходами мощность будет суммой отдельных выходов.

Действие по ограничению мощности обычно принимает одну из пяти форм:

А.Ограничение первичной мощности; B. Отложенное отключение избыточной мощности; C. Поимпульсный ограничение мощности / перегрузки по току; D. Ограничение постоянной мощности; E. Foldback (возвратное) ограничение мощности

4 ТИП 1, ФОРМА A, ПЕРВИЧНОЕ ОГРАНИЧЕНИЕ МОЩНОСТИ

В этой форме ограничения мощности постоянно контролируется первичная мощность. Если нагрузка пытается превысить определенный максимум, входная мощность ограничивается. чтобы предотвратить дальнейшее увеличение.

Обычно характеристика отключения выходного тока имеет следующий вид: плохо определяется, когда ограничение первичной мощности используется само по себе.Однако, из-за его низкой стоимости ограничение первичной мощности стало принимается в маломощных и недорогих устройствах (особенно в многопоточных моделях). обратноходовые источники питания).

Следует отметить, что при возникновении неисправности нагрузки в системе с несколькими выходами система, линия, которая была разработана, чтобы обеспечить только небольшую долю от общей мощности можно ожидать, чтобы поддерживать полную выходную мощность, если это единственная линия, которая перегружена.

Часто эти простые системы ограничения первичной мощности обеспечивают полную защиту только для условий короткого замыкания.Область уязвимости может существовать когда применяются частичные перегрузки, особенно когда они применяются к одному выходу системы с несколькими выходами. В этих условиях частичные перегрузки могут привести к возможному отказу источника питания если они сохраняются длительное время; следовательно, лучше снять это напряжение как можно скорее, выключив питание. По этой причине задержка Рекомендуется форма B для техники отключения при повышенной мощности.

5 ТИП 1, ФОРМА B, ЗАЩИТА ОТ ОТКЛЮЧЕНИЯ С ЗАДЕРЖКОЙ ПОВЫШЕННОЙ МОЩНОСТИ

Один из самых эффективных методов защиты от перегрузки для маломощных, недорогие расходные материалы — это метод отложенного отключения по мощности.Это работает таким образом, что если мощность нагрузки превышает заранее установленный максимум на время, превышающее установленный короткий безопасный период, источник питания будет выключить, и потребуется цикл выключения входного питания для его сброса к нормальной работе.

Этот метод не только обеспечивает максимальную защиту обоих силовых поставки и нагрузки, но он также является наиболее экономичным для небольших устройств. Хотя этот метод кажется в целом непопулярным среди большинства пользователей, он должен не стоит пренебрегать, так как имеет смысл отключить питание при возникновении перегрузок.Постоянная перегрузка питания обычно указывает на неисправность в оборудовании, а метод отключения обеспечит полное защита как нагрузки, так и питания.

К сожалению, многие спецификации исключают возможность использования простой тип защиты срабатывания, требующий автоматического восстановления состояние перегрузки. Возможно, что пользователь указал автоматический восстановление из-за предыдущего неудачного опыта (например, «блокировка» или ложные отключения) с возвратными системами или системами аварийного отключения, которые не иметь достаточный запас по току или отложенное отключение.Блок питания проектировщик должен подвергнуть сомнению такие характеристики. Современные импульсные расходные материалы способны передавать токи, значительно превышающие их постоянные номинальное значение на короткие периоды времени, а при отсроченном отключении они не будет «блокироваться», даже если использовалась система отключения.

В системе с задержкой отключения требования к кратковременному переходному току приспосабливается, и подача отключится, только если напряжение превысит безопасные амплитуды на длительные периоды.

Кратковременные переходные токи могут быть обеспечены без ущерба для надежность источника питания или оказывающее очень значительное влияние от стоимости агрегата. Это долгосрочные непрерывные текущие требования которые влияют на стоимость и размер. Обычно наблюдается некоторая деградация в производительность устройства во время сильноточного переходного процесса. Указано допуски по напряжению и значения пульсации могут быть превышены. Типичные примеры нагрузок, подверженных большим, но коротким переходным процессам, будут дискеты и драйверы соленоидов.

6 ТИП 1, ФОРМА C, ИМПУЛЬСНАЯ ПРЕВЫШАЮЩАЯ МОЩНОСТЬ / ОГРАНИЧЕНИЕ ТОКА

Это особенно полезный метод защиты, который часто используется в дополнение к любой вторичной предельной защите по току.

Входной ток в первичных коммутационных устройствах контролируется в реальном времени.

Если ток превышает определенный предел, включается импульс. прекращено. В устройствах с прерывистым обратным ходом пиковый первичный ток определяет мощность, и, следовательно, этот тип защиты становится настоящей силой предел для таких единиц.

В прямом преобразователе входная мощность зависит от входного тока. и напряжение; следовательно, этот тип защиты обеспечивает первичный ток предел в этом типе схемы.

Однако этот метод по-прежнему обеспечивает полезную меру ограничения мощности. защита при постоянном входном напряжении.

Основным преимуществом ограничения по быстрому пошаговому току является то, что он обеспечивает защиту первичных коммутационных устройств при необычных переходных процессах. напряжения, например, эффекты насыщения трансформаторной лестницы.

Управление в токовом режиме обеспечивает это первичное пошаговое ограничение тока. как обычная функция техники управления, одно из ее основных преимуществ. (См. Часть 3, раздел 10.)

7 ТИП 1, ФОРМА D, ОГРАНИЧЕНИЕ ПОСТОЯННОЙ МОЩНОСТИ

Постоянное ограничение входной мощности защитит первичную цепь путем ограничения максимальная передаваемая мощность. Однако в случае обратного преобразователя этот метод мало что делает для защиты вторичных выходных компонентов.Например, рассмотрим прерывистый обратноходовой преобразователь, для которого максимальный первичный ток был ограничен, что привело к ограниченной передаваемой мощности.

Когда нагрузка превышает этот предел (снижение сопротивления нагрузки), выход напряжение начинает падать. Однако, поскольку это вход (и, следовательно, выход) произведение вольт-ампер, которое было определено при запуске выходного напряжения чтобы упасть, выходной ток увеличится. (При коротком замыкании вторичный ток будет большим, и общая мощность должна рассеиваться внутри источник питания.) Следовательно, эта форма ограничения мощности обычно используется для дополнять некоторые другие формы ограничения, такие как ограничения вторичного тока.

8 ТИП 1, ФОРМА E, ОТКРЫТЫЙ (REENTRANT) ОГРАНИЧЕНИЕ ПРЕВОСХОДНОЙ МОЩНОСТИ

Этот метод является расширением формы d, в котором цепь контролирует первичный ток и вторичное напряжение, и снижает мощность на выходе напряжение падает. Таким образом, выходной ток может быть уменьшен как сопротивление нагрузки падает, предотвращая чрезмерную нагрузку на вторичные компоненты.Имеет возможный недостаток «локаута» с нелинейным нагрузки.

9 ТИП 2, ОГРАНИЧЕНИЕ ПОСТОЯННОГО ТОКА НА ВЫХОДЕ

Источники питания и нагрузки могут быть очень эффективно защищены ограничением максимальный ток, который может протекать в условиях неисправности. Два типа ограничения тока широко используются, постоянный ток и обратная связь ограничение тока. Первый тип, ограничение постоянного тока, как название подразумевает, ограничивает выходной ток постоянным значением, если ток нагрузки пытается превысить определенный максимум.Показана типовая характеристика на фиг. 1.


РИС. 1 Типичные вольт-амперные характеристики мощности с ограничением по постоянному току питания, показывая линейные (резистивные) линии нагрузки.

Из этой диаграммы видно, что по мере увеличения тока нагрузки от низкого значения (R1, высокое сопротивление) до максимального нормального тока значение (R3, среднее сопротивление), ток будет увеличиваться при постоянном напряжение по характеристике P1-P2-P3, которые все токи и напряжения в пределах нормального рабочего диапазона источника питания.

При достижении предельного тока на P3, ток не допускается. для дальнейшего увеличения. Следовательно, поскольку сопротивление нагрузки продолжает падать к нулю, ток остается почти постоянным, а напряжение должно падение к нулю, характеристика P3-P4. Ограниченная по току область часто не точно указано, и рабочая точка будет где-то в диапазоне P4 — P4 при сопротивлении нагрузки R4.

Так как ограничение тока обычно используется в качестве защитного механизма для источника питания характеристика в ограниченном по току диапазоне не может быть четко определен.Диапазон предельного тока P4-P4 может изменяться на до 20%, пока сопротивление нагрузки будет сведено к нулю (короткое замыкание). Если требуется четко определенный диапазон постоянного тока, «постоянный источник питания по току ».

Ограничение тока обычно применяется ко вторичной обмотке источника питания. конвертер. В системе с несколькими выходами каждый выход будет иметь свой собственный индивидуальное ограничение тока. Текущие лимиты обычно устанавливаются при некотором независимом максимальном значении для каждой выходной линии, независимо от номинальной мощности источника питания.Если все выходы полностью загружены одновременно, общая нагрузка может превышать максимальную номинальную мощность источника питания. Следовательно, ограничение первичной мощности часто предоставляется для дополнения ограничения вторичного тока. В условиях неисправности как первичный, так и вторичный компоненты полностью защищены, и все нагрузки будут иметь ограниченный ток всегда в пределах своих проектных максимумов.

Этот метод ограничения тока несомненно дает пользователю и источнику лучшая защита.Не только токи ограничены значениями, согласованными с проектными оценками для каждой линии, но минимальные проблемы возникают с нелинейные или перекрестно связанные нагрузки. Проблемы с локаутом, часто связанные с с системой ограничения фолдбэка полностью исключены. Также автомат восстановление обеспечивается при снятии перегрузки. Более того, такие агрегаты могут работать параллельно, с той лишь оговоркой, что текущий предел должен быть установлен на некоторое значение в пределах непрерывного рабочего диапазона.Этот метод защиты рекомендуется для расходных материалов профессионального уровня, хотя и дороже.

10 ТИП 3, ЗАЩИТА ОТ ПЕРЕГРУЗКИ ПРЕДОХРАНИТЕЛЯМИ, ОГРАНИЧЕНИЕ ТОКА ИЛИ ОТКЛЮЧЕНИЕ УСТРОЙСТВА

Тип 3 использует устройства механической или электромеханической токовой защиты, и для их сброса обычно требуется вмешательство оператора. В современные электронные импульсные блоки питания, этот вид защиты обычно используется только в качестве резервной копии для электронной защиты самовосстановления. методы.Следовательно, это метод защиты «последней канавы». это требуется для работы только в случае отказа нормальной электронной защиты. В в некоторых случаях может использоваться комбинация методов.

Методы защиты типа 3 включают предохранители, плавкие вставки, плавкие вставки. резисторы, резисторы, термовыключатели, автоматические выключатели, термисторы PTC, и так далее. У всех этих устройств есть свое место, и их следует учитывать. для конкретных приложений.

При использовании предохранителей следует помнить, что токи в превышение номинала предохранителя может быть снято через предохранитель на значительную периоды до отключения предохранителя.

Кроме того, предохранители, работающие при номинальном значении или близком к нему, имеют ограниченный срок службы. и должны периодически заменяться. Помните также, что предохранители рассеиваются мощность и обладают значительным сопротивлением; при использовании в выходных цепях, они часто имеют значения сопротивления намного выше нормального выходного сопротивления. поставки.

Однако предохранители находят хорошее применение. Например, когда небольшой требуется количество логического тока (скажем, несколько сотен миллиампер) от сильноточного выхода, это может быть хорошим применением предохранителя.Ясно, что было бы неразумно разрабатывать печатную плату и соединения, чтобы выдерживать высокий ток, который может протекать по этому маломощному материнская плата в случае короткого замыкания и предохранитель может быть использован в этом приложении, обеспечивая защиту без чрезмерного падения напряжения. Более сложные методы защиты не могут быть оправданы в этом ситуация.

Предохранители или автоматические выключатели также будут использоваться для резервирования электронных защита от перегрузки, такая как защита «ломом» SCR в линейном источники питания во многих приложениях.В таких приложениях производительность предохранителя имеет решающее значение, и тип и номинал предохранителя должны быть тщательно считается.

11 ВИКТОРИНА

1. Каков нормальный критерий защиты от перегрузки для профессионального уровня? источники питания?

2. Дайте четыре типа защиты от перегрузки, которые обычно используются.

3. Назовите основные преимущества и ограничения каждого из четырех типов. защиты.

См. Также: Другой тип переключения Руководство по расходным материалам

Что защищает ваш блок питания?

Убедитесь, что ваша система защищена от сбоев источника питания, а также от дополнительных сценариев.

Неопытные инженеры-электронщики часто предполагают, что хорошая шина питания просто «случается», в то время как более опытные знают, что надежная, бесшумная шина не дается легко, но необходима для стабильной, стабильной работы. -свободная производительность системы. Но источник питания — это нечто большее, чем просто его способность обеспечивать стабильное напряжение постоянного тока, несмотря на изменения нагрузки и линии, переходные процессы в системе, шум и другие отклонения.

Как так? Хороший источник питания не просто обеспечивает, он также защищен от временных и постоянных сбоев, которые могут возникнуть внутри или снаружи, и защищает от причинения непоправимого ущерба системе, которая является ее нагрузкой.

Прежде чем мы рассмотрим различные типы защиты, стоит кратко рассмотреть четыре класса источников питания постоянного тока, также называемых регуляторами или преобразователями постоянного тока в постоянный; обратите внимание, что указанные рейтинги текущей мощности являются приблизительными и не имеют жестких или официальных границ:

1) для больших нагрузок, порядка 20 А и выше, имеется множество готовых к использованию открытых или полностью металлических источников питания для приложений AC-DC и DC-DC.

2) для умеренных нагрузок от 10 до 20 А есть модульные блоки питания; они часто залиты эпоксидной смолой для физической защиты

3) при токе менее 10 А существует множество доступных ИС, которым требуется несколько внешних пассивных и активных компонентов для работы в качестве полных источников питания

4) наконец, вы можете построить базовый источник питания из отдельных компонентов, таких как диоды и конденсаторы, часто в сочетании с небольшим LDO или контроллером переключения, необходимым

Итак, каковы различные типы защиты?

a) Защита от перегрузки (перегрузки по току / короткого замыкания) (OP), включая классический плавкий предохранитель, защищает источник питания в случае короткого замыкания в тракте нагрузки или начала потребления слишком большого тока.Многие поставляют «самоограничение» в том смысле, что они могут подавать только до определенного количества тока, и поэтому предохранитель не нужен. Стандартный предохранитель, который «перегорает» (размыкает цепь) и прекращает прохождение тока, необходимо заменить вручную; В одних ситуациях это проблема, в других — достоинство. Есть также электронные предохранители с автоматическим самовозвратом.

b) Ограничение по току и возврат по току являются расширениями защиты от перегрузки. Если ток, из которого нагрузка получает питание, превышает расчетный предел, функция обратного преобразования тока снижает как выходной ток, так и соответствующее напряжение до значений ниже нормальных рабочих пределов.В крайнем случае, если нагрузка вызывает короткое замыкание, ток ограничивается небольшой частью максимального значения, в то время как выходное напряжение, очевидно, стремится к нулю.

c) Блокировка минимального напряжения (UVLO) гарантирует, что преобразователь постоянного тока в постоянный не будет пытаться работать, когда входное напряжение, которое он видит на своем входе, слишком низкое, Рисунок 1 . Почему это может быть проблемой? Во-первых, выход источника питания может быть неопределенным, если его напряжение постоянного тока слишком низкое, что может вызвать проблемы в системе. Во-вторых, он предотвращает «вампирское» истощение энергии из источника даже при низком напряжении; это может привести к разрядке аккумулятора, который система пытается зарядить.UVLO также помогает правильному функционированию последовательности включения питания (если таковая имеется). В-третьих, сам преобразователь постоянного тока в постоянный может быть поврежден, если он попытается повернуться, когда его собственный вход слишком низкий для правильного функционирования.

Во время различных режимов источника питания, когда он переключается из выключенного состояния в полностью включенное и обратно в выключенное, UVLO следит за тем, чтобы блок питания не пытался включиться и обеспечивать выход, если его входное напряжение ниже минимума, необходимого для правильной работы. . (Источник: Texas Instruments)

d) Защита от перенапряжения (OVP) срабатывает, если внутренний сбой в источнике питания вызывает его выходное напряжение выше указанного максимума с вероятным повреждением нагрузки.OVP отключает питание или ограничивает выход, когда напряжение превышает заданный уровень. Цепь OVP часто называют «ломом», предположительно потому, что она имеет тот же эффект, что и металлический лом на выходе источника питания. Правильно спроектированный лом работает независимо от самого источника питания.

Один тип лома будет сброшен (после срабатывания) только при отключении питания; в другом типе он сбрасывается сам по себе после устранения неисправности выходного напряжения. Последний полезен, когда состояние, при котором сработал лом, является временным, а не серьезным отказом в питании.В то время как большинство расходных материалов теперь поставляется со встроенным ломом, многие поставщики предлагают небольшую отдельную цепь лома, которую при необходимости можно добавить к существующей поставке.

e) Тепловая перегрузка возникнет, если система охлаждения источника питания неправильно спроектирована или не работает (вентилятор останавливается, поток воздуха блокируется). В этом случае источник питания, вероятно, превысит допустимую температуру, что значительно сократит срок его службы и может даже вызвать немедленную неисправность. Решение простое: цепь измерения температуры внутри или рядом с источником питания, которая переводит источник питания в режим покоя или отключения, если он превышает заданный предел.Некоторые термические отсечки автоматически позволяют возобновить работу источника питания при падении температуры, а другие — нет.

f) Защита от обратного подключения блокирует прохождение тока и обнуляет напряжение, если нагрузка подключена в обратном направлении (положительный выход питания к отрицательной нагрузочной шине и наоборот). Это особенно популярно в приложениях, где аккумулятор отсоединяется, а затем снова подключается, например, в автомобиле или где аккумулятор не запирается.

Итак, какие типы защиты вам нужно добавить в свой запас? Конечно, это частично определяется приложением, но также зависит от конструкции поставки (пункты с 1 по 4 выше).Для источников питания в металлическом корпусе или модульных (типы питания 1 и 2) большинство этих режимов защиты обычно являются стандартными и включены (кроме предохранителя). Для типа 3 микросхемы питания могут предлагать некоторые или все функции защиты, но они также могут быть отключены (что необходимо в некоторых особых случаях, но также рискованно). Обратное соединение — это особый случай и добавляется только там, где это имеет смысл. Его можно реализовать с помощью простого диода, но это увеличивает потери на падение напряжения, поэтому необходима идеальная диодная схема.

Относитесь к источнику питания с должным уважением: убедитесь, что он защищен, а также защищает вашу электрическую цепь.Ваш дизайн и система будут вам благодарны.

Артикул

Texas Instruments, Отчет по применению SLVA769A, «Понимание блокировки при пониженном напряжении в силовых устройствах»

Меры предосторожности для источников питания Меры предосторожности для источников питания

Пример для серии S8FS-G Работа серии

Два источника питания могут быть подключены последовательно.

Примечание 1. Диод подключается, как показано на рисунке. Если нагрузка закорочена, внутри источника питания будет генерироваться обратное напряжение. В этом случае источник питания может выйти из строя или выйти из строя. Всегда подключайте диод, как показано на рисунке. Выберите диод со следующими характеристиками.

Примечание 2. Хотя блоки питания с различными характеристиками могут быть подключены последовательно, ток, протекающий через подключенный последовательно, ток, протекающий через нагрузку, не должен превышать меньший номинальный выходной ток.

<Создание положительных / отрицательных выходов>

Выходы являются беспотенциальными выходами (т. Е. Первичные и вторичные цепи разделены). Таким образом, вы можете создавать положительные / отрицательные выходы, используя два источника питания. Вы можете делать положительные / отрицательные выходы с любой из моделей. Если вы используете положительный / отрицательный выходы, подключите два источника питания одной модели, как показано ниже. Вы можете комбинировать модели с разной выходной мощностью и выходным напряжением.Однако в качестве тока нагрузки следует использовать меньший из двух номинальных выходных токов.

В зависимости от модели внутренние цепи могут быть повреждены из-за сбоя при запуске при включении питания, если такие нагрузки, как серводвигатель или операционный усилитель, могут работать последовательно.
Поэтому подключите байпасные диоды (D1, D2), как показано на следующем рисунке. Если в списке моделей, поддерживающих последовательное соединение выходов, указано, что внешний диод не требуется, внешний диод также не требуется для положительных / отрицательных выходов.

Используйте следующую информацию в качестве руководства для определения типа диода, диалектической силы и силы тока.

Каковы определения OVP, OPP, OCP, SCP, OTP и BOP?

Каковы определения OVP, OPP, OCP, SCP, OTP и BOP?

Распространенное заблуждение / предположение о стандартах защиты состоит в том, что они устанавливаются с целью защиты всей системы. Это неправда. Эти средства защиты предназначены только для защиты самого устройства, а не всей системы.Это связано с тем, что блок питания не может решить, какую мощность он хочет экспортировать. Он просто реагирует на потребности / требования системы со стороны материнской платы, видеокарты и других напрямую подключенных компонентов.


(V Platinum 1300 Вт)

  • OVP (Защита от перенапряжения) : Функция источника питания, которая отключает устройство или приостанавливает выход, когда напряжение превышает заданный уровень. Обычно он активируется, когда выходное напряжение превышает 110–130%.
  • OPP (Защита от превышения мощности) : Предотвращает повреждение в результате чрезмерной выходной мощности. Обычно это активируется, когда мощность подключенных компонентов достигает 130–150%.
  • OCP (Защита от перегрузки по току) : Защищает от потенциально опасных последствий подачи слишком большого тока в блок питания. Это может привести к перегрузке или короткому замыканию устройства, потенциально создавая неправильный ток и повреждая блок питания или подключенные компоненты, такие как материнская плата.Он будет активирован, когда экспортный ток достигнет 130–150%.

    Как ни странно, эта настройка защиты часто является основной причиной нестабильности системы. Это связано с тем, что иногда материнская плата и графическая карта доводятся до такой степени, что ток требует установки этой защиты преждевременно, поскольку в системе работает правильно, но величина тока выходит за пределы заранее определенного диапазона безопасности, в конечном итоге срабатывая OCP и выключение системы.

  • SCP (Защита от короткого замыкания) : Предотвращает возгорание материнской платы из-за высокой температуры на выходе.
  • OTP (Защита от перегрева) : Отключает источник питания, когда внутренняя температура превышает максимально безопасную рабочую температуру.
  • BOP (Защита от перегорания) : Предотвращает повреждение блока питания из-за внезапного падения напряжения в нестабильных электрических сетях.

Блок питания обычно берет на себя ответственность за отключение системы, но на самом деле основная причина довольно сложна и часто имеет несколько основных причин, работающих в тандеме.Перед инженерами блоков питания стоит задача найти способ преодолеть эти сложности и предоставить пользователям стабильный блок питания, который будет удовлетворять потребности системы в питании, не перегорая при этом.

Повышенное напряжение источника питания »Примечания по электронике

Защита от перенапряжения блока питания действительно полезна — некоторые отказы блока питания могут привести к повреждению оборудования большим напряжением. Защита от перенапряжения предотвращает это как на линейных регуляторах, так и на импульсных источниках питания.


Пособие и руководство по схемам блока питания Включает:
Обзор электронных компонентов блока питания Линейный источник питания Импульсный источник питания Защита от перенапряжения Характеристики блока питания Цифровая мощность Шина управления питанием: PMbus Бесперебойный источник питания


Хотя современные блоки питания сейчас очень надежны, всегда есть небольшая, но реальная вероятность того, что они могут выйти из строя.

Они могут выйти из строя по-разному, и одна особенно тревожная возможность состоит в том, что элемент последовательного прохода, т.е.е. транзистор главного прохода или полевой транзистор могут выйти из строя, что приведет к короткому замыканию. Если это произойдет, в цепи, на которую подается питание, может появиться очень большое напряжение, часто называемое перенапряжением, что приведет к катастрофическому повреждению всего оборудования.

Добавив небольшую дополнительную схему защиты в виде защиты от перенапряжения, можно защититься от этой маловероятной, но катастрофической возможности.

В большинстве источников питания, предназначенных для очень надежной работы дорогостоящего оборудования, предусмотрена защита от перенапряжения в той или иной форме, чтобы гарантировать, что любой отказ источника питания не приведет к повреждению оборудования, на которое подается питание.Это относится как к линейным источникам питания, так и к импульсным источникам питания.

Некоторые источники питания могут не иметь защиты от перенапряжения, и их не следует использовать для питания дорогостоящего оборудования — можно немного спроектировать электронную схему и разработать небольшую схему защиты от перенапряжения и добавить ее в качестве дополнительного элемента. .

Основы защиты от перенапряжения

Есть много причин, по которым блок питания может выйти из строя. Однако, чтобы понять немного больше о защите от перенапряжения и проблемах схемы, легко взять простой пример линейного регулятора напряжения, использующего очень простой стабилитрон и транзистор с последовательным проходом.

Базовый последовательный стабилизатор с использованием стабилитрона и эмиттерного повторителя

Хотя более сложные источники питания обеспечивают лучшую производительность, они также используют последовательный транзистор для передачи выходного тока. Основное отличие заключается в способе подачи напряжения регулятора на базу транзистора.

Обычно входное напряжение таково, что на элемент последовательного регулятора напряжения падает несколько вольт. Это позволяет последовательному транзистору адекватно регулировать выходное напряжение.Часто падение напряжения на последовательном транзисторе является относительно высоким — для источника питания 12 вольт входное напряжение может составлять 18 вольт и даже больше, чтобы обеспечить требуемое регулирование и подавление пульсаций и т. Д.

Это означает, что в элементе регулятора напряжения может рассеиваться значительное количество тепла и в сочетании с любыми переходными выбросами, которые могут появиться на входе, это означает, что всегда существует вероятность отказа.

Устройство последовательного прохода транзисторов чаще всего выходит из строя в условиях разомкнутой цепи, но при некоторых обстоятельствах в транзисторе может возникнуть короткое замыкание между коллектором и эмиттером.Если это произойдет, то на выходе регулятора напряжения появится полное нерегулируемое входное напряжение.

Если на выходе появится полное напряжение, это может привести к повреждению многих микросхем в цепи питания. В этом случае ремонт схемы вполне может оказаться невозможным.

Принцип работы импульсных регуляторов сильно отличается, но есть обстоятельства, при которых полный выходной сигнал может появиться на выходе источника питания.

Как для источников питания с линейным стабилизатором, так и для импульсных источников питания всегда рекомендуется какая-либо защита от перенапряжения.

Виды защиты от перенапряжения

Как и во многих электронных технологиях, существует несколько способов реализации той или иной возможности. Это верно для защиты от перенапряжения.

Можно использовать несколько различных техник, каждая со своими характеристиками. При определении того, какой метод использовать на этапе проектирования электронных схем, необходимо взвесить производительность, стоимость, сложность и режим работы.

  • Лом SCR: Как следует из названия, цепь лома вызывает короткое замыкание на выходе источника питания, если возникает состояние перенапряжения.Обычно для этого используются тиристоры, то есть тиристоры, поскольку они могут переключать большие токи и оставаться включенными до тех пор, пока не рассеется какой-либо заряд. Тиристор может быть снова подключен к предохранителю, который перегорает и изолирует регулятор от дальнейшего воздействия на него напряжения.

    Схема защиты от перенапряжения тиристорного лома

    В этой схеме стабилитрон выбран так, чтобы его напряжение было выше нормального рабочего напряжения на выходе, но ниже напряжения, при котором может произойти повреждение. В этой проводимости ток через стабилитрон не протекает, потому что его напряжение пробоя не было достигнуто, и ток не течет на затвор тиристора, и он остается выключенным.Блок питания будет работать нормально.

    Если последовательный транзистор в блоке питания выходит из строя, напряжение начинает расти — развязка в блоке гарантирует, что оно не поднимется мгновенно. Когда он поднимается, он поднимается выше точки, в которой стабилитрон начинает проводить, и ток будет течь в затвор тиристора, вызывая его срабатывание.

    Когда тиристор срабатывает, он замыкает выход источника питания на землю, предотвращая повреждение схемы, которую он питает.Это короткое замыкание также может быть использовано для перегорания предохранителя или другого элемента, отключая питание регулятора напряжения и изолируя устройство от дальнейшего повреждения.

    Часто развязка в виде небольшого конденсатора помещается между затвором тиристора и землей, чтобы предотвратить резкие переходные процессы или высокочастотные помехи от источника питания, которые могут попасть на соединение затвора и вызвать ложный запуск. Однако его не следует делать слишком большим, так как это может замедлить срабатывание цепи в реальном случае отказа, а защита может сработать слишком медленно.

    Примечание по защите от перенапряжения тиристорного лома:

    Тиристор или тиристор, кремниевый выпрямитель можно использовать для защиты от перенапряжения в цепи источника питания. Обнаружив высокое напряжение, схема может запустить тиристор, чтобы поместить короткое замыкание или лом на шину напряжения, чтобы гарантировать, что оно не поднимется до высокого напряжения.

    Подробнее о Схема защиты тиристорного лома от перенапряжения .

  • Фиксация напряжения: Другая очень простая форма защиты от перенапряжения использует подход, называемый фиксацией напряжения. В простейшей форме это может быть обеспечено с помощью стабилитрона, установленного на выходе регулируемого источника питания. Если напряжение на стабилитроне выбрано немного выше максимального напряжения шины, в нормальных условиях он не будет проводить. Если напряжение поднимается слишком высоко, оно начинает проводить, ограничивая напряжение на значении, немного превышающем напряжение шины.

    Если для регулируемого источника питания требуется более высокий ток, можно использовать стабилитрон с транзисторным буфером. Это увеличит пропускную способность по току по сравнению с простой схемой на стабилитроне на коэффициент, равный усилению тока транзистора. Поскольку для этой схемы требуется силовой транзистор, вероятные уровни усиления по току будут низкими — возможно, 20-50.

    Фиксатор перенапряжения на стабилитроне
    (а) — простой стабилитрон, (б) — повышенный ток с транзисторным буфером
  • Ограничение напряжения: Когда для импульсных источников питания требуется защита от перенапряжения, методы SMPS с зажимом и ломом используются менее широко из-за требований к рассеиваемой мощности, а также из-за возможных размеров и стоимости компонентов.

    К счастью, большинство импульсных регуляторов выходят из строя из-за низкого напряжения. Однако часто бывает целесообразно использовать возможности ограничения напряжения в случае возникновения перенапряжения.

    Часто этого можно достичь, определив состояние перенапряжения и отключив преобразователь. Это особенно применимо в случае преобразователей постоянного тока в постоянный. При реализации этого необходимо включить измерительную петлю, которая находится за пределами основного регулятора IC — многие регуляторы режима переключения и преобразователи постоянного тока используют микросхему для создания большей части схемы.Очень важно использовать внешний контур считывания, потому что, если микросхема регулятора режима переключения повреждена, вызывая состояние перенапряжения, механизм считывания также может быть поврежден.

    Очевидно, что для этой формы защиты от перенапряжения требуются схемы, специфичные для конкретной схемы, и используемые микросхемы импульсного источника питания.

Используются все три метода, которые могут обеспечить эффективную защиту источника питания от перенапряжения. У каждого есть свои преимущества и недостатки, и выбор техники должен зависеть от конкретной ситуации.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы». . .

Как перебои в подаче электроэнергии могут повредить ваш компьютер (и как его защитить)

Ваш компьютер полагается на постоянный поток энергии, чтобы оставаться включенным, но иногда ваше сетевое питание может быть не таким надежным.Если вы живете в районе, где часто случаются перебои в работе, вам может быть интересно: может ли отключение электроэнергии повредить компьютер и что вы можете сделать, чтобы защитить себя от его последствий?

Давайте изучим риски отключения электроэнергии и способы их избежать.

Различные типы электрических аномалий

Электричество, протекающее через ваш дом, непостоянно. Электрические токи могут приливаться и отливаться, опускаясь выше и ниже идеального.Как слишком большая, так и слишком низкая мощность могут вызвать проблемы.

Когда питание полностью отключается, это называется затемнением. Как правило, это происходит из-за проблем, не зависящих от вас (например, сбоев на электростанции, поврежденных электрических линий и т. Д.), Но иногда они могут быть вызваны самим (например, из-за короткого замыкания или перегрузки цепей).

Существует аналогичная проблема, называемая отключением электричества, когда ваше электрическое напряжение временно падает без полного отключения.

Если вы когда-либо видели, как ваш свет тусклый по неизвестным причинам, вероятно, это было из-за отключения. Они могут быть преднамеренными для снижения электрических нагрузок и предотвращения отключений электроэнергии, хотя могут быть и непреднамеренными.

На другой стороне спектра — скачок напряжения. Это когда устройство получает больше электричества, чем предназначено, по крайней мере, за три наносекунды.

Скачки возникают из-за нескольких факторов, в том числе коротких замыканий и неисправностей электрических линий.Если повышенное напряжение длится всего одну или две наносекунды, это скачок мощности, который чаще всего вызывается молнией.

Может ли отключение питания повредить ваш компьютер?

Итак, может ли внезапное падение мощности вызвать проблемы для вашего ПК? Как оказалось, да, как для ваших данных, так и для вашего оборудования.

Как отключение питания может повредить компьютер

Внезапное выключение после отключения электроэнергии — основная опасность для здоровья компьютера.Операционные системы сложны, и они должны пройти «последовательность выключения», чтобы убедиться, что все запущенные процессы правильно завершились перед выключением.

Внезапная потеря электричества прервет эту последовательность и может оставить процессы «наполовину завершенными». Это может привести к повреждению файлов и потоков, что впоследствии приведет к повреждению операционной системы.

Системные файлы вызывают наибольшую озабоченность. Если операционная система занята редактированием важного файла при отключении электроэнергии (например, во время обновления системы), внезапное отключение приведет к повреждению файла.Затем, когда вы пытаетесь перезагрузить компьютер, операционная система отключается из-за этого поврежденного файла и не загружается.

Если вам повезло, что ваши системные файлы не пострадали, вы все равно можете потерять жизненно важную работу. Если вы не приобретете привычку постоянно сохранять свою работу, отключение электроэнергии может вернуть вас к исходной точке. Отключение питания во время сохранения может испортить вашу работу.

Кроме того, частые отключения электроэнергии могут сократить срок службы жесткого диска.Головка чтения и записи, которая зависает над вращающимися пластинами во время работы, возвращается в исходное положение при отключении питания.

Это резкое движение может вызвать крошечные изъяны, которые со временем накапливаются, увеличивая вероятность «удара головой». Это когда головка касается и царапает поверхность диска, эффективно разрушая жесткий диск.

Твердотельные накопители также могут получить катастрофические повреждения в результате внезапного отключения электроэнергии.Проблемы могут варьироваться от повреждения данных до полной неисправности.

Как скачки напряжения после отключения электроэнергии могут повредить ваш компьютер

Что еще хуже, отключение электроэнергии может не стать концом ваших проблем. После отключения электричества часто следует всплеск электричества.

Скачок напряжения приведет к перегрузке и поджариванию электроники в вашем ПК. Хотя отключение питания не сильно повредит блоку питания или материнской плате, последующий скачок напряжения повредит.Это приведет к тому, что компьютер не включится после отключения электроэнергии.

Таким образом, если вы хотите защитить себя от отключения электроэнергии, стоит также инвестировать в защиту от скачков напряжения. Нет ничего хуже, чем умело нейтрализовать затемнение, только чтобы потом все зажарилось из-за всплеска!

Защита от перебоев в подаче электроэнергии

Хотя перебои в подаче электроэнергии не будут разрушать компьютер, как скачок напряжения, они все же могут нанести ущерб.Таким образом, если вы хотите позаботиться о здоровье своих данных, рекомендуется инвестировать в некоторые меры защиты от сбоев.

Использование источника бесперебойного питания (ИБП) для предотвращения повреждения из-за перебоев в подаче электроэнергии

Для защиты от перебоев в подаче электроэнергии вам понадобится источник бесперебойного питания. Это устройство содержит резервную батарею, которая будет продолжать обеспечивать питание вашего компьютера даже при отключении электроэнергии.

Устройства ИБП также могут быть оснащены розетками с защитой от перенапряжения, что делает их выгодной покупкой по цене «два по цене одного».Если вы живете в здании или месте, где часто бывают перебои в работе, скачки напряжения или и то, и другое, ИБП будет хорошей инвестицией.

Важно отметить, что ИБП питает вашу электронику всего на несколько минут. Это означает, что это не лучшее решение, если вы хотите продолжить работу после сбоя.

Однако эти несколько минут дают вам достаточно времени, чтобы выключить компьютер вручную, чтобы предотвратить повреждение. ИБП могут подавать звуковой сигнал, чтобы предупредить вас о сбое, или даже сообщить вашему компьютеру о немедленном выключении.

Использование ноутбука для устранения сбоев в работе

Если вместо этого вы хотите продолжить работу после отключения электроэнергии, почему бы не использовать ноутбук? Ноутбуки полностью исключают проблему отключения электроэнергии; при отключении электричества он переключается на аккумулятор.

Таким образом, если вы находитесь в районе, который часто страдает от перебоев в подаче электроэнергии, возможно, стоит сменить ноутбук на ноутбук. Хотя ноутбуки не так мощны, как полноценный ПК, их гораздо удобнее использовать при отключении питания, чем компьютер.

Конечно, покупать ноутбук неприятно, потому что у вас не идеальная ситуация с питанием. К счастью, хватание рабочего ноутбука не означает больших денег. Не забудьте проверить самые дешевые высококачественные ноутбуки, чтобы найти доступный способ продолжить работу в случае простоев.

Получите хороший фильтр для защиты от скачков напряжения после отключения электроэнергии

Что бы вы ни выбрали для защиты данных от внезапных отключений, вам также следует усилить ее защитой от перенапряжения.

Хотя это не защищает ваше оборудование от фактического отключения электроэнергии, оно защищает его от любых скачков напряжения, которые происходят после отключения электроэнергии. Таким образом, захват сетевого фильтра защищает вас от всех опасностей, которые могут возникнуть во время отключения электроэнергии, а также предотвращает скачки напряжения в целом.

Покупка устройства защиты от перенапряжения может немного сбить с толку, так как он поставляется со спецификациями, в которых подробно описывается, насколько они хороши в своей работе. Если у вас кружится голова от таких терминов, как «Рейтинг UL» и «Ограничивающее напряжение», обратитесь к нашему руководству, чтобы узнать, необходимы ли устройства защиты от перенапряжения.

Сохранение вашего компьютера в безопасности

Перебои в подаче электроэнергии могут повредить системные файлы и данные, а последующие скачки напряжения могут привести к повреждению оборудования. Таким образом, если вы живете в районе с нестабильным энергоснабжением, вам следует найти время, чтобы защитить себя от обоих и избавить от некоторых головных болей.

Если вас интересуют другие способы обеспечения безопасности вашего компьютера, убедитесь, что вы не делаете этих распространенных ошибок, которые могут повредить или разрушить вашу материнскую плату.

10 популярных приложений для Android, которые не следует устанавливать

Эти приложения для Android чрезвычайно популярны, но они также ставят под угрозу вашу безопасность и конфиденциальность.Если они у вас установлены, вы захотите удалить их после прочтения этого.

Читать далее

Об авторе Саймон Батт (Опубликовано 672 статей)

Выпускник бакалавриата по компьютерным наукам, глубоко увлеченный безопасностью.Поработав в студии инди-игр, он обнаружил страсть к писательству и решил использовать свои навыки, чтобы писать обо всем, что связано с технологиями.

Более От Саймона Батта
Подпишитесь на нашу рассылку новостей

Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!

Нажмите здесь, чтобы подписаться

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *