Схема сварочный тиристорный инвертор: Тиристорный преобразователь 12V в 220V

Содержание

Своими руками сварочный инвертор на тиристорах: инструкция по сборке

Сварочный инвертор – это достаточно популярный аппарат, который является необходимым и в домашнем хозяйстве, и на промышленном предприятии. Это не удивительно, ведь те источники питания, которыми пользовались раньше (преобразователи, трансформаторы, выпрямители), обладали многими недостатками. Среди них можно назвать массу и габариты, большую энергоемкость, но маленький диапазон регулирования режима сварки и низкую частоту преобразования. Сделав своими руками сварочный инвертор на тиристорах, вы получите мощный блок питания для необходимых работ. Также это поможет существенно сэкономить вам средства, хотя все равно потребует определенных трудовых и материальных затрат.

Схема тиристорного сварочног инвертора с частотой до 1000гц.

Сварочный инвертор: особенности и функции аппарата

Работа инвертора заключается в том, чтобы преобразовывать переменный сетевой ток в его постоянный высокочастотный аналог.

Это происходит в несколько этапов. К выпрямительному блоку из сети идет ток. Там, после трансформации, напряжение из переменного становится постоянным. А инвертор производит обратное преобразование, то есть поступающее постоянное напряжение снова становится переменным, но с уже более высокой частотой. После этого напряжение понижается трансформатором, через выходной выпрямитель происходит модификация этого параметра в высокочастотное постоянное напряжение.

Конструкция сварочного инвертора и его особенности

Благодаря тому что в конструкции аппарата отсутствуют тяжелые детали, он является очень компактным и легким. В нее входят следующие составляющие:

Устройство простого инвертора с перекрестными связями.

  • инвертор;
  • сетевой и выходной выпрямители;
  • дроссель;
  • высокочастотный трансформатор.

Даже начинающие сварщики могут работать с такими аппаратами. Их применяют как в быту, так и в строительной сфере или в автосервисах. Благодаря тому что присутствует регулировка рабочих режимов, варить можно и тонкие, и толстые металлы. А повышенные условия горения дуги и формирования сварного шва дают вам возможность варить сварочными инверторами любые сплавы, черные и цветные металлы, используя все возможные технологии их сварки.

Преимущества использования инвертора

В области сварного оборудования такие аппараты пользуются особым спросом из-за множества своих преимуществ и достоинств. Сделав инвертор своими руками, вы получите:

Устройство сварочного инвертора .

  • возможность варить сложные цветные металлы и конструкционные стали;
  • защиту от перегревов, колебаний сетевого напряжения, перегрузов по току;
  • высокую стабильность сварного тока даже при том, что напряжение может колебаться в сети;
  • качественно сформированный шов;
  • при сварке практически не будет разбрызгивания;
  • горение дуги будет стабилизированным в заданном ключе, даже если наблюдается внешнее неблагоприятное воздействие;
  • многие другие полезные в работе функции.

Схемы инвертора своими руками

Взяв за основу то, как строится схема и как управляется сам процесс инверторного преобразования, выделяют несколько видов аппаратов, которые являются самыми распространенными в использовании. Варианты полного моста и полумоста относятся к двум двухтактным схемам, а «косой» мост – к однотактной. Схема полного моста, которую называют двухтактной, работает с двухполярными импульсами. Они подаются на ключевые транзисторы (которые являются парными), а те запирают и открывают электрическую цепь.

Схема инвертора “косой” мост.

Полумостовая схема будет отличаться от предыдущего варианта тем, что потребление тока у нее повышенное. Как ключи выступают транзисторы, работающие по той же двухтактной модели. На каждый из них подается половина входного напряжения сети. Мощность инвертора, в сравнении по току с полным мостом, составляет половину значения. Подобная схема имеет свои преимущества в маломощных устройствах. К тому же можно использовать группу транзисторов, а не один очень мощный.

Последний вариант – «косой» мост. Это инверторы, которые работают по однотактному принципу. Тут вы будете иметь дело с однополярными импульсами. Одновременное открытие транзисторных ключей исключит возможность короткого замыкания. Но среди недостатков этой схемы выделяют подмагничивание магнитопровода трансформатора.

Посмотрите на одну из стандартных схем инвертора. Это конструкция по проекту Ю.Негуляева. Чтобы собрать такой аппарат в домашних условиях, потребуется ваше желание, готовность к работе и необходимая элементная база, которую вы сможете либо найти на радиорынке, либо выпаять из старой бытовой техники.

Инструкция по сборке аппарата

Стандартная схема инвертора по проекту Ю.Негуляева

Возьмите 6-миллиметровую плиту из дюралюминия. Присоедините к ней все отдающие тепло проводники и провода. Учтите, что здесь провод не нужно опоясывать термоизолирующим материалом. Используя старую схему (к примеру, компьютера), вам не придется отдельно искать транзисторы и тиристоры.

Далее подготовьте специальный высокомощный вентилятор (вы можете воспользоваться даже автомобильным радиатором). Он будет обдувать все, включая резонансный дроссель. Не забудьте прижать последний к вашей основе с помощью прокладочного уплотнителя.

Для изготовления самого дроссельного прибора возьмите шесть медных сердечников. Их можно найти на рынке или сделать самому из деталей ненужного старого телевизора. Прижмите диоды к основанию схемы, а потом присоедините к ним стабилизаторы напряжения и изоляционные уплотнители.

Ставя трансформатор, заизолируйте проводниковые пучки с помощью изоленты или фторопластовой полосы. Разведите проводники в разные стороны, чтобы они не контачили и не вызывали сбоев в работе. На полевом транзисторе понадобится провести монтаж силового поля, чтобы продлить работоспособность вашего инвертора. Для этого возьмите медный провод 2-миллиметрового сечения. Залужив его, обмотайте в несколько слоев обычной ниткой. Так вы защитите ваш проводник от разных повреждений и при пайке, и при сварке. Чтобы закрепить монтаж, используйте изолирующие пяточки. Так вы еще и перенесете на них нагрузку с транзисторов.

Дюралюминиевые пластины послужат в качестве своеобразных прокладок для того, чтобы прижать к радиатору транзисторы и тиристоры. Вы можете прикрепить их с помощью небольших винтов.

Позаботьтесь о вторичной обмотке, потому что так у вас будет лучше функционировать вентиляция трансформатора. Выводите ее при необходимости на цилиндры из феррита. Еще одним вариантом может послужить средневолновой приемник питания, а оттуда энергия пойдет к сердечникам и далее по схеме.

Не забудьте и о настройке сварочного инвертора для того, чтобы аппарат функционировал исправно.

Сварочный инвертор на тиристорах самодельный: изготовление оборудования

Самодельный сварочный инвертор изготавливают, используя транзисторы и тиристоры. Простые устройства на транзисторах не обладают достаточной надежностью. Аналоги с тиристорами способны выдерживать замыкания выхода до срабатывания предохранителя (при отсутствии повреждений). Инвертор на тиристорах в процессе работы нагревается меньше, чем сварочный инвертор на транзисторах. Плюс самодельных устройств – простая конструкция и общедоступность необходимых деталей и материалов.

Схема инверторного сварочного источника.

Инструкция по изготовлению инструмента

Предварительно специалисты советуют ознакомиться со схемой оборудования. Одна из главных деталей – дюралюминиевая плита 6 мм, к которой необходимо присоединить проводники с проводами (без теплоизоляции), отдающие тепло. Чтобы собрать сварочный инвертор на тиристорах, вам понадобятся следующие инструменты и материалы:

  • радиатор от автомобиля;
  • провода;
  • уплотнители;
  • диоды;
  • плита из дюралюминия.

Читайте также:

Какова плотность титана.

В чем особенности сварки инверторной.

О газовой сварке читайте здесь.

Радиатор от автомобиля будет выполнять функцию вентилятора, обдувая дроссель и диоды. Дроссель изготавливается из 6 медных сердечников и прижимается к основанию с помощью уплотнителя. Диоды необходимо прижать к основанию схемы сварочного инвертора, присоединив стабилизаторы и уплотнители.

Таблица требуемых технических характеристик для сварочного инвертора.

Потребуется трансформатор с сечением в 2 мм и отсутствием изоляции. Допускается использование изолированного кабеля. В проводниковом пучке 4 провода. Изоляционные материалы – изолента или фторопластовая лента. Между слоями изоляции необходимо оставлять промежуток (для охлаждения трансформатора).

Проводники требуется разводить в стороны, чтобы сварочный инвертор функционировал без сбоев. Затем выполняется монтаж силового моста на транзисторе. Используют медный провод с сечением в 2 мм. Его необходимо обмотать 2-3 слоями нитей для шитья. Проводник фиксируют изолирующими пяточками, на которые переносится нагрузка с транзисторов.

Самодельный сварочный инвертор, изготовленный по этой схеме, способен длительное время работать без перебоев.

Изготовление подобного оборудования по схеме Негуляева требует прижимания транзисторов к радиатору. Их устанавливают при помощи пластин из дюралюминия и фиксируют небольшими винтиками. Силовые мосты, обдуваемые вентиляторами, изолируют, чтобы не требовалось присоединения транзисторов к мостам и радиатору. Специалисты рекомендуют учитывать резонансное напряжение. Вторичная обмотка (при необходимости) выводится на приемник питания или на цилиндры. Энергия от приемника поступает к сердечникам.

Импульсное оборудование

Инструменты для изготовления сварочного инвентора.

Изготовление оборудования высокой мощности требует обмотки по всей ширине каркаса (для повышения устойчивости трансформатора к воздействию внешних сил и перепадов напряжения). Чтобы собрать данный аппарат, потребуются:

  • уплотнители;
  • преобразователь;
  • медная жестянка;
  • нож;
  • изолента.

Необходимо сделать несколько слоев вторичной обмотки устройства, а дроссель – намотать на ферритный сердечник.

Охлаждение аппарата будет производиться при помощи радиатора от компьютера, который соответствует производимому оборудованию по уровню потребления электроэнергии и мощности.

Использовать для генератора алюминиевые провода нежелательно из-за их неустойчивости к колебаниям переменного тока.

Работа агрегата зависит от следующих показателей:

  • толщина используемого провода;
  • использование переменного или постоянного тока;
  • пропускаемая способность от 30 до 160 А.

Настроить самодельный аппарат для сварки можно с помощью профессионалов или самостоятельно. Генератор необходимо подключить к сети. Блок начнет издавать громкие звуки при передаче тока. Резистор необходимо замкнуть, подключив реле, после зарядки конденсаторов. Пропускаемую способность определяют с помощью мультиметра. Прибор требуется переключить в режим амперметра и определить периодичность поступления импульсов. Показатель должен быть равен 44%.

Генератор проверяется на оптроне и усилителе. Среднее значение амплитуды для маломощных аппаратов – 15 В. Затем необходимо проверить сборку силового моста, подавая на устройство питание в 16 В. На холостом ходу фиксируется преобразование до 100 мА. Замеры не будут точными, если не выполнить указанные рекомендации.

Работу генератора проверяют осциллографом. Исходящие от обмоток импульсы должны совпадать. Управление трансформатором выполняется с помощью контроля конденсаторов. Необходимо увеличить пропускной уровень до 200 В, подключить инвертор к осциллографу и следить за формой поступающего сигнала, исходящего от коллектора эмиттера.

Сварочный трансформатор: расчет, устройство и схема

Для выполнения электродуговой сварки необходим определенный набор оборудования, в него входит сварочный трансформатор. На рынке существуют производственные и бытовые аппараты, они различаются техническими характеристиками.

Трансформатор для электродуговой сварки

Главная задача трансформатора –преобразование подаваемого электричества до требуемых параметров.

Взаимодействие компонентов входящих в состав сварочного трансформатора, в результате, приводит генерации сварной дуги, которая располагается между рабочим инструментом и заготовкой.

Устройство сварочного трансформатора и характеристики

Для возникновения дуги, обеспечивающей разогрев и расплавление кромок заготовки, требуется изменить характеристики электричества подаваемого из сети.
Сварочный трансформатор преобразует поступающее электричество следующим образом:

  • напряжение снижает;
  • силу тока поднимает.

В преобразовании электричества принимают участие следующие узлы:

Устройство сварочного трансформатора

  • магнитопровод;
  • первая обмотка, собираемая из изолированного кабеля;
  • перемещающейся второй обмотки. Ее выполняют из провода без изоляции, это необходимо для повышения тепловой отдачи;
  • винтовая пара;
  • штурвал для управления винтовой парой;
  • клеммники для сварных кабелей.

В состав сварочных агрегатов включают дополнительные компоненты, которые предназначены для совершенствования их работы.

Устройство пускового механизма

Пусковое устройство включает в свой состав – магнитопровод, две обмотки и клеммы. Переключатели изменяют напряжение и общее число обмоток подключаемых к выпрямителю. В первичную цепь устанавливают регулятор, собранный на основе полупроводников (тиристоров). Вторая обмотка, подключаемая к выпрямительному мосту, обеспечивает подачу двух уровней изменяемого напряжения.

Устройство пускового механизма трансформатора

Для работы пускового устройства требуется напряжение в 220 В. Ток лежит в диапазоне от 0 до 120 А, а напряжение достигает 70 В случае самостоятельного изготовления устройства, за основу принимают стержневой трансформатор, на его первой обмотке накручено 230 витков, на второй 32. Пульт управления полупроводниками монтируют над дросселем. Для охлаждения всей системы используют принудительную вентиляцию.

Устройство магнитопровода

Ключевыми деталями магнитопровода, являются пластинки или листы, произведенные из электромагнитной стали. К конструктивным деталям относят крепеж, корпус и пр. Магнитопроводы сварочных трансформаторов разделяют на стержневые и броневые. В устройствах стержневого типа все сегменты магнитной цепи обладают одинаковым сечением. В магнитопроводах броневого типа полным сечением обладает только средний стержень, на который устанавливают обмотки.

Виды магнитопроводов трансформатора

Сечения остальных участков магнитной цепи почти в два раза меньше. По ним происходит замыкание магнитного потока. На участках магнитопровода имеющего Т-образную форму, каждый имеет свое сечение. При этом его размер составляет в три раза меньший размер, чем собственно сам стержень. По каждому из участков происходит замыкание третьей части потока.
Пластины, входящие в пакеты покрывают специальным составом, который называют оксидной изоляцией.
Принцип работы сварочного трансформатора
Аппаратура для сварки работает по алгоритму:

  1. Питание подается на первую обмотку. В ней генерируется магнитный поток, замыкающийся на сердечнике.
  2. Затем питание направляется на вторую обмотку.
  3. Магнитопровод, который собран из ферромагнитов, генерирует постоянное магнитное поле. Индуцирующий поток производит ЭДС.
  4. Разность в числе витков допускает колебание тока с требуемыми для выполнения сварки параметрами. Эти же показатели учитывают при расчетах аппаратуры для сварки.

Существует связь числа витков на второй катушке и напряжением на выходе. То есть для повышения тока количество витков необходимо увеличить. Но так как, сварочный трансформатор – это понижающий тип, то число витков на второй обмотке будет ниже, чем на первой.
Устройство и принцип действия сварочного трансформатора обеспечивает настройку величины тока. Этого достигают уменьшая или увеличивая пространство между катушками.
Для этого в сварочном оборудовании установлены движущиеся компоненты. Расстояние между обмотками изменяет сопротивление и это дает возможность выбирать именно тот ток, который нужен для сварки.

Холостой ход

Аппаратура для сварки работает в двух режимах – рабочем и холостом. Во время сварки вторая обмотка замыкается между рабочим инструментом и деталью. Ток расплавляет кромки заготовок и в результате получается надежное соединение деталей. После того, как сварщик закончит работы, цепь прерывается и трансформатор переключается на холостой ход.
ЭДС в первой обмотке появляются из-за наличия:

  • магнитного потока;
  • его рассеивания.

Холостой ход трансформатора

Эти силы отпочковываются от направления потока в магнитопроводе и замыкаются между катушками в воздухе. Именно эти силы и являются основой работы в холостую.
Работа на холостом ходу не должна представлять опасность для рабочего — сварщика и окружающих людей. То есть оно не должно быть больше чем 46 В. Но отдельные модели сварочного оборудования, имеют большие значения, например, 60 – 70 В. В этом случае в конструкции сварочного устройства устанавливают ограничитель параметров холостого хода. Скорость его срабатывания не превышает одну секунду с момента разрыва цепи и окончания работы. В целях дополнительной защиты сварщика, корпус трансформатора необходимо заземлять.

Это позволяет напряжению, которое может появиться на корпусе в результате повреждения изоляции, уйти в землю, не нанеся ни какого вреда рабочему – сварщику.

Схема сварочного трансформатора и ее модификации

Аппаратура для сварки состоит из:

  • трансформатора;
  • приборы для изменения размера тока.

Для розжига и поддержания дуги необходимо обеспечить наличие индуктивного сопротивления второй обмотки.
Подъем индуктивного сопротивления ведет к тому, что изменяется наклон статистических параметров источника энергии. В результате приводит к постоянству всей системы «источник тока – дуга».

Электрическая схема сварочного трансформатора типа ТДМ

У сварочных аппаратов, работающих под нагрузкой, количество мощности в разы больше, чем потери, которые они несут при работе в холостую.

Сварочная аппаратура с шунтом

Настройка рассеивания магнитного поля осуществляется переменой геометрических параметров пространства между составными частями магнитопровода. В виду того, что магнитная проницаемость железа выше чем у воздуха то придвижении шунта изменяется сопротивление потока, который проходит по воздуху. Если шунт введен целиком, то индуктивное сопротивление определяется, зазорами между ним и элементами магнитопровода.

Сварочная аппаратура с шунтом

Трансформаторы этого типа изготавливают для решения производственных задач.

Сварочные трансформаторы с секционными обмотками

Такая аппаратура производилось в ХХ века для решения производственных и бытовых задач. В них реализовано несколько степеней настройки количества витков в обеих катушках.

Секционная обмотка трансформатора

Тиристорные сварочные трансформаторы

Для настройки напряжения и тока применяют фазовый сдвиг тиристора. При этом происходит изменение среднего значения напряжения.

Для работы однофазной сети нужны два тиристора, включенных навстречу друг другу. Причем их настройка должно быть синхронной и симметричной. Трансформаторы на основании полупроводников (тиристоров) обладают жесткой статической характеристикой. Ее регулировка производится по напряжению при помощи тиристоров.

Тиристоры хороши для настойки напряжения и тока в электрических цепях переменного характера, дело в том, что закрытие происходит при изменении полярности.

В схемах с постоянным током для закрытия тиристоров применяют резонансные схемы. Но это сложно, дорого и накладывает определенные сложности на возможность регулирования.

Тиристорные сварочные трансформаторы

В полупроводниковых трансформаторах тиристоры монтируют в первой обмотке, тому есть две причины:

  1. Вторичные токи в сварочных источниках значительно больше, чем предельный ток тиристоров, он достигает 800 А.
  2. Высокий КПД так как потери на падении напряжения в открытых вентилях в первой обмотке в отношении рабочего ниже в несколько раз.

В современных устройствах используют обмотки из алюминия, для повышения надежности конструкции к ним на концах приварены медные накладки.

Отличия и разновидности оборудования

На производстве применяют следующие виды сварочных аппаратов:

Разновидности сварочного оборудования

  • трансформаторы;
  • выпрямители;
  • инверторы.

Ещё выделяют:

  • полуавтоматы;
  • генераторы — сварочные аппараты с бензиновым или дизельным электрогенератором;
  • и прочие промышленные аппараты.

Сварочные трансформаторы

Так называют устройство, которое предназначено для преобразования переменного тока получаемого из сети в напряжение необходимо для выполнения электрической сварки.

Сварочный трансформатор

Ключевым узлом этого устройства является трансформатор, который понижает сетевое напряжение до уровня холостого хода.

Достоинства и недостатки сварочных трансформаторов

К несомненным преимуществам этого оборудования относят довольной высокий КПД от 70 до 90%, простоту работы и высокую ремонтопригодность. Кроме этого аппараты этого класса отличает невысокая стоимость.
Вместе с тем, аппараты этого типа иногда не в состоянии обеспечить постоянство горения дуги. Это обусловлено характеристиками переменного тока. Для получения качественной сварки целесообразно применять электроды, адаптированные для работы с переменным током. Кроме того, на качестве сварки отрицательно сказываются и колебания напряжения на входе.

Аппараты этого типа нельзя применять для работы с нержавейкой и цветными металлами. Высокий вес аппарата и его габариты вызывают ряд сложностей при его транспортировке с места на место.
Но надо отметить, что сварочный трансформатор – это не плохой выбор для домашних нужд.

Сварочные выпрямители

Аппаратура, которое преобразует переменное напряжение, поступающее из сети питания в постоянное, необходимое для выполнения электросварочных работ.
На практике применяют несколько схем выпрямителей, в которых реализованы разные методы получения выходных параметров напряжения и тока. Применяют разные способы регулировки параметров тока и вольт-амперной характеристики.

Сварочные выпрямители

В эти способы входят:
Изменение настроек трансформатора, применение дросселя, настройка с помощью полупроводников (тиристоров и транзисторов). В самых простых аппаратах для регулирования тока применяют трансформатор, а для его выпрямления диодные схемы. В силовую часть такого оборудования входят трансформатор, выпрямитель, дроссель.

Достоинства и недостатки сварочных выпрямителей

Главное достоинство выпрямителей, если сравнивать их с трансформаторами, заключено в том что, для сварки применяют постоянный ток. Это обеспечивает качество розжига и поддержания параметров дуги и это соответственно приводит к качеству сварного шва. Применение выпрямителя позволяет сваривать не только обыкновенные стали, но обрабатывать нержавейку и цветные металлы. Кроме того, надо учесть и то, что сваривание с применением выпрямителя обеспечивает малое количество брызг.

По сути, описанные достоинства дают однозначный ответ на вопрос – какой аппарат выбрать трансформатор или выпрямитель, но разумеется нельзя забывать и стоимости этого оборудования.
Выпрямители имеют и отдельные недочеты – большой вес конструкции, потеря мощности, падение напряжения в сети во время проведения сварочных работ. Кстати, все сказанное в полной мере относится и к трансформаторам.

Сварочные инверторы

Аппаратура этого типа предназначено для преобразования постоянного тока в переменный. Инвертор работает следующим образом. Ток, с частотой в 50 Гц, попадает на выпрямитель. На нем он, пройдя, через фильтр сглаживается и преобразуется в переменный. Частота такого тока оставляет несколько килогерц. Современные схемы позволяют получать ток с частотой 100 Гц. Этот этап преобразования, является самым важным в работе инвертора и это позволяет добиться существенных преимуществ в сравнении с другими моделями сварочного оборудования.

После этого, полученное высокочастотное напряжение роняют до значения холостого хода. А ток вырастает до размеров достаточных для выполнения сварочных работ, то есть до величины 100 – 200 А.
Схема инвертора и комплектующие используемые в работе позволяют создавать сварочные аппараты с малым весом и высокими техническими характеристиками.
Предприятия – производители выпускают аппараты для выполнения сварки:

  • в ручном режиме;
  • неплавящимся электродом в аргонной среде;
  • в полуавтоматическом режиме под защитой газов и многие другие.

К несомненным достоинствам этого класса оборудования можно отнести – малый вес и габариты. Это позволяет передвигать инвертор на строительной или производственной площадке без особых сложностей.
В составе инвертора нет трансформатора и это позволило избежать потерь на нагрев обмоток и перемагничивания сердечника и получить высокий КПД. При сварке электродом в диаметр 3 мм, от сети потребляется все 4 кВт мощности, показатель сварочного трансформатора или выпрямителя составляет 6 – 7 кВт.

Схема инверторного сварочного аппарата

Схемы применяемые в инверторах позволяют генерировать практически все параметры вольт-амперных характеристик – это говорит о том, что аппараты этого типа допустимы для применения во всех видах сварочных работ. Кроме того, инверторы обеспечивают работу с легированными, нержавеющими сталями и цветными металлами.

Инверторная схема не нуждается в частых и длительных перерывах в работе.

Конструкция инвертора позволяет выполнять плавную регулировку режимов сварки во всем диапазоне токов и напряжений, необходимых для выполнения сварочных работ. Инвертор обладает широким диапазоном токов от нескольких единиц до сотен тысяч. В быту применяют аппараты, которые позволяют варить металл относительно тонкими электродами до 3 мм. Применение аппаратов такого уровня позволяет формировать шов в различных положениях и обеспечить минимальное количество брызг расплавленного металла, возникающих при сварочных работах.

Инверторные сварочные аппараты

Инверторные сварочные аппараты, производимые в наши дни, по большей части имеют микропроцессорное управление. Оно позволяет:

  • обеспечить рост тока при розжиге дуги;
  • минимизировать залипание электрода и детали и еще ряд функций облегчающих работу сварщика.

После выполнения сварки с помощью трансформатора или выпрямителя, работа с инвертором может с полным основанием считаться праздником.
Между тем инверторы обладают рядом недостатков. В частности, ремонт инвертора может обойтись в копеечку. Кроме того, у аппаратов инверторного типа повышенные требования к условиям хранения. Это обусловлено тем что, в инверторах содержится много элементов микроэлектроники.

На что обращать внимание при выборе

Надо понимать, что выбор сварочного оборудования это непростая задача и решают ее в несколько этапов.

  1. Необходимо знать марку свариваемых материалов и вид требуемого шва. Так, для обработки стали или нержавейки достаточно аппарата обеспечивающего ручную дуговую сварку. Для сварки обыкновенной стали можно использовать аппараты с переменным и постоянным током. Для работы с нержавеющей сталью необходимо использовать аппараты постоянного тока. Рабочие характеристики сварочного трансформатора позволяют работать с разными материалами.

  1. В зависимости от размера тока, аппараты в 200 А, относят к бытовым, а в 300 к профессиональным.
  2. В зависимости от типа работы – полуавтоматы, обладающие сложной конструкцией и довольно высокой стоимостью, показывают высокую производительность и простоту в управлении.
  3. Инверторы обладают малыми габаритами и весом и широкой возможностью настроек.
  4. Немаловажное значение имеет место выполнения работ, в частности, климатические условия.
  5. Само собой, принимая решение о выборе аппарата необходимо обращать внимание на компанию – производителя.

Возможные неисправности и ремонт

Сварочная  аппаратура, как и любое техническое устройство, всегда может выйти из строя. Существуют некоторые признаки, по которым можно определить возникшие неисправности.

Возможные неисправности

Например, при проведении сварки, постоянно происходит залипание электрода. Это может быть вызвано низким напряжением, неправильной настройкой тока, неправильным выбором электрода и рядом других причин.
Отсутствие дуги может быть вызвано перебитым кабелем, перегревом сварочного оборудования и множеством других причин.

Для ремонта сварочного трансформатора необходимо обладать определенными знаниями, то есть необходимо умение читать принципиальные электрические схемы и навык выполнения электромонтажных работ. Именно поэтому имеет смысл при возникновении неисправностей  обращаться в мастерскую по их ремонту и обслуживанию.

Как правильно смонтировать трансформатор

Сварочную аппаратуру необходимо надежно заземлить. Для облегчения жизни, на трансформаторов устанавливают специальные болтовые зажимы с сопроводительной надписью «ЗЕМЛЯ».
Классификация по различным признакам
Сварочная аппаратура классифицируется по следующим признакам – по фазам, по применяемости.
На практике применяют одно и трехфазные сварочные аппараты. Однофазные аппараты, по большей части применяют для выполнения сварочных работ переменным током. Трехфазные применяют на строительных и производственных.

К однофазным относятся аппараты марки ТД. По сути, это трансформаторы с хорошим магнитным рассеиванием и перемещающимися обмотками. Их снабжают механическими регуляторами, выполненными в виде винтовых.
Трехфазные аппараты применяют для сварки трехфазной дугой. Такой способ повышает производительность сварки, позволяет экономить электроэнергии, производит выравнивание нагрузки между фазами.

Трехфазный сварочный трансформатор

Трехфазные аппараты применяют для организации многопостовой сварки. В частности, использование такого оборудования позволяет использовать как минимум два электрода одновременно. В конструкцию аппарата вносят некритичные изменения. Такое применение аппаратуры позволяет поднять экономический эффект от сварочных работ.

Устройство сварочного трансформатора ТДМ

Трансформатор ТДМ включает в свой состав следующие части:

Устройство сварочного трансформатора ТДМ

  • металлический корпус;
  • клеммы для сварочных;
  • штурвал для настройки аппарата;
  • магнитопровод;
  • первая обмотка;
  • вторая обмотка;
  • винтовую пару для перемещения частей обмоток.

Принцип работы трансформатора ТДМ

Как уже отмечалось в конструкцию аппарата ТДМ входит магнитопровод, представленный в виде набор стальных пластин и изолированных обмоток. Ток, подаваемый из сети электропитания, попадает на первичную обмотку. В это время вторая обмотка, которая является перемещаемой, должна быть подключена к сварочному электроду и обрабатываемой деталью.

Между обмотками существует зазор, который и определяет параметры сварочного тока и напряжения. Чем больше размер зазора, тем больше сварочный ток. Это достигается за счет рассеивания магнитного поля.

Сварочный трансформатор своими руками

Для изготовления сварочного аппарата своими руками надо понимать его базовые принципы работ. Первым делом необходимо определиться с параметром мощности тока. Для сварки массивных заготовок будет востребована высокая мощность генерируемого тока.

Кроме того, нельзя забывать и о том, что этот параметр жестко связан с тем, какие электроды будут использоваться во время работы. Для работы с металлом от 3 до 5 мм, необходимо использовать электроды 3 – 4 мм. Если толщина металла менее 2 мм, то вполне достаточно электродов 1,5 – 3 мм.

Другими словами, если планируется использование электродов толщиной 4 мм, то сила тока должна составлять 150 – 200 А, а электроды в 2 мм, сила тока должна составлять 50 – 70 А.
Дуга формируется за счет использования трансформатора, состоящего из обмоток и магнитопровода.

Расчет сварочного трансформатора

У каждого типа сварки свои требования к трансформационным устройствам. Базовый расчет выполняют на основании разности количества витков на первичной и вторичной обмотке. Для понижающего оборудования работает следующее правило – если существует необходимость снижения напряжения в 10 раз, то количество витков на вторичной обмотке должно быть в 10 раз меньше. Надо отметить, что это правило имеет обратную силу.

У каждого трансформатора имеется так называемый коэффициент трансформации. Он показывает размер масштаба силы тока при переходе с первичной обмотки на вторичную. Руководствуясь этим принципом можно выполнить расчет сварочного трансформатора пригодного для любого типа сварки.

Торус 200 Схема Электрическая Принципиальная

Генератор импульсов выполнен на микросхеме U2 типа SGAN, которая имеет два выхода для управления последующими усилителями. Преобразователь источника тока выполнен по полномостовой схеме с частотой преобразования около кгц.


При проверке каждого отдельно взятого диода утечка более 1 мОм. Мы благодарны Вам за выбор нашей компании «Зона-Сварки».

Рассмотрим конкретный пример.
сварочный аппарат ТОРУС 200с заварит даже школьник.

С появлением мощных высоковольтных транзисторов и диодов широкое распространение получили сварочные инверторы. Также, в модуль входят дроссель и трансформатор.

В начале статьи приводится описание структурной схемы сварочного инвертора. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом.

Датчиком тока является кольцевая катушка L1 сквозь которую проходит толстый провод питания преобразователя.

Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше.

Модуль ключей.

Сварочный инвертор «MMA 200», устройство, ремонт.

Свежие записи

Заказчик оказался сознательным пользователем, что в конечном счете сэкономило ему не мало денег и ускорило процесс ремонта. Когда все транзисторы проверены и неисправные заменены исправными, модуль ключей можно условно считать исправным. Автоматика в данном случае не только учитывает и сглаживает перепады входного напряжения, но и корректирует даже такие помехи, как затухание сварочной дуги из-за сильного ветра. Схемы аппаратов Сварис Сварочный аппарат Сварис характеризуется простотой в применении и невысокой стоимостью.

При кузнечном или прочем ремонте используется точечная сварка. Забираем Оформляете забор техники в любой точке Москвы и области, либо привозите самостоятельно в наши сервисные центры: «Тушино» , «Щелковская» , «Ленинский» , «Рязанский» , «Люберцы».

Далее проводим вторичный осмотр и делаем вывод, что данный аппарат уронили! Конденсатор был заменен, инвертор заработал.

Так как они включены в параллель и к выходу подключен резистор, сопротивление утечки было около 10 кОм.

Это напряжение питает мощный выходной каскад 2.

Также сигнал обратной связи с выходного каскада через токовый трансформатор Т1 подается на схему защиты от перегрузок, выполненную на тиристоре Q3 и транзисторах Q4 и Q5. RDMMA относится к оборудованию нового типа, которое создается без применения трансформаторов.

Только при учете конструктивных особенностей можно провести ремонт сварочного инвертора и его точную настройку.
*В ремонте!* Инвертор «ТОРУС» (Финал)

Что включает в себя конструкция сварочного инвертора

При таком дефекте высокое напряжение от цепей стока попадает в цепи затворов.

На этом этапе надо признать, что заказчик оказался сознательным, после сильного удара он не стал подключать данный аппарат к сети , а принес его в наш сервисный центр.

В качестве выходного выпрямителя используется мощный диодный мост.

При таком дефекте высокое напряжение от цепей стока попадает в цепи затворов. Они в норме. В недавнем времени ключи стали снабжать снабберами конденсаторами, впаянными между стоком и истоком каждого транзистора , которые защищают транзисторы от пробоя. Регулировка тока производится изменением скважности управляющих импульсов при постоянной частоте.

Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Высокочастотные помехи, создаваемые при работе инверторного устройства, могут через его вход попасть в электрическую сеть. Каждое плечо выпрямителя смонтировано на отдельном радиаторе и состоит из двух диодных сборок 60CPQ или четырёх 30CPQ


Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше. За счет этого возможна более точная и плавная регулировка показателей тока, при работе не появляется сильного шума. Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся.

Экономичность аппарата при этом несколько снижается, зато надёжность возрастает многократно. Дело в том, что ещё есть схема регулировки тока и защиты по току и если эта защита не работает, то Вы рискуете пойти по второму кругу поиска неисправностей. Защита основных элементов от серьезного перепада напряжения. Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Диоды выпрямителя при преобразовании переменного тока в постоянный очень сильно нагреваются, что может серьезно сказаться на их работоспособности.

Модуль ключей. И тут все в порядке. Делаем контрольные замеры и испытываем на практике Выводы: 1. Можно проверить, не светится ли красный индикатор на передней панели аппарата и если это так, то скорее всего выключен тумблер рабочего режима. Для неопытных можно посоветовать отпаять от него провода, чтобы в случае КЗ не вводить себя в заблуждение.
Обзор Сварочный аппарат ТОРУС 200 КЛАССИК

Элементы электрической схемы сварочных инверторов

Кроме того, инверторные аппараты являются наиболее эффективным типом оборудования, которое используется для сварки алюминия, нержавеющей стали и других сложносвариваемых металлов. Инвертор перестал варить.

Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом. Ранее для подобной обработки металла использовали обычные трансформаторы, которые характеризуются меньшей эффективностью.

Подобная проблема могла вывести из строя силовые транзисторы. Самостоятельно проверить блок можно только при наличии специального осциллографа и соответствующих навыков работы с ним. Если тактовые импульсы на ногах 10 и 12 то есть на входах есть, но нет импульсов на ножках 1 и 7 то есть на выходах нужно ногу 11 посадить на общий провод и если микросхема исправна, импульсы на выходах должны появиться.

Разработчики постоянно совершенствуют принципиальные электрические схемы инверторных аппаратов, что позволяет наделять их новыми функциями и улучшать их технические характеристики. Общий провод осциллографа соединяем с общим проводом платы управления занимает заметную часть площади лицевой стороны , а щупом проверяем сигналы на ногах 1 и 7 микросхем DD2 и DD3. Подаю переменные 3в и смотрю сигналы на выводах 1 и 7 микросхемы DD1 — короткие прямоугольные импульсы с частотой 50гц.

Оно немного выше и в пределах 55 В. Он представлен сочетанием датчика тока нагрузки и трансформатора. Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся. Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком.

Все блоки электрической схемы, которые работают под большой нагрузкой и сильно нагреваются, не только обеспечены принудительным охлаждением, но также подключены к термодатчикам, отключающим их питание в том случае, если температура их нагрева превысила критическое значение. Далее устраняем поломку и заливаем трансформаторы термо-клеем.

Далее проводим вторичный осмотр и делаем вывод, что данный аппарат уронили! Модуль входного выпрямителя. Корпус с вентилятором. Видео по ремонту Выезжаем в любую точку Москвы и области! Состоит такой фильтр из дросселя и нескольких конденсаторов.

Оно немного выше и в пределах 55 В. Вращается вентилятор и через секунд слышится щелчок. Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Они в норме.
Подробный ремонт с разбором ТОРУС 250-Экстра в сервисном центре Зона-Сварки.РФ — Ремонт сварки

Легкий и мощный инвертор для контактной сварки своими руками

Собрать самодельный инверторный сварочный аппарат по силам даже домашнему мастеру, не обладающему глубокими познаниями в электротехнических процессах.

Основным требованием является соблюдение технологии монтажа, соответствие схеме и понимание принципа работы устройства.

Если своими руками создать инвертор, то его параметры и производительность не станут значительно разниться с заводскими моделями, но экономия может получиться приличная.

Простой самодельный аппарат инверторного типа позволит качественно осуществлять сварочные операции. Даже инвертор с простой схемой позволяет работать с электродом от 3 до 5 мм и дугой до 1 см.

Характеристики

Подобный сварочник для домашнего применения может обладать следующими параметрами:

  • Уровень напряжения – 220 вольт.
  • Входная сила тока – 32 ампера;
  • Выходная сила тока – 250 ампер.

Для бытового применения подходит инвертор, который функционирует от бытовой электросети 220 В. Если есть необходимость, то возможно собрать более мощное устройство, работающее от 380 В. Он отличается более высокой производительностью по сравнению с однофазным сварочным инверторным аппаратом.

Особенности функционирования

Для начала необходимо разобраться, как функционирует инвертор. По сути, он является компьютерным блоком питания. В нем можно наблюдать преобразование электроэнергии в такой последовательности:

  • Входное переменное напряжение трансформируется в постоянное.
  • Потребляемый ток частотой 50 Гц преобразовывается в высокочастотный.
  • Снижается выходное напряжение.
  • Выходной ток выпрямляется, требуемая частота сохраняется.

Подобные преобразования необходимы для снижения массы оборудования и его габаритов.

Трансформаторные сварочные аппараты обладают чувствительным весом и размерами. За счет значительной силы тока в них можно осуществлять дуговое сваривание. Для повышения силы тока и понижения напряжения вторичная обмотка предполагает наличие меньшего количества витков, а сечение провода увеличивается. В итоге трансформаторный сварочник тяжел и габаритен.

Инверторный же принцип позволяет снизить эти показатели в разы. Схема подобного аппарата предполагает повышение частоты до 60-80 кГц, что способствует снижению его габаритов и веса.

Чтобы реализовать подобное преобразование применяются силовые полевые транзисторы. Они сообщаются меж собой именно с этой частотой.

Питает их постоянный ток, поступающий от выпрямляющего устройства, в качестве которого применяется диодный мост. Значение напряжения выравнивают конденсаторы.

После транзисторов ток передается к понижающему трансформатору. Он представляет собой небольшую катушку. Малые размеры трансформаторной катушки инвертора обеспечены частотой, многократно увеличенной полевыми транзисторами. В итоге получаются аналогичные с трансформаторным аппаратом характеристики, но со меньшим весом и размером.

Что необходимо для сборки

Чтобы создать подобную самоделку необходимо учитывать характеристики схемы, т. е. потребляемое напряжение и ток. Выходной силы тока в 250 ампер достаточно для создания прочного шва. Чтобы реализовать задумку потребуются следующие детали:

  • Трансформатор.
  • Первичная обмотка (100 витков с проводом ⌀ 0,3 мм).
  • 3 обмотки. В наружной: 20 витков, ⌀ 0,35 мм. В средней: 15 и ⌀ 0,2. Во внутренней 15 и ⌀ 1 мм.

Помимо этого, до начала сборки инвертора необходимо приготовить инструменты и элементы для разработки электронных схем. Потребуются:

  • Отвертки;
  • Паяльник;
  • Нож;
  • Ножовка по металлу;
  • Крепеж;
  • Электронные элементы;
  • Медные провода;
  • Термобумага;
  • Электротехническая сталь;
  • Стеклоткань;
  • Текстолит;
  • Слюда.

Схемы

Принципиальная электрическая схема инвертора – один из наиболее ответственных моментов при проектировании или ремонте инверторного аппарата. Поэтому рекомендуем сначала подробно изучить варианты, а потом приступать к их реализации.

Список радиоэлементов

Силовая часть

Блоку питания отводится одна из ведущих ролей в инверторном аппарате. Он представляет собой трансформатор, который намотан на феррите. Он обеспечивает стабильное понижение напряжения и повышение значения тока. Необходимо 2 сердечника Ш20х208 2000 нм.

Для создания термоизоляции между обмотками инвертора применяется термобумага. Чтобы свести к минимуму отрицательное воздействие при постоянных перепадах напряжения в электросети, обмотка должна проводится по всей ширине сердечника.

Для обмотки трансформатора специалисты рекомендуют применение медной жести, имеющую ширину 40 мм и толщину 0,3 мм. Ее нужно обернуть в термобумагу 0,05 миллиметров (кассовая лента).

Специалисты объясняют это тем, что во время сварки высокочастотный ток вытесняется на поверхность толстых проводов, а сердцевина не задействуется и выделяется много тепла. Поэтому обычные проводники не подходят.

Исключить подобный эффект можно при помощи проводников со значительной поверхностной площадью.

Аналогом медной жести, который допускается использовать, является провод ПЭВ с сечением 0,5-0,7 мм. Он является многожильным с воздушными зазорами между жилами, что позволяет уменьшить нагревание.

Эту рекомендацию необходимо обязательно учитывать, так как нагреву подвержен не ферритовый стержень, а непосредственно провода обмотки. Именно по этой причине так важна вентиляция инвертора.

После создания первичного слоя в этом же направлении наматывается экранирующий провод со стеклотканью. Этот провод (подобного диаметра) обязан полностью перекрыть стеклоткань. Таким же образом необходимо действовать и с другими обмотками трансформатора. Их необходимо изолировать друг от друга при помощи указанных выше изоляторов.

Чтобы напряжение от трансформатора к реле было на уровне 20 – 25 вольт, необходимо правильно выбрать резисторы. Главной задачей питающего блока инвертора является изменение переменного тока в постоянный. Реализует это диодная мостовая схема типа «косой мост».

В работе диоды инверторного аппарата будут греться. Поэтому их необходимо размещать на радиаторе. Допускается применять радиаторы от компьютеров. Благо они сейчас широко распространены и недороги. Потребуется 2 радиатора. Верхний элемент моста фиксируется на одном, а нижняя – на втором. При этом при монтаже первого необходимо использовать прокладку из слюды, а во втором случае – термопасту.

Выход диодного моста – в том же направлении, что и выход транзисторов. Использовать провода длиной не более 15 см. Основа инверторного блока – транзисторы. Мост требуется отделять от блока питания листом металла, который впоследствии прикрепляется к корпусу.

Монтаж диодов на радиаторе

Инверторный блок

Основной задачей этого узла инвертора является трансформация выпрямленного тока в высокочастотную переменную составляющую. Исполнять эту функцию призваны силовые транзисторы, открывающиеся и закрывающиеся на высокой частоте.

Создавать преобразовывающий узел инверторного аппарата лучше не с одним транзистором помощнее, а с использованием нескольких более слабых. За счет этого стабилизируется частота тока и минимизируется шумовой эффект во время сварки.

В схеме инвертора должны присутствовать конденсаторы. Соединяются в последовательной цепи. Выполняют 2 основные задачи:

  • Минимизируют резонансные выбросы блока питания.
  • Снижают потери транзисторного блока, возникающие после включения. Объясняется это тем, что транзистор открывается скорее. Скорость закрытия заметно меньше. При этом происходит потеря тока и нагреваются ключи в транзисторном блоке.

Система охлаждения

Силовые элементы преобразователя во время сварки будут значительно нагреваться. Это может быть причиной поломки. Для исключения этого помимо упомянутых выше радиаторов следует применять вентилятор, исключающий перегрев и обеспечивающий стабильное охлаждение.

Одного вентилятора достаточной мощности может быть достаточно. Однако при использовании элементов старого ПК, то может потребоваться до 6 штук, 3 из которых необходимо размещать возле трансформатора.

Чтобы полностью защитить самодельный инвертор от перегрева можно задействовать датчик температуры. Его следует смонтировать на наиболее греющийся элемент с радиатором. Элемент сможет отключить питание при достижении определенной температуры, а индикация сигнализировать о критическом уровне.

Для эффективной и стабильной работы системы вентиляции инвертора необходимо обеспечить постоянный правильный забор воздуха. Для этого отверстия, по которым будет забираться воздух, не должны ничем перекрываться. В корпусе инвертора следует предусмотреть достаточное количество отверстий. При этом размещать их нужно на противоположных поверхностях корпуса.

Управление

При размещении электронных плат аппарата возможно применять фольгированный текстолит с толщиной 0,5 – 1 миллиметр.

Чтобы обеспечить автоматическое управление работой инверторной сварки следует купить и смонтировать ШИМ-контроллер. Он будет стабилизировать силу сварного тока и уровень напряжения. Для удобного управления в лицевой части размещаете все органы управления и точки подключения.

Корпус

После создания главных элементов инверторной сварки можно приступать к подготовке корпусных деталей. При планировании нужно учитывать ширину трансформатора, так как он должен беспрепятственно размещаться в корпусе.

Исходя из этого размера следует добавить примерно 70% пространства для остальных деталей. Защитный кожух возможно сделать из листового железа, толщиной 0,5-1 миллиметра. Соединение элементов можно проводить при помощи сварки, болтов.

Более изысканным вариантом будет цельная конструкция из выгнутых исходных материалов. Обязательны ручки и крепления для ремня, чтобы переносить аппарат.

При разработке инвертора нужно учесть возможность простой разборки для доступа к внутренним компонентам, чтобы их легко отремонтировать. Лицевая сторона также должна содержать:

  • Переключатель силы тока;
  • Кнопка, которой аппарат будет включаться/отключаться;
  • Световые элементы индикации;
  • Разъемы для подключения кабелей.

Заводские инверторы окрашиваются порошковым красителем. В быту можно использовать обычную краску. Нанести покрытие стоит для исключения появления ржавчины.

Подключение

Собранный сварочный аппарат нужно подключать в электросеть. При подключении к розетке следует предусмотреть наличие предохранителя или автоматического выключателя. Для защиты на входе в инвертор можно установить автоматический выключатель на 25 ампер.

Если точка подключения удалена, то можно использовать удлинитель.

Включение аппарат происходит по стандартной схеме – с помощью кнопки «вкл/откл». Должна загореться индикация, обычно для этого используется зеленый светодиод.

Производить подключение к сети необходимо проводом, имеющим сечение минимум 1,5 мм2. Однако оптимальным сечением будет провод 2,5 мм2.

Перед включением аппарата в электросеть следует проверить наличие изоляции всех высоковольтных элементов от корпусных деталей.

Проверка работоспособности

После проведения всех работ по сборке и отладке необходимо осуществить проверку работоспособности созданного инвертора.

По рекомендациям специалистов необходимо провести проверку силы тока и напряжения аппарата с использованием осциллографа.

Нижняя петля по напряжению должна составлять до 500 вольт, не превышая значения в 550 В. Если все конструктивные требования соблюдены, то уровень напряжения будет составлять 330 – 350 вольт.

Но этот метод доступен не всегда, ведь не у каждого дома имеется свой подобный измерительный прибор.

Зачастую проверка проводится в действии непосредственно сварщиком. Для этого проводится создание пробного шва с полным выгоранием электрода. По окончанию пробного сваривания нужно проверить температуру на трансформаторе. Если она зашкаливает, то в схеме имеются какие-то недоделки и следует все перепроверить.

Если температура силового блока в норме, то можно провести еще 2-3 пробных захода. После этого проверить температуру радиаторов. Они также могут перегреваться. Если после двух – трех минут они приходят в норму, то можно смело продолжать работу.

Настройка инвертора – полезные советы

Процедура сборки аппарата не отличается сложностью. Наиболее важным этапом является настройка инверторного аппарата. Может быть, что придется обратиться за помощью к специалисту.

1. Для начала нужно подключить 15 вольт к ШИМ с одновременным подключением одного конвектора. Так можно снизить нагрев и шумность во время работы.

2. Чтобы замыкать резистор нужно подключать реле. Оно подключается при окончании зарядки конденсаторов. За счет этого можно значительно снизить колебания напряжения во время подключения к электросети 220 вольт. Без резистора при прямом подключении возможен взрыв.

3. Проверить срабатывание реле замыкания резистора спустя пару секунд после подачи тока к плате ШИМ. Проконтролировать наличие на плате импульса прямоугольной формы, после отработки реле.

4. Подача питания 15 вольт на мост для проверки его работоспособности и правильности сборки. Сила тока должна быть не выше 100 мА на холостом ходу.

5. Проверка корректности размещения фаз. Применять осциллограф. На мостовую схему от конденсаторов через лампу подается 200 вольт с нагрузкой 200 Вт. На ШИМ выставляется частота 55 кГц. Подсоединяется осциллограф, проверяется форма сигнала и уровень напряжения (не более 350 вольт).

Для определения частоты аппарата следует медленно понижать частоту ШИМ до тех пор, пока на ключе IGBT не произойдет небольшой заворот. Полученное значение частоты нужно разделить на 2 и прибавить частоту перенасыщения. В итоге получится рабочее колебание частоты трансформатора.

Трансформатор аппарата не должен издавать никаких шумов. При их наличии необходимо проверять полярность. К диодному мосту можно подключать питание для теста через подходящую бытовую технику. К примеру, подойдет чайник, имеющий мощность 3000 Вт.

Идущие к ШИМ проводники нужно выполнять короткими. Их требуется скручивать и размещать дальше от источника помех.

6. Постепенно повышается ток при помощи резистора. При этом необходимо прислушиваться к инвертору и контролировать значения на осциллографе. На нижнем ключе не должно быть более 500 вольт. Среднее значение – 340. Если присутствуют шумы, то возможна поломка IGBT.

7. К свариванию приступать после 10 секунд. Проверяются радиаторы, если не нагрелись, то работу продлевать еще на секунд 20. После повторной проверки сваривание может продолжаться от одной минуты и дольше.

Безопасность

Все проводимые операции, за исключением проверки работоспособности, необходимо проводить исключительно на обесточенном оборудовании. Каждый элемент рекомендуется заранее проверить, чтобы после установки он не вышел из строя из-за перенапряжения. Основные правила электробезопасности также обязательны к выполнению.

Таким образом сделать самодельную инверторную сварку по силам практически каждому. Предложенное описание должно помочь разобраться во всех нюансах. Если изучить видео уроки и фото материалы, то собрать устройство не составит труда.

Источник: https://oxmetall.ru/svarka/kak-sobrat-invertornyj-svarochnyj-apparat

Точечная сварка своими руками из инвертора

Точечную сварку можно встретить не только на производстве, но и в бытовых условиях. Преимущества выбора такого вида сварки заключается в ее надежности. Данным способом крепления легко соединить разноуглеродные стали, цветной металл. При этом, можно строить практически любые конфигурации и совмещения с металлами.

Позволяет создавать изделие под любые фантазии и потребности.

Спектр применения

Чаще всего, точечная сварка получила широкое применение в ремонте кабелей и бытовой техники. Точечная сварка позволяет производить ремонт аккумуляторов и других мобильных переносных устройств.

  • Технология сварки
  • Технология сварки аккумуляторов достаточно проста, пример можно посмотреть по видео ниже.

Весь процесс сварки заключается в нагреве рабочей металлической поверхности до пластичного состояния. В таком состоянии изделия легко деформируются и соединяются.

Для обеспечения качества требуется постоянное проведение процесса плавления. Непрерывность и определенная скорость рабочего темпа, сила нажатия являются ключевыми в работе. В дальнейшем эти параметры характеризуют качество изделий.

Основой принципа работы данной сварки служит преобразование электрической энергии в тепловую. Под воздействием тепла металлическая поверхность подвергаются плавлению.

Контакт электродов следует помещать в местах соединения 2 рабочих поверхностей деталей, необходимых для закрепления.

Застывание расплавленной массы происходит в момент отключения тока. Тем самым, исключается эффект растекания поверхности швов. Поэтому, данный вид сварки носит название точечный.

Клещи

Присоединение частей деталей осуществляется за счёт закрепления поверхности при помощи специальных клещей. Которые, подразделяются на подвесные и ручные.

  • Подвесные. Получили широкое применение в условиях завода и промышленных предприятий, подлежат многократному использованию.
  • Ручные. Основной функцией служит передача электротока на электроды.

Ряд преимуществ

  • Высокая скорость работы;
  • Наивысшая степень электробезопасности;
  • Обеспечение качественного соединения;
  • Изготовить устройство для сварки можно в ручную.

Технический процесс

Вся система построена на элементарной передаче тепла в целях плавления металла в местах закрепления. На качество сварки может повлиять плохая очистка поверхности, видимые окислы.

Ознакомиться с техпроцессом можно по ссылке на видео.

Пользуясь законом теплопроводности, следовало бы учитывать этот параметр для большинства распространенных металлов. Параметры теплопроводности для некоторых из них представлены ниже в таблице.

Наименование металла Температура плавления, Сᵒ
Железо (низкоуглеродистая сталь) ~1400
Медь ~690
Алюминий ~430
Цинк ~1120

Электроды должны тоже соответствовать некоторым параметрам:

  • Теплопроводность;
  • Электропроводимость;
  • Механическая прочность;
  • Скорость обработки.

Электроды недолговечны и требуют бережного отношения. При постоянном воздействии температурного режима, необходимо прерываться. Данная возможность позволяет остыть электродам и свариваемой поверхности. Таким образом, продлевается ресурс электродов.

Диаметр электродов влияет на характеристику силы тока, а соответственно и на качество шва. Диаметр сечения электрода подбирается исходя из толщины рабочей поверхности. Электрод должен быть приблизительно в два раза толще закрепляемых изделий.

Контактная сварка

Контактная сварка позволяет проводить работы в обычных домашних условиях. Но, чаще всего, этот способ широко применяется в промышленности.

Видео по теме контактная сварка своими руками.

Заводы-изготовители позаботились о том, чтобы домашних условиях не присутствовали громоздкие аппараты по точечной сварке. Уже давно придуманы компактные мобильные устройства. Их предназначение заключается в ремонте домашней бытовой техники.

Такое устройство получило название споттер. Устройство оснащено двумя выводами, предназначенными для закрепления одного из них к рабочей поверхности изделия. Второй же вывод подводится к электроду.

В данной конфигурации в клещах нет необходимости. Источник тока должен располагаться на достаточно близком расстоянии от места проведения работ.

Не стоит обращать на малогабаритное устройство, она достаточно функционально для своего размера.

Наиболее простые устройства используют однофазный ток. Но надеяться на то, чтобы закрепить деталь более одного миллиметра не стоит. Закрепление более сложных деталей производится с привлечением дополнительного трансформатора.

Стоимость

Стоимость споттеров достаточно невелика. В самой дорогой категории находятся инверторные.

Как правило, бытовые устройства не требует больших мощностей. Поэтому, можно обойтись и самодельным аппаратом.

Точечная сварка отличается своим качеством шва. В большинстве случаев, чтобы его разрушить требуется применение серьезных механических воздействий. Чаще всего, для этого используются сверла.

Схема аппарата

Если существует такая потребность, есть желание сделать устройство самому, то собрать его вполне возможно в домашних условиях.

Размеры аппарата по точечной сварке зависит, прежде всего, от потребностей. Наиболее удобными выступают устройства со средними габаритами.

Рисунок. Схема сварочного аппарата по точечной сварке.

Работа устройства заключается на принципе Ленца-Джоуля. Требования физического закона гласит, что проводник должен вырабатывать тепло в количестве равным пропорции с сопротивлением проводника, а также квадратом тока и затраченного времени.

К такому схемному решению обязательна установка выпрямительного моста. Через тиристорный мост происходит заряд конденсатора. Первый тиристор выступает в качестве катода.

Конденсаторный блок является своеобразной защитой и служит в качестве высвободителя тока. Создается принцип качели, постоянная зарядка и разрядка конденсаторов. Данный принцип позволяет создавать эффект точечной пайки. Шов равномерно и своевременно остывает, не позволяя расплываться металлу.

Для увеличения мощности в схему, также добавляются дополнительный тиристор с реле выключения.

Самодельный аппарат

Важной деталью сварочного аппарата служит трансформатор. Минимальное значение по мощности должно составлять 750 Вт.

Видео по созданию собственноручного устройства.

Создать устройство можно при помощи инвертора. Прежде чем, приступать к цели, необходимо обладать некоторыми навыками в области электротехники.

Более простой считается схема с использованием трансформатора взамен инвертора. Но такие устройства недостаточно мощные, чтобы производить работы с металлами достаточной толщины более 1 мм.

Шаги создания устройства

  • Извлечь трансформатор из ненужной микроволновки;
  • Избавиться от вторичной обмотки, креплений, шунтов;
  • Произвести вторичную обмотку более толстым проводом, чем в первичной;
  • Проверить собранное устройство на утечку тока;
  • Утечки устранять изоляцией при помощи ленты;
  • Проверить силу тока. Значение должно быть не более 2 кА.

В качестве наконечников или электродов более всего подходит медный провод значительной толщины. Наконечники затачиваются и закрепляются.

Далее необходимо установить тумблер выключателя. Трансформатор следует закрепить к основанию. Для защиты устанавливается заземление. Соединения должны быть изолированы.

Источник: https://svarkagid.com/tochechnaja-svarka-svoimi-rukami-iz-invertora/

Сварочный инвертор своими руками: схема самодельной инверторной сварки и как сделать аппарат?

Для того чтобы собрать сварочный инвертор своими руками, не обязательно обладать глубокими познаниями в физике, разбираться профессионально в технике, электричестве и т.д.

Необходимо только выполнять все по схеме и знать, хотя бы на минимальном уровне механизм действия данного оборудования. Желающим создать инвертор в более экономном и простом варианте, следует знать, что технические особенности и КПД по сути одинаковые от аналогов конструкции.

Характеристики самодельного инвертора

Один из важных вопросов для специалистов по сварке – как сделать сварочный инвертор своими руками. Процесс можно выполнить при помощи схемотехники сварочных инверторов.

Прежде чем собирать эффективный сварочный инвертор необходимо выделить следующие технические характеристики оборудования:

  • на одном из транзисторов сила тока, который проходит через вход, должна составлять 32 ампера;
  • 250 ампер – показатель силы тока, который создается при выходе из аппарата;
  • напряжение должно быть до 220 вольт.

Для того чтобы создать самый простой сварочный инвертор необходимо соединить следующие элементы в один механизм:

  • силовой блок;
  • питательный блок на тиристорах;
  • драйвера для силовых ключей.

Материалы для его сборки

Чертеж инверторного сварочного аппарата.

Прежде чем начать собирать по схеме сварочного инверторного типа аппарат, мастер должен подготовить необходимые инструменты и материалы, которые могут понадобиться ему в работе.

В первую очередь:

  • различного типа отвертки;
  • паяльное устройство, чтобы соединять детали в электронной схеме;
  • нож;
  • инструмент для вырезки на металлической поверхности;
  • резьба, как крепежная деталь;
  • поверхность с небольшой толщиной из металла;
  • детали, благодаря которым формируется электросхема инверторного сварочного аппарата;
  • провод из меди и полосы, чтобы обмотать трансформатор потребуется;
  • стеклоткань;
  • слюда;
  • текстолиты;
  • обычная термобумага, использующаяся в кассовых аппаратах.

Но если есть надобность, то используют схемы сварочных аппаратов, работающие на трехфазовой электросети с напряжением в 380 вольт. У таких оборудований есть достоинства, среди которых выделяют высокий показатель КПД, в отличие от однофазовых конструкций.

Блок питания агрегата

В блоке питания сварочного инвертора самой важной деталью является трансформатор, мотающийся при феррите в Ш7*7 либо 8*8.

При помощи данного механизма обеспечивается подача регулярного напряжения и создается за счет 4-х обмоток:

  1. Первичная.
    Сто кругов проводом ПЭВ в диаметре 0,3 миллиметра.
  2. Первая вторичная.
    15 кругов проводом ПЭВ в диаметре 1 миллиметр.
  3. Вторая вторичная.
    15 кругов ПЭВ в диаметре 0,2 миллиметра.
  4. Третья вторичная.
    20 кругов в диаметре 0,3 миллиметра.

После того как будет выполнена первичная обмотка и проведена изоляция её сторон за счет стеклоткани, её также обматывают в экранирующий провод. Каждый виток должен целиком покрывать защитный слой.

Обмотка экранирующим проводом должна быть в таком же направлении, как и первичная обмотка. Стоит обратить внимание на одинаковость диаметров двух видов обмоток.

Этим же правилом пользуются и для других видов: при наматывании на каркас трансформатора, изоляции друг от друга проводов за счет стеклоткани либо при использовании простого малярного скотча.

Для стабилизации напряжения в области 20-25 вольт, что поступает в блок питания через реле, подбирается резистор для электронных схем. Главной особенностью рассматриваемого механизма выступает изменение переменного тока в регулярный.

Добиться этого можно, используя диод, формирующийся при выполнении схемы «косой мост». Бывает так, что при эксплуатации аппарата диод перегревается, из-за чего приходится проводить монтаж на радиаторах и нередко ремонт блока питания. Альтернативным вариантом радиаторам является охлаждающая деталь от старой техники.

Монтаж диодного моста подразумевает под собой применение 2-х радиаторов: верх через прокладку из слюды присоединяют к одной батареи, а низ через поверхность термопасты ко второй батареи.

Мост из диодов должен выводиться в том направлении, куда направлен вывод транзистора. За счет этого постоянный ток превращается в переменный с высокими частотами.

Соединительный провод этих выводов максимум может достигать длины в 15 сантиметров. Металлический лист необходимо расположить между блоком питания и инверторной частью аппарата и приварить к «телу» оборудования.

Силовой блок

Изготовление сварочного инвертора.

Силовой блок – это основа трансформатора в сварочном инверторе. С его помощью уменьшается показатель напряжения тока с высокими частотами, а сила наоборот повышается. Для создания в трансформаторе силового блока требуется использование сердечников. Чтобы создать небольшой зазор рекомендуется воспользоваться обычной газетной бумагой.

С каждым наложенным слоем, чтобы обеспечить термоизоляцию необходимо наматывать ленту от кассового аппарата для достижения хорошей износоустойчивости. Вторичную обмотку создают на основе 3-х полосовых слоев из меди, изолирующиеся друг от друга за счет ленты фторопласта.

Большинство мастеров обматывают понижающий трансформатор толстым проводом из меди, однако, это ошибочное действие. С таким трансформатором простой сварочный инвертор будет работать с высокочастотным током, вытесняющим наружу проводник без нагревания деталей внутри.

Оптимальнее всего формировать обмотки, используя проводник с широкой поверхностью, иными словами применить широкую медную полосу.

Вместо термоизоляционного поверхностного слоя специалисты иногда заменяют на простую бумагу. Она не так устойчива, как термоизоляционная либо лента в кассовом аппарате. Повышенная температура влияет только на потемнение ленты, однако её износоустойчивость остается на первоначальном уровне.

Инверторный блок

Основная функция простого сварочного инвертора заключается в преобразовании постоянного тока, который формируется при помощи выпрямителя аппарата в переменный высокочастотный ток.

Чтобы решить данную ситуацию, специалисты используют силовой транзистор, и высокие частоты с открывающимся и закрывающимся каналом. Рассматриваемый механизм в оборудовании отвечает за изменение постоянного тока в переменный с высокими частотами.

Инверторный сварочный аппарат сделать своими руками можно по электросхеме, где указывается и как последовательно соединять конденсаторы.

Их используют в следующих случаях:

  1. Минимализация выброса в трансформаторе.
  2. Минимализация потерь в трансформаторном блоке, появляющиеся в момент отключения аппарата от сети.
    Это происходит за счет того, что транзистор открывается с большей скоростью, чем закрывается – ток теряет свою мощность, что влечет за собой перегрев ключей в блоке транзистора.

Система охлаждения агрегата

Электрическая схема инвертора для сварки.

Стоит отметить, что большинство силовых элементов в сварочном оборудовании имеют свойство сильно нагреваться во время эксплуатации, из-за чего оно может сломаться.

Дабы избежать таких ситуаций, то эффективнее всего во все блоки аппарата, помимо радиатора, установить вентилятор, охлаждающий механизм во время работы – своеобразную систему охлаждения.

Её можно самостоятельно сделать при наличии мощного вентилятора. Зачастую используют один с направлением воздушного потока в сторону понижающегося силового трансформатора.

С вентилятором, у которого небольшая мощность от компьютера, например, может понадобиться до 6 штук, из которых три устройства устанавливается возле силового трансформатора с направлением воздушного потока в обратную сторону.

Чтобы избежать перегрева, самодельный сварочный инвертор должен работать вместе с термодатчиком. Он устанавливается на греющий радиатор. Если радиатор достигает максимальное значение температуры, он автоматически отключает подачу тока.

Для более эффективного функционала системы охлаждения агрегата, корпус должен быть оснащен заборщиком воздуха с правильным его выполнением. Через его решетки проходит воздушный поток во внутренние системы аппарата.

Сборка инвертора своими руками

Важным вопросом остается, как сделать сварочный инвертор своими руками? В первую очередь нужно выбрать корпус с надежной защитой либо сформировать его самому при помощи листового металла, где толщина должна достигать не меньше, чем 4 миллиметра.

За основу, где монтируется трансформатор для инверторной сварки, используют листовой гетинакс с толщиной не меньше, чем 5 миллиметров. Сама конструкция будет располагаться на основании благодаря скобам, изготовленным самостоятельно из медных проволок в диаметре с 3 миллиметрами.

Чтобы создать электронные платы в электрических схемах сварочного аппарата, используют фольгированный текстолит, у которого толщина достигает 1 миллиметр. Монтируя магнитопроводы, которые в период эксплуатации имеют свойство греться, необходимо помнить о зазорах между ними. Они нужны, чтобы воздух мог свободно циркулировать.

С целью автоматического управления сварочным инвертором, сварщик должен купить и подсоединить к нему специальный контроллер, отвечающий за стабильность силы тока. От него также зависит, будет ли величина напряжения подачи мощной.

Для более удобной эксплуатации самодельного агрегата, во внешнюю часть монтируется орган управления. Он может выступать в виде тумблера для активации аппарата, ручкой в переменном резисторе, благодаря ей контролируется подача тока либо зажим для кабеля и сигнальный светодиод.

Собрать сварочный инвертор своими руками достаточно просто, если придерживаться всех правил, соблюдать инструкцию и строго идти по назначенной схеме.

Схема изготовления инвертора своими руками.

Диагностика самодельного инвертора и его подготовка к работе

Собрать самодельный сварочный инвертор не весь процесс. Подготовительный этап также считается важной частью всей работы, где необходимо проверить, правильно ли работают все его системы, и как нужно настроить нужные параметры.

В первую очередь проводится диагностика оборудования, а именно подача напряжения 15 вольт на контроллер и охлаждающую систему сварочного аппарата, чтобы проверить их выдержку. Благодаря этому проверяется функционал механизмов и избежание перегревания во время эксплуатации агрегата.

При функциональности реле, напряжение в аппарат подается до 10 секунд. Достаточно важно узнать, сколько инвертор может во время сварки функционировать. Для этого он тестируется на протяжении 10 секунд. Если радиатор остается с прежней температурой, то время можно установить до 20 секунд, и т.д. до целой минуты.

Обслуживание самодельного сварочного инвертора

Чертеж сварочного инвертора для сборки своими руками.

Для того, чтобы простой сварочный инвертор сделанный своими руками смог долго работать, за ним необходим грамотный уход. При поломке сварочного оборудования требуется снять корпус и аккуратно прочистить механизм при помощи пылесоса. В частях, куда он не достается можно воспользоваться кисточкой и сухой тряпкой.

В первую очередь, для самодельных инверторов нужно провести диагностику всего сварочного оборудования – проверяется напряжение, его вход и течение. При отсутствии напряжения необходимо проследить за функциональностью блока питания.

Также проблема может заключаться в сгоревших предохранителях конструкции. Слабым место считается и датчик, измеряющий температуру, который не ремонтируется, а заменяется.

После проведения диагностики необходимо обратить внимание на качество соединения электронных систем оборудования. Затем выявить некачественное скрепление на глаз либо используя специальный тестер.

При выявлении данных неполадок, они устраняются тотчас за счет доступных деталей, чтобы не спровоцировать перегрев и поломку всего сварочного оборудования.

Итог

Ошибочно считать, что созданный самостоятельно аппарат не позволит вам эффективно выполнять необходимую работу. Самодельным устройством с легкой схемой сборки можно сваривать элементы при помощи электрода в диаметре до 5 миллиметров и длиной дуги до 10 миллиметров.

После того, как самодельное оборудование будет включено в цепь, необходимо выставить автоматический режим с конкретным значением силы тока. Напряжение в проводе может быть около 100 вольт, что свидетельствует о каких-либо неполадках.

Чтобы устранить проблему надо найти схему сварочного инвертора, разобрать его и проверить насколько правильно он был собран.

Благодаря такому самодельному аппарату сварщик не только может сваривать однородный, темный металл, но также цветной и различные сплавы. Собирая такое устройство, необходимо помимо основ электроники, также иметь свободный период времени, чтобы осуществить задуманное.

Сварочный процесс при помощи инвертора – это нужная вещь в доме каждого мужчины для любых бытовых и промышленных целей.

Источник: https://tutsvarka.ru/oborudovanie/svarochnyj-invertor-svoimi-rukami

Cамодельная контактная сварка своими руками из инвертора

Время чтения: 9 минут

Сейчас в интернете можно найти десятки статей и инструкций, как сделать своими руками контактную сварку из инвертора.

Кто-то считает, что аппарат контактной сварки нужно собирать именно из инвертора, а кто-то говорит, что это пустая трата времени и сил. На самом деле, правы и те, и другие.

Вот только первые забывают о том, что основная характеристика контактной сварки — это не только электрический импульс, но и прижимное усилие. Без него невозможно сформировать сварную точку.

Исходя из этого, становится понятно, что внимание нужно обратить не на то, ИЗ ЧЕГО сделана контактная сварка, а НА ТО, каким образом будет обеспечиваться прижимное усилие. Впрочем, давайте обо всем по порядку. В этой статье мы подробно расскажем, как собрать аппарат для контактной сварки своими руками из устройства инверторного типа, и нужен ли вообще инвертор в данной ситуации.

Эта статья предназначена для практикующих мастеров, и не содержит подробных объяснений, которые и так понятны. Если вы новичок, то прочтите другие статьи на нашем сайте, в которых мы рассказываем про аппарат контактной сварки.

Сборка аппарата контактной сварки

Контактная сварка своими руками из инвертора собирается просто и быстро, если у вас есть соответствующие навыки и знания в области электротехники. Еще раз повторяем: эта статья не предназначена для новичка.

Здесь не будет долгих пояснений каждого шага. Мы лишь делимся своим опытом сборки контактной сварки. Если вы никогда не держали в руках паяльник и не знаете, как намотать трансформатор, то сначала изучите теорию.

И только потом приступайте к сборке аппарата.

Необходимые инструменты и детали

Для намотки трансформатора вам понадобятся медные провода. Про сечение мы расскажем позже. Но вы можете самостоятельно рассчитать необходимое сечение проводов с помощью формул, которые есть в интернете.

Также вам понадобятся разные мелочи вроде кнопки вкл/выкл, они пойдут на схему управления. Также понадобятся подручные материалы для изготовления рычагов и электродов. Мы подробно расскажем о них по ходу статьи. Не забывайте про изолирующие материалы, без них не обойтись.

Из инструментов понадобится паяльник, припой, стамеска/ножовка.

Инвертор: нужен или нет?

Мы считаем, что контактная сварка из инвертора — это не самое лучшее решение. Тем более, что от самого инвертора вам понадобится разве что трансформатор. Некоторые умельцы умудряются использовать и электронику, но ее все равно нужно кропотливо дорабатывать. Поэтому проще сделать все с нуля из новых компонентов, а не пытаться разобрать инвертор на молекулы.

Вы можете взять из инвертора трансформатор или самостоятельно сделать его. Но мы рекомендуем брать трансы из микроволновых печей, поскольку стоят они дешево, легко модернизируются и отлично подходят для наших целей. Дальнейшие рекомендации будут даны исходя из того, что для сборки мы будем использовать трансформатор от СВЧ.

Сварочный трансформатор

Итак, мы условились, что будем собирать контактную сварку из трансформатора от микроволновки. Сборка из инвертора нецелесообразна, она муторная и неэффективная. Поэтому все дальнейшие рекомендации будут связаны именно с трансформатором от СВЧ. Будьте внимательны.

Начнем с подбора трансформатора. Вам понадобится не любой трансформатор, а только тот вариант, у которого мощность составляет от 1 кВт и выше. Такие ставят в достаточно мощные микроволновки с множеством функций.

Вы можете взять трансформатор меньшей мощности, но он тогда ваш аппарат не сможет варить даже металл толщиной в 1 мм.

А если вы захотите сделать очень мощный аппарат, то можете взять два трансформатора по 1 кВт каждый и соединить их.

Предположим, что трансформатор у вас есть. Теперь нужно снять с него вторичку, позже мы будем сами наматывать ее. Очень непросто снять вторичку голыми руками, лучше используйте ножовку или стамеску. Если вторичка намертво приклеена, то ее можно сначала высверлить, а потом отпилить той же ножовкой или отбить молотком.

У вас должен остаться сердечник и первичка. Обычно у трансформаторов от СВЧ первичка сделана из более толстого провода, так что вы точно не перепутаете ее со вторичкой. Также уберите шунты, если они есть. Постаратесь не повредить первичку при демонтаже ненужных частей.

Далее приступаем к намотке новой вторички. Мы использовали упомянутые выше медные провода. Рекомендуем выбирать провода с сечением от 100 мм2. Это довольно толстые провода, но именно такое сечение оптимально в нашем случае.

Тем более, вам нужно сделать всего 3-4 витка на всю обмотку. Если вы сможете намотать больше, то в итоге получите более мощное устройство. Но мы рекомендуем остановиться на 3 витках.

Это оптимальный вариант для самодельного домашнего аппарата, который не будет варить слишком толстый металл.

Управление аппаратом и рычаги

Систему управления можно собрать на базе электроники из инвертора, но это действительно непросто и затратно. Легче собрать все с нуля и не мучиться с инверторной схемой. Тем более, вам нужна только кнопка вкл/выкл. Также можно добавить регулировку силы тока, но мы не стали это делать. Ведь наша цель — собрать максимально недорогой и при этом рабочий аппарат.

В качестве выключателя можно выбрать любой, какой вам только понравится. Его нужно установить в цепь с первичной обмоткой. И даже не думайте ставить выключатель со вторичной обмоткой, это плохая идея. На вторичке слишком большой ток и он может просто расплавить контакты у выключателя.

Для сборки рычагов можно использовать металлическую трубу (обязательно изолируйте ее) или деревянную заготовку.  И вообще можно использовать любые подручные материалы.

Но позаботьтесь о том, чтоб они сами по себе не проводили ток. В нашем случае ток будет проходить к электродам через проводки, закреплённые на рычагах.

Такие рычаги будут своеобразными ручками, за которые вы будете браться, прижимая электроды к металлу.

Как сделать сварочные клещи?

Но вам нужно позаботиться ни столько о рычагах, сколько о прижимном усилии. Ведь в контактной сварке металл плавится не только за счет нагрева электродов, но и за счет усилия сжатия.

Сжимать рычаги можно и вручную, если металл тонкий и легко прогревается. В таком случае конструкцию не нудно дорабатывать.

Но если вы захотите сварить более-менее толстый металл, то придется все же сделать доработки.

Можно сделать более тяжелый рычаг, который за счет своего собственного веса будет обеспечивать дополнительное сжатие. Но в таком случае аппарат нужно жестко зафиксировать на столе.

Если стационарный аппарат вам не нравится, то можно добавить к рычагу винтовую стяжку. Она устанавливается между рычагом и основанием аппарата. Вариант действенный и надежный.

Вернемся к кнопке включения.

Если вы выберите самую простую конструкцию, когда прижимное усилие обеспечивается вручную (вы опускаете рычаг и с помощью своей силы сжимаете заготовку между электродами), то мы рекомендуем поставить кнопку включения так, чтобы при опускании рычага она нажималась. Опустили рычаг — кнопка включилась, аппарат работает. Подняли — аппарат выключился. Это крайне удобно, поскольку одна рука мастера всегда свободна.

Электроды для сварки

Сварочный аппарат для контактной сварки немыслим без электродов. В нашем случае используются медные электроды. Они могут быть самодельными и покупными. Лучше взять покупные, они однозначно будут работать так, как нужно. Тем более, их цена не такая уж большая, чтобы экономить.

Есть множество форм электродов, но вам нужны самые простые, прямые электроды. Чем больше их диаметр, тем больший диаметр будет у сварной точки. Тем больше сварная точка, тем надежнее соединение. Все просто. Так что подбирайте электроды исходя из своих нужд, а не на глаз. Только так вы получите работающее устройство, которое отлично сварить заготовки. И не будет особых дефектов.

Если вы собираете маломощный аппарат для сварки тонких металлов, то можете в качестве электродов использовать медные наконечники от обычного паяльника. Они отлично проводят ток и годятся для маломощного аппарата.

Также знайте, что электроды — это материал расходный. Нельзя установить одни электроды и использовать их много лет. Если вы видите, что конец электрода начал тупиться, значит пора заменить.

Техника безопасности

Чтобы ваш аппарат работал стабильно и надежно, а ваше здоровье осталось в целости и сохранности, все компоненты нужно тщательно заизолировать с помощью изолирующих материалов.

Также при сборке используйте диэлектрики в качестве основы, чтобы избежать несчастных случаев. В идеале стоит внедрить предохранители в электрическую схему, но это не всегда целесообразно. И соблюдайте технику безопасности при сборке аппарат.

Не используйте инструменты без изоляции, хотя бы перемотайте их ручки изолентой. Это лучше, чем ничего.

Вместо заключения

Самодельный аппарат — это отличная задумка. Самоделка в любом случае дешевле и проще в применении, чем заводское устройство. Особенно, если дело касается именно контактной сварки.

Ведь многие мастера не используют ее на постоянной основе, а лишь нуждаются в аппарате пару раз в году. В таком случае просто нецелесообразно покупать дорогой сварочник в магазине.

Легче и разумнее собрать что-то попроще своими руками.

Но учтите, что самодельная контактная сварка из сварочного аппарата потребует от вас определенных навыков и знаний. Схема у такого устройства несложная, но вы должны разбираться в элементарных понятиях. Если вы не можете отличить первичную обмотку от вторичной, то лучше изучайте теорию и только потом приступайте к сборке самодельного аппарата. Желаем удачи в работе!

Источник: https://svarkaed.ru/oborudovanie-dlya-svarki/apparaty/samodelnye/camodelnaya-kontaktnaya-svarka-svoimi-rukami-iz-invertora.html

Точечная сварка из инвертора своими руками

Точечная сварка из инвертора своими руками – миф это, или реальность? Ответить на этот вопрос однозначно совсем непросто. В интернете можно найти немало статей на эту тему.

Их авторы касаются, как правило, проблем переделки электрических и электронных компонентов. Вопрос о том, как создать необходимое рабочее давление на электродах при этом уходит как бы на второй план.

А ведь он является, по сути, ключевым, поскольку речь идёт об усилии в десятки, а иногда и сотни килограммов. Ну да ладно, давайте по порядку.

Открывающиеся возможности

Преимуществ у контактной сварки достаточно, чтобы сделать её привлекательной для тех, кто намерен наладить массовый выпуск продукции или заниматься ремонтом техники на профессиональном уровне.

  • Хорошее качество сварного соединения. Оно обеспечивается стабильностью параметров сварочного тока и давления, оказываемого на соединяемые детали.
  • Высокая скорость процесса. На наложение шва уходят секунды. Это особенно важно, когда речь идёт о выполнении большого объёма работ.
  • Эксплуатационная простота. Правильно изготовленный аппарат для контактной сварки не требует особых навыков при использовании, и освоить процесс в состоянии даже специалист средней квалификации.
  • Использование споттера оправдано при работах по ремонту автомобильных кузовов. Такое устройство упрощает не только процесс сварки, но и рихтовки повреждённых деталей.

Основным препятствием для широкого распространения технологии является высокая стоимость оборудования. Она и наталкивает многих на мысль о том, чтобы изготовить аппарат для контактной сварки самостоятельно.

Нужен ли инвертор?

На самом деле, использование для этих целей инвертора необоснованно. Ведь для контактной сварки нет никакой необходимости в постоянном токе. При наличии уже готового сварочного инвертора лишь несколько упрощается задача монтажа управляющих схем и изготовления трансформаторных катушек требуемых параметров. С таким же успехом можно изготовить оборудование, что называется, с нуля.

Приступать к решению такой задачи, не имея необходимых теоретических знаний и практических навыков, не стоит. Это только на словах всё выглядит относительно просто. Но если вы умеете паять и знаете, как правильно перемотать катушки трансформатора, можно попробовать. Для этого вам понадобятся определённые материалы и инструменты.

  • Медный провод определённого сечения. Его сечение и количество возможно определить, только выполнив предварительные расчеты.
  • Материал для изготовления шины. На худой конец можно обойтись тем же проводом, но целесообразнее приобрести уже готовое изделие.
  • Лак для создания на проводах изолирующего слоя и хорошая изоляционная лента.
  • Мультиметр для проведения необходимых замеров.
  • Принадлежности для пайки – паяльник, флюс, припой и т. п.

Разумеется, придётся приобрести и уже готовый сварочный инвертор.

Изготовление трансформатора

На рисунке №1 схематически показано возможное соотношение витков первичной и вторичной обмоток трансформатора, необходимого для работы контактной сварки.

Большое число выходов на вторичной обмотке необходимо для того, чтобы иметь возможность грубой регулировки параметров тока.

Но представленная схема требует корректировки в зависимости от требуемых параметров тока. Без предварительных расчётов не обойтись.

Теоретическая и практическая помощь

Количество витков можно рассчитывать по этой формуле: N = 50/S. Где N — количество витков, S — площадь сердечника в см2. Для упрощения задачи рекомендуется воспользоваться уже готовой программой калькулятором. Их также можно найти в сети. Например, программа OER.

Это поможет избежать ошибок и упростит задачу. Поскольку речь идёт о конструировании оборудования на базе уже готового инвертора, то следует сначала замерить параметры первичной катушки, произвести расчеты, и только потом приступать к изготовлению вторичной обмотки.

Осторожно!

Следует обязательно позаботиться о том, чтобы обе обмотки были заземлены. Ведь полученная мощность тока будет очень высокой, и контакт с находящимися под напряжением деталями может оказаться смертелен.

Тщательно изолируем и хорошо охлаждаем

Выполняя намотку проволоки на катушку, следует обязательно наносить на её поверхность изолирующий лак и укладывать витки как можно плотнее. В противном случае нельзя исключить межвитковые замыкания и перегорание проводов из-за перегрева. На первый план выходит охлаждение трансформатора.

Об этом авторы многих статей почему-то умалчивают. Не исключено, что потребуется установка дополнительной системы охлаждения, состоящей из радиаторов и обдувающих их вентиляторов. Если об этом не позаботиться, оборудование просто выйдет из строя от перегрева или даже станет пожароопасным.

Как вариант, возможна установка уже готовых систем охлаждения, применяемых в электрике и электронике.

Монтаж системы управления

При монтаже схемы управления рекомендуется использовать уже готовые элементы. Они уже есть в заводском инверторе. Это сильно упростит процесс сборки и сделает аппарат удобным в эксплуатации. А вот ёмкости его штатных конденсаторов может оказаться недостаточно.

В этом случае их придётся заменить на детали, подходящие по параметрам. Регулировка параметров тока в аппарате контактной сварки производится ступенчато. Её точность будет зависеть от количества выводов вторичной обмотки и их шага.

Это необходимо, если требуется оборудование, способное обеспечивать работу в разных режимах.

Это важно!

Монтаж компонентов схемы следует производить с помощью пайки. Разъёмные соединения не способны обеспечить необходимый режим теплопередачи. Их использование имеет смысл только в тех случаях, когда предполагается частая замена каких-либо деталей.

Делаем клещи

Лишь когда трансформатор будет готов, имеет смысл приступать к изготовлению контактных клещей. Их конструкция в первую очередь зависит от характера работ, для которых будет использоваться оборудование.

Устройство захвата будет зависеть от системы его привода и предполагаемого размера соединяемых деталей. Важной частью клещей являются контактные наконечники. При малой толщине свариваемого листа вполне допустимо использование медных наконечников от паяльника.

Лучше, если приобрести и установить готовые наконечники – они встречаются в продаже и удобны тем, что имеют специальную, хорошо подходящую для работы форму.

Но если речь идёт о стальном листе 0,5 мм и более и предполагается наложение соединительных швов значительной протяжённости, наконечники рекомендуется оснастить роликами.

Обеспечение прижимного усилия

Далее придётся решать наиболее практически сложную задачу. Дело в том, что если вы намерены создавать давление на сварочных клещах вручную, от изготовления контактной сварки лучше отказаться. Эффективность работы такого аппарата окажется низкой. Прилагаемое усилие в месте сварки должно быть равномерным и весьма значительным.

В промышленных условиях для этого используются гидравлические или пневматические системы. Изготовить такое устройство самостоятельно крайне проблематично. Разумнее приобрести уже готовый бустер, благо они встречаются в продаже.

При изготовлении контактной сварки своими руками, проще задействовать усилители, приводимые в действие сжатым воздухом. В этом случае для их функционирования будет достаточно подключить обычный пневматический компрессор. Оптимально, если максимальное усилие на контактах будет достигать 100 кг и выше.

Для изменения давления можно использовать отдельный регулятор, или встроить его в общую систему управления аппаратом.

Подача газа

Для оптимизации условий сварки и улучшения качества соединительного шва стоит позаботиться о подаче в рабочую зону газа. В случае со сталью это должна быть углекислота.

Подбор форсунки и место её расположения зависят от размера клещей, контактов и рабочей зоны. Подающий шланг закрепляется так, чтобы не мешать работе остальных компонентов устройства.

Он должен быть изготовлен из негорючего термостойкого материала и оснащён регулировочным вентилем.

Забота о надёжности и безопасности

Для эффективной работы оборудования, а также в целях обеспечения норм безопасности, все компоненты устройства должны быть тщательно закреплены и изолированы.

В качестве основы рекомендуется использовать диэлектрические материалы, обладающие хорошей термостойкостью и механической прочностью. Необходимо позаботиться и о встраивании в электрическую схему защитных предохранителей.

При работе на оборудовании важно соблюдать все рекомендованные меры безопасности.

Взвесьте всё как следует

Собираясь изготовить аппарат для контактной сварки своими руками. Сначала объективно оцените свои знания и возможности, а также весь объём предстоящих работ. Это позволит избежать напрасной траты времени и средств.

Обидно будет осознать где-нибудь в середине пути, что всё было напрасно, и проще было бы купить уже готовое оборудование.

Но если всё получится, наградой вам будет существенная денежная экономия и гордость от осознания того факта, что вы сумели справиться с непростой задачей.

  • Поделись с друзьями
  • 0
  • 0
  • 0
  • 0

Источник: https://svarkalegko.com/oborudovanie/izgotovlenie-tochechnoj-svarki-iz-invertora.html

мой опыт. Делаем сварочные аппараты своими руками

Что нужно знать для сборки самодельного сварочника?

Чтобы изготовить мини сварочный аппарат своими руками из подручных средств, без особых финансовых затрат и сил нужно понимать как функционирует оборудование, после чего можно приступать к его производству в домашних условиях.

В первую очередь стоит определить нужную мощность подачи тока самодельного оборудования для сварки. Соединение деталей массивной конструкции требует большей интенсивности тока, а сварочные работы с тонкими металлическими поверхностями – минимальной.

Значение силы тока связано с выбранными электродами, которые будут использоваться в процессе. При сварке изделий до 5 миллиметров необходимо использовать стержни до 4 миллиметров, а в конструкции с 2 миллиметрами толщиной, стержни должны быть 1,5 миллиметра.

При использовании электродов в 4 миллиметра, сила тока регулируется до 200 ампер, в 3 миллиметра до 140 ампер, в 2 миллиметра – до 70 ампер и для самых маленьких до 1,5 миллиметров – до 40 ампер.

Сформировать дугу для сварочного процесса можно самому, используя сетевое напряжение, которое получается за счет работы трансформатора.

В комплект этого оборудования входит:

  • магнитопровод;
  • обмотка – первичная и вторичная.

Трансформатор удастся изготовить самостоятельно. Для магнитопровода используются пластины из стали либо другого прочного материала. Обмотки необходимы чтобы непосредственно выполнять сварочную работу и иметь возможность подключать агрегат для сварки к сети в 220 вольт.

Специализированные оборудования обладают дополнительными устройствами, обеспечивающими повышение качества и мощности дуги, что дает возможность самостоятельно регулировать значения силы тока.

Для сварочного оборудования, изготовленного в домашних условиях, не обязательно применять дополнительные приспособления. Смотря на значение силы тока, можно выбрать величину мощности трансформатора, а чтобы рассчитать мощность, необходимо показатель тока, который используется во время эксплуатации оборудования, помножить на 25.

Полученный результат умножается на 0,015, где на исходе получается необходимое значение диаметра магнитопровода. Чтобы рассчитать нужное сечение обмотки достаточно мощность поделить на 2000, а затем полученное число помножить на 1,13.

Чтобы посчитать, сколько необходимо намотать витков проводки, необходимо поделить площадь сечения магнитопровода пополам.

Если вы планируете изготовить простой сварочный аппарат своими руками, то нужно отметить, что сам процесс сварки бывает нескольких видов – мягкий и жесткий, на это влияет напряжение, которое есть на зажиме оборудования.

За счет этого параметра можно установить свойства внешнего тока для сварочного процесса, который также делится на пологопадающий, крутопадающий и возрастающий.

Большинство специалистов рекомендует применять источники тока с пологими либо крутопадающими особенностями. Они имеют минимальное изменение тока, когда колеблется электродуга, что дает возможность сваривать металл в домашнем быту.

Как сделать своими руками сварочный агрегат?

После изучения главных особенностей процесса сборки, можно приступать непосредственного к сборке самодельного оборудования.

На сегодняшний день существует большое количество различных способов и рекомендаций, как лучше собрать самодельный сварочный аппарат любого вида – с переменным или постоянным током, импульсные или инверторные, автоматические или полуавтоматические.

Достаточно глубоко в эту тему уходить не стоит, поскольку один из самых простых способов собрать аппарат для сварки своими руками, это использование трансформатора.

Его особенность – работа с переменным током, благодаря чему обеспечивается выполнение качественного шва при сваривании металлических поверхностей. Такое оборудование может справиться с любой бытовой работой, где необходимо сварить металлические либо стальные конструкции

Чтобы изготовить его необходимо подготовить:

  1. Несколько метров кабеля с большой толщиной.
  2. Материал для сердечника, который будет располагаться в трансформаторе.
    Сам материал должен обладать повышенной проницаемостью с примагничиванием.

Оптимальный вариант, когда сердечник в форме стрежня имеет букву «П». В некоторых случаях разрешено применять данную деталь в более измененной форме, к примеру, круглой из статора, изготовленной из поврежденного электрического двигателя.

Однако стоит обратить внимание, что на такую форму обмотки накручиваются труднее. Лучше всего, когда сечение сердечника для классического сварочного оборудования, сделанного своими руками и используемого в бытовых целях, имело площадь около 50 см2.

Чтобы оборудование имело доступный вес, не стоит увеличивать в объеме сечение, однако технический эффект будет не на высшем уровне. Если площадь сечения вам не подходит, то её удастся посчитать самостоятельно, используя специальные схемы и формулы.

Первичная обмотка должны быть изготовлена из провода из меди, который будет обладать повышенными характеристиками: термическая стойкость, поскольку в процессе эксплуатации конструкции данная детали очень сильно нагревается.

Такая деталь должна обладать хлопчатобумажной либо стеклотканевой изоляцией. На крайний случай, возможно использовать провод из резины с изоляцией либо резиновую ткань, однако опасайтесь полихлорвиниловой обмотки.

Изоляция также изготавливается своими руками, с использованием хлопчатобумажной либо стеклоткани, а точнее её части по 2 см в ширину. Благодаря этим кускам получится обмотать провод, а затем пропитать его с помощью любого лака с электротехническим назначением. Такая изоляция не будет перегреваться после регулярного функционирования.

Аналогично приведенным выше расчетам удастся посчитать, какая площадь сечения обмотки – первичной и вторичной будет самой оптимальной. Зачастую вторичная обмотка имеет площадь около 30 мм2, а первичная обмотка до 7 мм2, с использованием стержня в 4 миллиметра диаметром.

Кроме этого простым способом нужно определить, насколько будет протягиваться кусок провода из меди и сколько витков понадобится, чтобы накрутить две обмотки. После этого наматываются катушки, а каркас изготавливается при помощи геометрических параметров магнитопровода.

Главное проследить, чтобы при надевании магнитопровода не было никаких сложностей. В первую очередь, необходимо правильно подобрать размер сердечника. Его лучше всего изготавливать по помощи электротехнического картона либо текстолита.

По такому же аналогу удастся изготовить конструкцию для сварки мелких деталей. Для дома можно использовать сварочный аппарат «мини» маленького размера.

Изготовление сварочного аппарата

На сегодняшний день практически невозможно и довольно-таки трудно сварить металл или обработать его надлежащим способом, не применяя сварочное оборудование. После того, как вы сделаете сварочный аппарат своими руками, вы сможете выполнять любые работы с металлическими изделиями.

Чтобы изготовить качественный агрегат необходимо обладать знаниями и навыками, которые помогут понять схему сварочного аппарата постоянного тока или переменного, что является двумя вариантами сборки оборудования.

Удобнее вызвать мастера или приобрести уже готовый агрегат, однако иногда это бывает слишком затратно, поскольку на выбор модели по различным параметрам, таким как масса для сварочного аппарата, количество вольтов на сварочный аппарат определить достаточно трудно.

Существует несколько типов сварочных аппаратов: работающих на переменном токе, постоянном, имеющие три фазы либо инверторные. Чтобы выбрать один из вариантов и начать сборку необходимо, рассмотреть каждую схему первых 2-х типов. Во время подготовительного процесса необходимо обратить внимание на стабилизатор напряжения.

Самая элементарная схема агрегата

Простой в сборке аппарат, собранный своими руками, надо подключать к сети с напряжением переменного тока в 220 Вольт.

Напряжение 380 Вольт требует более сложной конструкции сварочного аппарата.

Самая простая схема – это схема для импульсного способа сварки, который придуман радиолюбителями. Такая сварка применяется, чтобы прикрепить провода к плате из металла.

Чтобы соорудить данное приспособление своими руками, не нужно делать ничего сложного, потребуется только пара проводов и дроссель. Дроссель можно вынуть из люминесцентной лампы.

Регулятор силы тока вполне можно заменить плавкой вставкой. Проводами лучше запастись в большом количестве.

Чтобы подключить электрод к плате, берется дроссель. Электродом может послужить зажим типа «крокодил». Готовый агрегат нужно подсоединить к сети, воткнув в розетку вилку.

Зажимом, связанным с проводом, нужно быстро коснуться свариваемого участка на плате.

Так появляется сварочная дуга. Во время ее возникновения существует опасность, что сгорят предохранители, расположенные в электрощите.

От этой опасности предохранители оберегает плавкая вставка, сгорающая быстрее.

В итоге провод остается по-прежнему приваренным к своему месту.

Такое устройство постоянного тока – это и есть самый простой сварочный аппарат. С держаком электрода он соединяется проводами.

Но работать с ним представляется возможным только в домашних условиях, так как данная схема лишена важных деталей – выпрямителя и регулятора тока.

Комплектация агрегата для сварки

В сравнении с традиционными аппаратами трехфазный агрегат инверторного типа компактен, удобен в применении, надежен. Только один нюанс заставляет задуматься во время покупки – немаленькая цена.

Даже поверхностные подсчеты подсказывают, что смастерить сварочный аппарат своими руками выйдет дешевле.

Если подойти к выбору нужных элементов со всей серьезностью, то самодельный инструмент для сварки прослужит длительный период времени.

Вообще схема сварочного аппарата состоит из трех блоков: блока выпрямителя, блока питания и блока инвертора.

Самодельный аппарат постоянного и переменного тока можно укомплектовать так, что он может быть легким на вес и иметь небольшой размер.

Самодельный сварочный аппарат легко сооружают своими руками, пользуясь доступными всем предметами.

Все нужные для создания сварочного агрегата детали есть в электрической технике или в приборах, где некоторые элементы отказали в работе.

Можно соорудить простой регулятор тока из части нагревательной спирали, используемой в электрической плите.

Если какие-то необходимые детали вообще не получилось найти, то ничего страшного – их можно сделать своими руками.

Кусок медной проволоки может послужить материалом для создания такого важного элемента сварочного агрегата постоянного и переменного тока, как дроссель.

Конкретно для его сборки понадобится магнитопровод, который имеет старый пускатель. Еще нужны 2-3 провода из меди с сечением 0,9 — и вы сможете получить дроссель.

Трансформатором для агрегата сварки может стать автотрансформатор или та же деталь, изъятая из старой микроволновой печи.

Доставая из нее необходимый элемент, нужно быть аккуратнее, чтобы не испортить первичную обмотку.

А вторичную так и так придется переделать, количество новых витков зависит от того, какой мощности конструируется агрегат.

Выпрямитель собирают на плате, выполненной либо из гетинакса, либо из текстолита.

Диоды для выпрямителя должны соответствовать выбранной мощности агрегата. Чтобы они охлаждались, используют радиатор из сплава алюминия.

Последовательная сборка всех деталей

Все элементы агрегата для сварки должны располагаться на базе из металла или текстолита строго на своих местах.

По правилам выпрямитель граничит с трансформатором, а дроссель находится на одной плате с выпрямителем.

Регулятор силы тока устанавливают на панель управления. Сам каркас для конструкции агрегата создается из листов алюминия, для этого подойдет и сталь.

Также можно воспользоваться уже готовым корпусом, который до этого защищал содержимое системного блока компьютера или осциллографа. Главное, он должен быть прочным и твердым.

На большом расстоянии от трансформатора размещают плату с тиристорами. Так же не близко к трансформатору устанавливают выпрямитель.

Причина такого расположения – сильное нагревание трансформатора и дросселя.

Тепло от дросселя отводят тиристоры, устанавливаемые на радиаторах из алюминия. Они сводят на нет даже тепловые волны, исходящие от проводов.

К наружной панели прикрепляют держак электрода, а к задней – провод с вилкой для подключения агрегата к бытовой сети.

Как собрать своими руками агрегат для сварки, демонстрирует видео в нашей статье.

Ни в коем случае нельзя фиксировать элементы агрегата вплотную друг к другу, так они должны подвергаться обдуву.

На сторонах каркаса необходимо проделать дырочки, откуда будет поступать воздух. Это нужно и для установки системы охлаждения.

Если агрегат для сварки постоянно находится на одном и том же месте, то с ним вряд ли что-то случится.

Долгое время сможет работать регулятор тока, если точнее, его ручка, зафиксированная на наружной стенке.

Но переносные мини инверторы, которые берут на выездные работы, могут подвергаться механическим ударам. В основном, от этого страдает корпус изделия, но существует риск отпадения дросселя.

Изделие собрано – пора проверить, как оно функционирует. При тестировании работы агрегата для сварки нельзя пользоваться временными проводами.

Проверять изделие нужно уже со штатными контактными кабелями.

Во время самого первого подключения к сети смотрят на регулятор силы тока. Важно проследить, не осталось ли незафиксированных деталей.

Если агрегат исправен и лишен дефектов, то можно приступать к сварке на различных режимах.

Особенности намотки обмоток.

Существуют следующие правила намотки обмоток сварочного аппарата:

  • Намотка должна производится по изолированному ярму и всегда в одном направлении (например, по часовой стрелке).
  • Каждый слой обмотки изолируют слоем хлопчатобумажной изоляции (стеклоткани, электрокартона, кальки), желательно с пропиткой бакелитовым лаком.
  • Выводы обмоток залуживают, маркируют, закрепляют хлопчатобумажной тесьмой, а на выводы сетевой обмотки дополнительно надевают хлопчатобумажный кембрик.
  • При некачественной изоляции провода, намотку можно производить в два провода, один из которых хлопчатобумажный шнур или хлопчатобумажная нить для рыболовства. После намотки одного слоя обмотку с хлопчатобумажной нитью фиксируют клеем (или лаком) и только после его высыхания наматывают следующий ряд.

Сетевую обмотку на магнитопроводе стержневого типа можно расположить двумя основными способами. Первый способ позволяет получить более “жесткий” режим сварки. Сетевая обмотка при этом состоит из двух одинаковых обмоток W1, W2, расположенных на разных сторонах сердечника, соединенных последовательно и имеющих одинаковое сечение проводов. Для регулировки выходного тока на каждой из обмоток делают отводы, которые попарно замыкаются.

Второй способ намотки первичной (сетевой) обмотки представляет намотку провода на одной из сторон сердечника. В этом случае сварочный аппарат имеет крутопадающую характеристику, варит “мягко”, длина дуги меньше влияет на величину сварочного тока, а следовательно, и на качество сварки.

После намотки первичной обмотки сварочного аппарата необходимо проверить на наличие короткозамкнутых витков и правильность выбранного числа витков. Сварочный трансформатор включают в сеть через плавкий предохранитель (4…6 А) и если есть амперметр переменного тока. Если предохранитель сгорает или сильно греется – это явный признак короткозамкнутого витка. В этом случае первичную обмотку необходимо перемотать, обратив особое внимание на качество изоляции.

Если сварочный аппарат сильно гудит, а потребляемый ток превышает 2…3 А, то это означает, что число витков первичной обмотки занижено и необходимо подмотать еще некоторое количество витков. Исправный сварочный аппарат должен потреблять ток на холостом ходу не более 1..1,5 А, не греться и сильно не гудеть.

Вторичную обмотку сварочного аппарата всегда наматывают на двух сторонах сердечника. По первому способу намотки вторичная обмотка состоит из двух одинаковых половин, включенных для повышения устойчивости дуги встречно-параллельно (Рис. 6 б). В этом случае сечение провода можно взять несколько меньше, то есть 15..20 мм2. При намотке вторичной обмотки по второму способу, вначале на свободной от обмоток стороне сердечника наматывается 60…65% от общего числа ее витков.

Эта обмотка служит, в основном, для поджога дуги, а во время сварки, за счет резкого увеличения рассеивания магнитного потока, напряжение на ней падает на 80…90%. Остальное количество витков вторичной обмотки в виде дополнительной сварочной обмотки W2 наматывается поверх первичной. Являясь силовой, она поддерживает в требуемых пределах напряжение сварки, а следовательно, и сварочный ток. Напряжение на ней падает в режиме сварки на 20…25% относительно напряжения холостого хода.

Намотка обмоток сварочного аппарата на сердечнике тороидального типа можно также произвести несколькими способами.

Способы намотки обмоток сварочного аппарата на тороидальном сердечнике.

1. Равномерная;2. Секционная;
 а – сетевая обмотка;б – силовая обмотка

Переключение обмоток в сварочных аппаратах проще сделать с помощью медных наконечников и клемм. Медные наконечники в домашних условиях можно изготовить из медных трубок подходящего диаметра длиной 25…30 мм, закрепив в них провода опрессовкой или пайкой. При сварке в различных условиях (сильная или слаботочная сеть, длинный или короткий подводящий кабель, его сечение и т.д.) переключением обмоток настраивают сварочный аппарат на оптимальный режим сварки, и далее переключатель можно установить в нейтральное положение.

Настройка сварочного аппарата.

Изготовив сварочный аппарат, домашний электрик должен произвести его настройку и проверку качества сварки электродами различного диаметра. Процесс настройки заключается в следующем. Для измерения сварочного тока и напряжения нужны: вольтметр переменного тока на 70…80 В и амперметр переменного тока на 180…200 А.

При сварке различными электродами снимают значения тока сварки – Iсв и напряжения сварки Uсв, которые должны находится в требуемых пределах. Если сварочный ток мал, что бывает чаще всего (электрод липнет, дуга неустойчивая), то в этом случае переключением первичной и вторичной обмоток устанавливают требуемые значения, или перераспределяют количество витков вторичной обмотки (без их увеличения) в сторону увеличения числа витков, намотанных поверх сетевой обмотки.

    После сварки необходимо проконтролировать качество сварки: глубину провара и толщину наплавленного слоя металла. Для этой цели разламывают или распиливают кромки свариваемых изделий. По результатам измерений желательно составить таблицу. Анализируя полученные данные, выбирают оптимальные режимы сварки для электродов различного диаметра, помня о том, что при сварке электродами, например, диаметром 3 мм, электродами диаметром 2 мм можно резать, т.к. ток резки больше сварочного на 30…25%.

Технологические рекомендации и меры безопасности.

Подключение сварочного аппарата к сети должно производится проводом сечением 6…7 мм через автомат на ток 25…50 А, например АП-50.

Диаметр электрода, в зависимости от толщины свариваемого металла, можно выбрать, исходя из следующего соотношения: dэ=(1…1,5)*В, где В – толщина свариваемого металла, мм. Длина дуги выбирается в зависимости от диаметра электрода и в среднем равна (0,5…1,1)dэ. Рекомендуется выполнять сварку короткой дугой 2…3 мм, напряжение которой равно 18…24 В. Увеличение длины дуги приводит к нарушению стабильности ее горения, повышению потерь на угар и разбрызгивание, снижению глубины проплавления основного металла. Чем длиннее дуга, тем выше напряжение сварки. Скорость сварки выбирает сварщик в зависимости от марки и толщины металла.

При сварке на прямой полярности плюс (анод) подсоединяют к детали и минус (катод) – к электроду. Если необходимо, чтобы на детали выделялось меньшее количество тепла, например, при сварке тонколистовых конструкций, то применяют сварку на обратной полярности. В этом случае минус (катод) присоединяют к свариваемой детали, а плюс (анод) – к электроду. При этом не только обеспечивается меньший нагрев свариваемой детали, но и ускоряется процесс расплавления электродного металла за счет более высокой температуры анодной зоны и большего подвода тепла.

Сварочные провода присоединяют к сварочному аппарату через медные наконечники под клеммные болты с наружной стороны корпуса сварочного аппарата. Плохие контактные соединения снижают мощностные характеристики сварочного аппарата, ухудшают качество сварки и могут вызвать их перегрев и даже возгорание проводов.

При небольшой длине сварочных проводов (4..6 м) площадь их сечения должна быть не менее 25 мм2.

Во время проведения сварочных работ необходимо соблюдать правила пожарной безопасности, а при настройке аппарата и электробезопасности – во время проведения измерений электроприборами. Сварку следует вести обязательно в специальной маске с защитным стеклом марки С5 (на токи до 150…160 А) и рукавицах. Все переключения в сварочном аппарате обязательно нужно делать только после отключения сварочного аппарата от сети.

Сварочный выпрямитель — особенности работы и сборки

Для выполнения отдельных видов сварочных работ, например, с нержавейкой, применение переменного тока, выдаваемого трансформатором, не применяется. Для работы с такими металлами необходима подача постоянного напряжения. Кроме того, резка постоянным током уменьшает расход электродов, а при сварке предотвращается разбрызгивание металла.

Для выполнения работ в таких условиях применяют сварочные выпрямители, которые позволяют варить током прямой и обратной полярности. Если есть опыт по монтажу электронных схем, то такое устройство также можно собрать самостоятельно.

Основой сварочного выпрямителя станет тот же понижающий трансформатор. Отличие заключается в наличии выпрямляющей электронной схемы. При желании можно переделать уже описанный сварочный трансформатор или собрать универсальное устройство, которое позволит варить и переменным, и постоянным током.

Простейшая схема электронной части сварочного выпрямителя выглядит так:

Принципиальная схема сварочного выпрямителя

При сборке таких устройств следует учитывать такие особенности конструкции:

  • Основная часть устройства — выпрямительный мост из силовых мощных диодов. Они подключаются согласно схеме с обязательным учётом полярности.
  • Сглаживание пульсации тока выполняется за счёт фильтра, выполненного на конденсаторе и дроссельной катушке. Обращаем внимание — компоненты должны иметь 2,5 – 3 запас по допустимому напряжению.
  • При работе с высокими токами происходит нагревание элементов. Чувствительны к перегреву полупроводниковые диоды. Поэтому их устанавливают на радиаторы, которые позволят увеличить интенсивность отвода тепла.
  • При заключении аппарата в корпус становится обязательным применение вентилятора, позволяющего повысить эффективность охлаждения.

Обращаем внимание на соединение отдельных элементов схемы. Учитывая то, что они будут испытывать воздействие большой силы тока, необходимо обеспечить надёжность контакта. Если этого не сделать, то на этих участках будут греться и отгорать провода. Предпочтителен вариант с креплением при помощи площадок с болтом и гайкой.

Дроссель в подобных конструкциях выполняют в виде отдельной выносной катушки индуктивности, которая подключается по мере необходимости. Отметим, что установка выпрямителя не препятствует изменению силы сварочного тока при помощи регулятора положения катушек вторичной обмотки.

Как видите, сложностей в самостоятельной сборке сварочного аппарата нет. Но заниматься такими устройствами стоит только в том случае, если есть опыт в конструировании простых аппаратов, работающих с меньшими токами. В противном случае доверьте сборку специалисту или купите заводской сварочный аппарат.

Сварочный аппарат из микроволновки:

Конструкция трансформатора и дросселей

Схема намотки провода.

Т1 собран из 3-х «строчников» от старых телевизоров, сложенных вместе. Сердечник ПК30х16 из феррита марки 3000НМС-1. Обмотки «I» и «II» имеют по 2 секции с проводом ПСД 1,68 в изоляции из стеклоткани. Они соединены согласно последовательно и имеют витки:

  • обмотка «I» — 2×4;
  • обмотка «II» — 2×2.

Обмотка «I» работает в худшем тепловом режиме, поэтому при сборке необходимо мотать ее с шагом (зазором) 1 мм. Во второй обмотке не забудьте сделать отвод от середины.

Обе обмотки надо поставить таким образом, чтобы не нарушилась работа диодов VD11-VD34. Направление намотки обмотки «I», начиная от вывода подсоединенного к L2 — против стрелки часов. А направление намотки обмотки «II» — по часовой, от вывода, подключенного к VD21-VD34.

Обмотка «III» — виток провода 0,4-0,5 мм в изоляции на напряжение 500 В и более.

Важно распределить обмотки, правильно выдержав зазоры. Это необходимо для охлаждения магнитопровода и по соображениям безопасности. Для этого устанавливают 4 стеклотекстолитовые (1,5 мм) пластины, которые после подгонки приклеивают.

Дроссель L1, индуктивностью 40±10 мкГн, намотан на сердечнике ПЛ 12,5×25-50 с зазором (немагнитным) 0,3-0,5 мм и имеет 175 витков, намотанных проводом типа ПЭВ-2, калибром 1,32.

Дроссель L2 — спираль без каркаса, намотанная 4 мм2 проводом в термоизоляции. Количество витков -11, диаметр намотки -14 мм. Через дроссель идет большой ток и его необходимо обдувать.

Тороидальный аппарат

Он гораздо легче обычного. Это удобно для переноски. Такие аппараты используются там, где важна способность к быстрой транспортировке.

Какой бы аппарат вы не выбрали, в любом случае, сделать его своими руками:

  • Интересно;
  • Практично;
  • Экономично.

И, конечно, сделанный своими руками сварочный аппарат всегда приятно показать друзьям. Он станет предметом гордости и незаменимым помощником в домашнем хозяйстве.

Ремонт сварочного аппарата своими руками также достаточно увлекателен.

Диагностика самодельного инвертора и его подготовка к работе

Сделать инверторный сварочный аппарат – это половина дела. Не менее важной задачей является его подготовка к работе, в процессе которой проверяется корректность функционирования всех элементов, а также их настройка.

Первое, что требуется сделать при проверке самодельного сварочного инвертора, – это подать напряжение 15 В на ШИМ-контроллер и один из охлаждающих вентиляторов. Это позволит одновременно проверить работоспособность контроллера и избежать его перегрева в процессе выполнения такой проверки.

Проверка выходного напряжения тестером

После того как конденсаторы аппарата зарядились, к электрическому питанию подключают реле, которое отвечает за замыкание резистора. Если подать на резистор напряжение напрямую, минуя реле, может произойти взрыв. После того как реле сработает, что должно произойти в течение 2–10 секунд после подачи напряжения на ШИМ-контроллер, необходимо проверить, произошло ли замыкание резистора.

Когда реле электронной схемы сработают, на плате ШИМ должны сформироваться прямоугольные импульсы, поступающие к оптронам. Это можно проверить, используя осциллограф. Правильность сборки диодного моста устройства также необходимо проверить, для этого на него подают напряжение 15 В (сила тока при этом не должна превышать 100 мА).

Фазы трансформатора при сборке устройства могли быть неправильно подключены, что может привести к некорректной работе инвертора и возникновению сильных шумов. Чтобы этого не произошло, правильность подключения фаз необходимо проверить, для этого используется двухлучевой осциллограф. Один луч прибора подключается к первичной обмотке, второй – ко вторичной. Фазы импульсов, если обмотки подключены правильно, должны быть одинаковыми.

Использование осциллографа для диагностики инвертора

Правильность изготовления и подключения трансформатора проверяется при помощи осциллографа и подключения к диодному мосту электрических приборов с различным сопротивлением. Ориентируясь на шумы трансформатора и показания осциллографа, делают вывод о том, что необходимо доработать в электронной схеме самодельного инверторного аппарата.

Чтобы проверить, сколько можно непрерывно работать на самодельном инверторе, необходимо начать его тестировать с 10 секунд. Если при работе такой продолжительности радиаторы устройства не нагрелись, можно увеличить период до 20 секунд. Если и такой временной промежуток не сказался негативно на состоянии инвертора, можно увеличить продолжительность работы сварочного аппарата до 1 минуты.

Обслуживание самодельного сварочного инвертора

Чтобы инверторный аппарат служил длительное время, его необходимо правильно обслуживать.

В том случае, если ваш инвертор перестал работать, необходимо открыть его крышку и продуть внутренности пылесосом. Те места, где осталась пыль, можно тщательно почистить при помощи кисточки и сухой тряпки.

Первое, что необходимо сделать, проводя диагностику сварочного инвертора, – это проверить поступление напряжения на его вход. Если напряжение не поступает, следует продиагностировать работоспособность блока питания. Проблема в этой ситуации также может заключаться в том, что сгорели предохранители сварочного аппарата. Еще одним слабым звеном инвертора является температурный датчик, который в случае поломки подлежит не ремонту, а замене.

Часто выходящий из строя термодатчик, находящийся обычно на диодном блоке или дросселе

При выполнении диагностики необходимо обращать внимание на качество соединений электронных компонентов аппарата. Определить некачественно выполненные соединения можно визуально или при помощи тестера. Если такие соединения выявлены, их необходимо исправить, чтобы не столкнуться в дальнейшем с перегревом и выходом из строя сварочного инвертора.

Только в том случае, если вы уделяете должное внимание вопросам обслуживания инверторного устройства, можно рассчитывать на то, что оно прослужит вам долгое время и даст возможность выполнять сварочные работы максимально эффективно и качественно.

Вес и габариты сварочника

Мы выбрали тороидальную конструкцию, как наименее габаритную. Здесь простое стечение обстоятельств: в наличии уже был ленточный трансформатор тока от высоковольтного оборудования с дефектом изоляции. Он был забракован и списан.

Оттуда взяли ленту магнитопровода. Свернули ее плотнее, изолировали, намотали провода обмоток. Все это сделали на основе упрощенного расчета старым дедовским методом. Хотя сейчас есть много онлайн калькуляторов.

Для работы трансформатора важно сечение его сердечника. Мы его обеспечили, создав одновременно компактную конструкцию. Аппарат получился чуть выше табуретки, но вес под сорок килограмм (железо да медь тяжелые). Однако, сварщики люди не хилые…

Приварили снизу к корпусу две оси им же, поставили колесики. Получился мобильный вариант. Перемещается в одиночку без больших усилий.

Кстати, от регулирования тока индуктивным сопротивлением отказались. Она значительно утяжеляет конструкцию, да и хлопот много.

Источники

  • https://tutsvarka.ru/oborudovanie/svarochnyj-apparat-svoimi-rukami
  • https://rezhemmetall.ru/sborka-svarochnogo-apparata-postoyannogo-toka-svoimi-rukami.html
  • https://www.elremont.ru/electrik/svarka.php
  • https://OFaze.ru/svoimi-rukami/svarochnyj-apparat
  • https://moyakovka.ru/instrumenty/samodelnye-svarochnye-apparaty-postoyannogo-toka.html
  • https://svoimirykamiinfo.ru/svarochnyj-apparat-svoimi-rukami/
  • http://met-all.org/oborudovanie/svarochnye/svarochnyj-invertor-svoimi-rukami-shema.html
  • https://zen.yandex.ru/media/housediz/samodelnyi-svarochnyi-apparat-postoiannogo-toka-moi-opyt-5da1cd9a95aa9f00b1b0e574

[свернуть]

ДУГОВАЯ СВАРОЧНАЯ МАШИНА | authorSTREAM

ДУГОВАЯ СВАРОЧНАЯ МАШИНА:

ПРЕДСТАВЛЕННАЯ М.ГНАНАСЕКАРАНА ДУГОВАЯ СВАРОЧНАЯ МАШИНА

ДУГОВАЯ СВАРОЧНАЯ МАШИНА:

ДУГОВАЯ СВАРОЧНАЯ МАШИНА является источником нагрева в процессе дуговой сварки. (Высокое напряжение — низкое напряжение). Необходимая электрическая энергия для сварки получается от аппарата дуговой сварки, источника питания.

СИСТЕМА ДУГОВОЙ СВАРКИ:

СИСТЕМА ДУГОВОЙ СВАРКИ

Необходимость:

Необходимость Оборудование используется для: Обеспечения подачи переменного или постоянного тока для дуговой сварки Обеспечение более высокого напряжения (OCV) для зажигания дуги и более низкого напряжения (AV) для поддержания дуги.Измените высокое напряжение основного источника (переменного тока) на низкое и сильноточное (переменное или постоянное), подходящее для дуговой сварки. Установите взаимосвязь между напряжением дуги и сварочным током во время дуговой сварки. Сварка электродами всех размеров. Сваривайте тонкие и толстые пластины как из черных, так и из цветных металлов.

ВИДЫ СВАРОЧНЫХ МАШИН:

ВИДЫ СВАРОЧНЫХ МАШИН В основном Источники питания: Сварочный аппарат переменного тока, Сварочный аппарат постоянного тока. Они могут быть далее классифицированы как машины переменного тока и машины постоянного тока.

ВИДЫ СВАРОЧНЫХ МАШИН:

Машины переменного тока… Трансформаторы Машины постоянного тока… Мотор-генераторные установки Двигатель-генераторная установка Выпрямительный агрегат Инверторный тип ТИПЫ СВАРОЧНЫХ МАШИН

ТРАНСФОРМАТОР ДЛЯ ПЕРЕМЕННОЙ СВАРКИ:

ТРАНСФОРМАТОР ДЛЯ ПЕРЕМЕННОЙ СВАРКИ Переменный ток означает переменный ток. Он изменяет или меняет направление потока 50 раз в секунду, если это 50 циклов. Например, 50 циклов означает, что он меняет направление 50 раз в секунду. Скорость его изменения называется частотой i.е. герц (Гц). В Индии частота переменного тока составляет 50 циклов в секунду.

СВАРОЧНЫЙ ТРАНСФОРМАТОР ПЕРЕМЕННОГО ТОКА:

СВАРОЧНЫЙ ТРАНСФОРМАТОР ПЕРЕМЕННОГО ТОКА Это тип сварочного аппарата, который преобразует сеть переменного тока в сварочную. Основное питание переменного тока имеет высокое напряжение — низкий ток. Сварочный источник переменного тока имеет высокий ток — низкое напряжение. Это понижающий трансформатор, который понижает основное напряжение питания (220 или 440 вольт) до напряжения холостого хода сварочного источника (OCV) от 40 до 100 вольт.

СВАРОЧНЫЙ ТРАНСФОРМАТОР ПЕРЕМЕННОГО ТОКА:

Трансформатор может работать от сети в однофазном, двухфазном или трехфазном режиме и может иметь воздушное или масляное охлаждение.Однофазные трансформаторы обеспечивают более низкие токи и поэтому используются для сварки более тонких участков с малым диаметром электрода. СВАРОЧНЫЙ ТРАНСФОРМАТОР ПЕРЕМЕННОГО ТОКА

СВАРОЧНЫЙ ТРАНСФОРМАТОР ПЕРЕМЕННОГО ТОКА:

Обычно мы используем, Простые работы — 220 А (I фаза) Общие работы — 300 А (II фаза) Тяжелые работы — 600 А (III фаза) СВАРОЧНЫЙ ТРАНСФОРМАТОР переменного тока

AC СВАРОЧНЫЙ МАШИНА:

ПРЕИМУЩЕСТВА СВАРОЧНОЙ МАШИНЫ Меньшие начальные затраты Меньшие затраты на техническое обслуживание Отсутствие дуги Бесшумная работа Более высокая эффективность работы.НЕДОСТАТКИ Точная установка тока невозможна. Не подходит для цветных металлов. Не подходит для неизолированных электродов и электродов с легким покрытием. Может использоваться только при наличии электросети. Он имеет большую вероятность поражения электрическим током из-за более высокого напряжения холостого хода.

СВАРОЧНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА:

СВАРОЧНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА Постоянный ток означает постоянный ток. Он течет стабильно и постоянно в одном направлении.

СВАРОЧНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА:

Станки постоянного тока… 1.Сварочные генераторы 2. Сварочные выпрямители Сварочные генераторы могут приводиться в действие: — двигателем, подключенным к электросети. (Создайте сварочный источник постоянного тока с помощью сварочного источника.) — Бензиновый или дизельный двигатель. (Обеспечьте сварочное электроснабжение там, где отсутствует основное электроснабжение, с помощью агрегатов с приводом от двигателя.) СВАРОЧНЫЕ МАШИНЫ ПОСТОЯННОГО ТОКА

Сварочный выпрямитель:

Сварочный выпрямитель Комплект сварочного выпрямителя используется для преобразования сварочного источника переменного тока в сварочный источник постоянного тока.(Он состоит из понижающего трансформатора и охлаждающего вентилятора ячейки выпрямителя сварочного тока.) Он может быть спроектирован так, чтобы обеспечивать сварку переменным / постоянным током путем переключения переключателя. Этот аппарат называется сварочным аппаратом переменного / постоянного тока.

Сварочные аппараты инверторного типа:

Сварочные аппараты инверторного типа Твердотельный инвертор — это схема, в которой твердотельные устройства используются для преобразования постоянного тока в высокочастотный переменный ток, обычно в диапазоне от 1 кГц до 50 кГц. Поскольку размер трансформатора обратно пропорционален частоте, уменьшение размеров трансформатора до 75% возможно при использовании схем инвертора.

Сварочные аппараты инверторного типа:

Сварочные аппараты инверторного типа Основные компоненты цепи инвертора и формы волны тока через них На рисунке выше схематически показаны компоненты инвертора и форма электрического сигнала, проходящего через каждый из компонентов.

ПРЕИМУЩЕСТВА СВАРОЧНОЙ МАШИНЫ ПОСТОЯННЫМ ТОКОМ:

ПРЕИМУЩЕСТВА СВАРОЧНОЙ МАШИНЫ ПОСТОЯННОГО ТОКА Система полярности Она может успешно использоваться для сварки черных и цветных металлов, тонких листов и чугуна.Можно легко использовать неизолированные провода и электрод с легким покрытием. Позиционная сварка проста благодаря преимуществу полярности. Он может работать от дизельного или бензинового двигателя при отсутствии электроснабжения. Он имеет меньшую вероятность поражения электрическим током из-за меньшего напряжения холостого хода.

ПРЕИМУЩЕСТВА:

ПРЕИМУЩЕСТВА Более высокие начальные затраты Более высокие эксплуатационные расходы Более высокие затраты на техническое обслуживание Проблема дутья дуги во время сварки Шумная работа Занимает больше места.

Уход и обслуживание аппаратов для дуговой сварки:

Уход и обслуживание аппаратов для дуговой сварки Каждый аппарат и вспомогательное оборудование, используемые для каких-либо полезных целей, требуют определенного ухода и обслуживания для увеличения срока их использования в течение длительного времени. В случае аппаратов для дуговой сварки и принадлежностей важны следующие моменты. Аппараты для дуговой сварки: не храните аппарат на открытом воздухе. В сварочном генераторе постоянного тока не ставьте пусковой выключатель непосредственно в положение ТРЕВОГА; сначала удерживает переключатель в положении START.Дайте ему поработать несколько секунд, и они поставят переключатель в положение ДЕЛЬТА. Не отключайте охлаждающий вентилятор сварочного генератора.

Уход и техническое обслуживание аппаратов для дуговой сварки:

Поддерживайте уровень охлаждающего масла в сварочном агрегате трансформатора. Периодически сливайте охлаждающее масло из трансформатора и очищайте его, а затем доливайте трансформатор. Надежно закрепите входные кабели от сети к машине, а также кабель электрода и заземления. При необходимости заменяйте угольные щетки сварочного генератора постоянного тока.Не мойте сварочный аппарат водой. Удалять пыль и загрязнения следует только сжатым воздухом. Осторожно нажимайте на все ручки и ручки управления. Уход и обслуживание аппаратов дуговой сварки


Что такое инвертор источника тока? Определение, управление и работа с замкнутым контуром

Определение: Инвертор источника тока преобразует входной постоянный ток в переменный ток. В инверторе источника тока входной ток остается постоянным, но этот входной ток можно регулировать.Инвертор источника тока также называется инвертором с питанием по току. Выходное напряжение инвертора не зависит от нагрузки. Величина и характер тока нагрузки зависят от характера импеданса нагрузки.

Источник тока Управление инвертором

Инвертор с тиристорным источником тока показан на рисунке ниже. Диоды D 1 -D 6 и конденсатор C 1 -C 6 обеспечивают коммутацию тиристора T 1 -T 6 , который зажигается с разностью фаз 60º в последовательности их включения. число.Он также показывает характер формы волны выходного тока. Инвертор действует как источник тока из-за большой индуктивности L D в звене постоянного тока. Основная составляющая фазного тока двигателя показана на рисунке ниже.

Крутящий момент регулируется путем изменения тока промежуточного контура I d путем изменения значения V d . Когда питание переменного тока, управляемый выпрямитель подключается между источником питания и инвертором. При питании постоянного тока между питанием и инвертором устанавливается прерыватель.

Основным преимуществом инвертора источника тока является его надежность. В случае инвертора источника тока сбой коммутации в той же ветви не происходит из-за наличия большой индуктивности Ld.

В асинхронном двигателе нарастание и спад тока происходит очень быстро. Это повышение и понижение тока приводит к резким скачкам напряжения в моторе. Поэтому используется двигатель с низкой индуктивностью рассеяния. Коммутационная емкость C 1 -C 6 уменьшает скачки напряжения за счет уменьшения скорости нарастания и спада тока.Для существенного уменьшения скачков напряжения требуется большое значение емкости.

Рекуперативное торможение и многоквадрантная работа CSI

Когда скорость двигателя меньше синхронной скорости, машина работает как генератор. Мощность перетекает от машины в промежуточный контур постоянного тока, а напряжение постоянного тока V d обратное. Если полностью управляемый преобразователь работает как инвертор, то питание промежуточного контура будет переведено на питание переменного тока, и произойдет рекуперативное торможение.Следовательно, для рекуперативного торможения двигателя постоянного тока не требуется никакого дополнительного оборудования.

Привод может иметь возможность рекуперативного торможения и работу в четырех квадрантах, если двухквадрантный прерыватель выдает ток в одном направлении, но используется напряжение в любом направлении.

Управление скоростью приводов CSI по замкнутому контуру

Привод CSI с обратной связью показан на рисунке ниже. Фактическая скорость ω м сравнивается с эталонной скоростью ω * м .Ошибка скорости контролируется с помощью ПИ-регулятора и регулятора скольжения. Регулятор скольжения устанавливает команду скорости скольжения ω * sl . Синхронная скорость, полученная сложением ω m , ω * sl , определяет частоту инвертора.

Постоянный поток получается, когда скорость скольжения ω sl и I s имеют соотношение. Поскольку I d пропорционален I s , согласно приведенному ниже уравнению существует аналогичное соотношение между ω sl и I d для работы с постоянным магнитным потоком.

На основе значения ω * sl , поток управления магнитным потоком создает общий опорный ток I * d , который посредством управления током с обратной связью регулирует ток промежуточного контура I d для поддержания постоянного магнитного потока. Ограничение, накладываемое на выход регулятора скольжения, I d при номинальном потоке инвертора. Следовательно, любая коррекция ошибки скорости выполняется при максимально допустимом токе инвертора и максимально доступном крутящем моменте, что обеспечивает быструю переходную реакцию и защиту по току.

Технология энергоэффективности — CIRCUTOR

IEC 60755 устанавливает типы защиты от утечки на землю, определяя их в соответствии с типом утечки, которую они измеряют и от которой защищают.

Утечка в основном зависит от типа заряда. Следовательно, если взять самый простой пример, чисто резистивный заряд (например, классическая лампа накаливания Эдисона), при условии, что он питается от источника, использующего переменный ток, будет течь на землю с идеально синусоидальным дифференциальным током.

Но типы нагрузок со времен Эдисона развивались экспоненциально. Особенно в отношении использования нагрузок для силовой электроники, получившего широкое распространение в последние годы. Защита от утечки на землю типа B — единственная защита, которая защищает людей и нагрузки от утечки переменного тока (AC), постоянного (DC) или смешанного тока (AC / DC).

Типы защиты от утечки на землю

Стандарты IEC 60755, IEC61008-1, IEC 62423 и IEC-60947-2-M устанавливают следующие типы защиты от утечки на землю:

Защищает от переменных синусоидальных токов, действующих как внезапно, так и плавно и постепенно.

Хотя это запрещено в некоторых странах Европейского Союза, в Испании его использование в основном распространяется на внутренний уровень, где преобладают основные нагрузки.

Этот относится к тем же случаям, что и тип AC, а также включает:

  • Защита от постоянного пульсирующего тока
  • Защита от постоянных пульсирующих токов, накладываемых на постоянный ток утечки на землю до 6 мА

Применяются с контролем угла наклона или без него, независимо от полярности, который может появляться как внезапно, так и плавно и постепенно.

Это самый распространенный тип защиты в промышленных условиях, а в некоторых частях Европы он также является обязательным для домашнего использования.

Это охватывает сценарии, включенные в тип A (помня, что тип AC уже упоминался), а также предоставляет:

  • Защита композитных переменных токов утечки на землю (включая состав волн с частотой 1 кГц), возникающих как внезапно, так и плавно и постепенно, предназначенная для цепей с питанием между фазой и нейтралью или фазой и заземленным средним проводником.
  • Защита от переменных токов утечки на землю, наложенных на сглаженный постоянный ток (смешанный ток).

Эти типы утечек на землю используются реже всего; они в основном используются в специальных однофазных приложениях.

Он имеет дело со сценариями для типа F (то есть типа AC + типа A), а также предоставляет:

  • Защита от синусоидальных дифференциальных токов до 1000 Гц
  • Защита от переменных токов утечки на землю, накладываемых на сглаженные постоянные токи до 0.В 4 раза больше номинальной чувствительности устройства защиты или до 10 мА (в зависимости от того, что больше)
  • Защита для сглаженных длительных токов утечки на землю.
  • Защита от чистых непрерывных токов утечки на землю, которые могут возникнуть в результате корректировки электрических цепей (например, 3- или 6-импульсные мостовые соединения), которые применяются с регулированием угла или без него, независимо от полярности, которые появляются как внезапно, так и плавно и постепенно.

Это наиболее полный вид защиты.Он гарантирует измерение и защиту от нагрузок переменного, пульсирующего или чистого постоянного тока.

Типовые нагрузки и приложения, в которых требуется использовать дифференциальную защиту типа B

То, как заряды развивались в течение 21 века, представляет собой реакцию, описанную в случаях, упомянутых в описании типов утечки, защищенных защитой от утечки на землю типа B. Наиболее типичные приложения и нагрузки следующие:

Промышленность: Приводы с регулируемой скоростью, используемые в бесчисленных различных процессах, таких как конвейерные ленты, кондиционирование воздуха, насосы, краны, лифты любого типа и т. Д.Короче говоря, любой процесс, который требует движения с переменной скоростью для выполнения своей функции. Какой мотор сейчас не имеет привода?

Офисы: ИБП для центров защиты данных

Зарядка электромобиля: точки зарядки электромобиля. Фотогальваника

Оборудование с силовой электроникой, инверторами, фильтрацией гармоник (активный фильтр) и др.

Когда мне следует защищать свои грузы с помощью защиты типа B? Правовая основа и требования к защите от утечки на землю ТИП B

В Испании электротехнический регламент по низковольтному оборудованию (REBT 2002) устанавливает в ITC-BT-24 (испанский) обязательство защищать установку от прямого и косвенного прикосновения для установок с схемами заземления типа TT (вся масса электрическое оборудование и нейтраль трансформатора на одной земле).

Однако, за исключением ITC-BT-52 (Официальный государственный бюллетень № 316) , который предназначен специально для точек подзарядки электромобилей и где установлено, что защита будет типа B или типа A с дополнительной защитой от постоянных токов. Если значения превышают 6 мА, правила не устанавливают никаких рекомендаций или критериев для выбора типа утечки на землю на нашем предприятии.

Итак, как мне выбрать для других случаев?

Мы уже показали, что тип утечки на землю определяет тип нагрузки, от которой она защищает, в зависимости от ее реакции.Следовательно, имеет смысл иметь в виду, что каждая нагрузка будет использовать тип защиты от утечки на землю, основанный на типе утечки на землю, которую она может представить.

Стандарт IEC 60755 устанавливает общие требования к устройствам защитного отключения. Он устанавливает различные типы утечек по отношению к разным типам зарядов.

Никто лучше самого производителя не понимает, как реагируют нагрузки.

Следовательно, когда мы выбираем тип защиты от утечки на землю, мы должны обращаться к руководствам по нагрузкам, содержащим инструкции по обеспечению правильной защиты.В противном случае, в случае неисправности оборудования или, что еще хуже, в случае электрического происшествия из-за ошибки человека, несоблюдение инструкций производителя, ответственность за неправильное использование, очевидно, будет лежать на конечном пользователе.

Наиболее уважаемые производители приводов, ИБП, зарядных устройств для электромобилей, активных фильтров и т. Д. Указывают в разделе рекомендаций или предупреждений по установке правильную защиту нагрузки, а для предотвращения несвоевременных отключений устанавливаемая защита от утечки на землю должна быть ТИПА B .


Пример руководства производителя 6-пульсного привода:

Совместимость с ВДТ.
Если вы устанавливаете устройство защиты от утечки на землю (УЗО), преобразователь частоты будет работать без нежелательного отключения и обеспечит адекватную защиту при использовании устройства защиты от утечки на землю типа B

Вертикальная селективность

Мы видели, что для того, чтобы выбрать необходимый нам тип защиты от утечки на землю, мы должны смотреть на реакцию на нагрузку.Однако, когда мы последовательно устанавливаем устройства защиты от утечки на землю перед зарядом, какие критерии выбора мы должны использовать?

Это так называемая вертикальная избирательность. Правильный выбор характеристик устройств утечки на землю, включенных последовательно, от начала заряда, через набор зарядов (подрамников) и до защиты сетевых панелей, должен учитывать не только тип заряда. , но также мы должны учитывать другие аспекты, которые укажут на правильное согласование системы защиты.

При вертикальной селективности всегда должны выполняться эти 3 условия:

  • Амперметр : Чувствительность утечки на землю должна как минимум в 3 раза превышать чувствительность устройства утечки на землю, установленного ниже по потоку.
  • Хронометрический : Время отклика устройства утечки на землю должно быть как минимум в два раза больше максимального времени устройства утечки на землю, установленного ниже по потоку.
  • Тип : утечка на землю должна быть того же типа или выше, чем у устройства утечки на землю, установленного после

Таким образом, для вертикального согласования типов устройств защиты от утечки на землю может оказаться полезной следующая таблица:

Таким образом, всякий раз, когда мы защищаем нагрузку с помощью защиты типа B, вся защита, которая идет последовательно выше по потоку (подрамники, общая защита от утечки на землю), также должна быть типа B

CIRCUTOR Решения для защиты от утечки на землю типа B

Учитывая растущую потребность пользователей в защите этого типа заряда, CIRCUTOR предлагает широкий спектр решений по защите от утечки на землю типа B.

IDB-4 : 4-полюсный УЗО типа B для трехфазных и однофазных установок до 63 A. Чувствительность 30 или 300 мА (устройство прямого замыкания на землю), мгновенное время отключения.

WGB-35-TB : Реле утечки на землю с трансформатором (MRCD), для нагрузок до 125 А. Чувствительность 30 или 300 мА, мгновенное или выборочное время срабатывания.

RGU-10B : Реле утечки на землю, связанное с трансформаторами серии WGC-TB (MRCD), с внутренним диаметром до 180 мм, обеспечивающее защиту от зарядов до 800 А.Чувствительность от 100 мА, программируемое время срабатывания.

RGU-100B : реле утечки на землю, связанное с трансформаторами серии WGB (MRCD), с внутренним диаметром до 110 мм, обеспечивающее защиту нагрузок до 400 А. Чувствительность от 30 мА, мгновенное и программируемое время срабатывания .

CBS-400B : Реле утечки на землю, связанное с трансформаторами серии WGB (MRCD), с внутренним диаметром до 110 мм, позволяющее защищать нагрузки до 400 А.Чувствительность от 30 мА. С 4 каналами для защиты 4 полностью независимых цепей. Мгновенное и программируемое время поездки.


В дополнение к системам защиты, упомянутым выше, CIRCUTOR также предлагает новую и инновационную систему защиты от утечки на землю типа B с автоматическим повторным подключением:

RECB : 4-полюсный УЗО типа B с автоматическим повторным включением для трехфазных и однофазных установок до 63 A. Чувствительность 30 или 300 мА (прямое дифференциальное устройство).Мгновенное время поездки.

Выводы

Мы видели, как определяются различные типы устройств защиты от утечки на землю (переменного тока, A, F и B) в соответствии с международными рамочными правилами и в зависимости от типа утечки, от которой они защищают. Другими словами: тип устройства защиты от утечки на землю неразрывно связан с работой и технологией защищаемой нагрузки.

Следовательно, для правильного выбора типа устройства защиты от утечки на землю важно знать, какой у него отклик и как работает защищаемая нагрузка.Производители грузов в своих руководствах и советах укажут, какой подход следует использовать и как сделать выбор.

Не менее важно соблюдать все условия вертикальной селективности для правильной координации нашей защиты перед зарядом и в головной части установки, а также с учетом типа устройства защиты от утечки на землю.

Следуя этим основным руководящим принципам, мы не только обеспечим максимальную непрерывность обслуживания, чтобы сохранить защиту сборов и активов нашего предприятия, но мы также будем гарантировать безопасность людей.

Джоан Ауледа
Менеджер по продукту Circutor

ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ ИНВЕРТОРА ТИПА 3КВА, 50 ГЦ, ОДНОФАЗНОЙ ДУГОВОЙ СВАРОЧНОЙ МАШИНЫ

ПРОЕКТИРОВАНИЕ И КОНСТРУКЦИЯ ИНВЕРТОРА ТИПА 3КВА, 50 ГЦ, ОДНОФАЗНОЙ ДУГОВОЙ СВАРОЧНОЙ МАШИНЫ

International Journal of Scientific & Engineering Research, Volume 6 Выпуск 5, май 2015 931

ISSN 2229-5518

Проектирование и изготовление инвертора

3 кВА, 50 Гц, однофазная дуговая сварка

Аппарат

Engr.Ovbiagele U; Engr. Obaitan B

Аннотация: Сварка служит множеству целей в разных доменах. Изготовление машин и оборудования, сварка трубопроводов и манифольдов, сварка конструкций, морская сварка и декоративная сварка — вот примеры сварки, применяемой в бизнесе и промышленности. Сварочное оборудование стало одним из важнейших инструментов, которыми может владеть производитель, поэтому возникла необходимость спроектировать и построить аппарат для дуговой сварки. В этой статье авторы спроектировали и сконструировали аппарат для однофазной дуговой сварки 3 кВА, 50 Гц, используя местные материалы.Чтобы решить проблему веса и размера обычного аппарата для дуговой сварки, была также разработана инверторная схема. Инвертор обеспечивает гораздо более высокую частоту, чем 50 Гц или 60 Гц для трансформатора, используемого при сварке. Электродуговая сварочная машина местного производства, способная выдержать ток 150 А при испытании изоляции, испытании на короткое замыкание и разрыв цепи для определения рабочих характеристик, была очень удовлетворительной.

Ключевые слова: дуговая сварка, изготовление оборудования, инвертор, трансформатор.

———————————  ———————————

Сварка — это метод соединения металлов, при котором тепло и / или давление прикладываются к области контакта между двумя компонентами. ; в шов может быть добавлен присадочный металл в зависимости от процесса сварки [1].
Существует множество видов сварки, в том числе дуговая сварка, контактная сварка, газовая сварка. Особое внимание будет уделено дуговой сварке, поскольку это наиболее распространенный вид сварки, а также основная цель данной конструкции.При дуговой сварке между основным металлом и электродом образуется электрическая дуга. Тепло дуги плавит основной металл и сварочные материалы для получения металла шва для соединения элементов конструкции [2].
Оборудование, которое выполняет сварочные операции под наблюдением и контролем сварщика, называется сварочным аппаратом. Чтобы решить проблему веса и габаритов обычного аппарата для дуговой сварки, необходимо сконструировать инвертор. Инвертор обеспечивает гораздо более высокую частоту, чем 50 Гц или 60 Гц для трансформатора, используемого при сварке.Таким образом, трансформатор гораздо меньшей массы используется для обеспечения работы с гораздо большей выходной мощностью. Выбор рабочей частоты с учетом человеческих способностей снижает сварочный шум, производимый обычным аппаратом для дуговой сварки [1]. Выбор 20 кГц для аппарата дуговой сварки инверторного типа был определен, чтобы оправдать вышеприведенные ожидания. Управление источником питания трансформатора на высокой частоте позволяет контролировать выходной сварочный ток. Этот источник питания обеспечивает преобразователь частоты. Силовой переключатель IGBT (биполярный транзистор с изолированным затвором) или MOSFET используется для конструкции инвертора из-за его высокой степени коммутации.
Схема управления, используемая для управления выходным сварочным током, предназначена для управления переключателем мощности на высокой частоте. Выключатель питания биполярного транзистора с изолированным затвором более эффективен и менее подвержен сбоям, чем выключатель питания MOSFET.

Вес и размер трансформатора обычного сварочного аппарата намного выше шума сварки.

IJSER © 2015 http://www.ijser.org

Международный журнал научных и технических исследований, том 6, выпуск 5, май 2015 г. 932

ISSN 2229-5518

Целью и задачей данной работы является спроектировать и сконструировать аппарат для дуговой сварки, работающий от сети
48 В постоянного тока с переменной частотой.Это снижает вес, размер и уровень шума трансформатора, используемого для сварки.
Иметь более эффективный дуговой сварочный аппарат, обеспечивающий аккуратную сварку.

Важным в этом проекте является то, что он направлен на создание рентабельного, прочного, портативного и мобильного сварочного аппарата.

Сварочный источник питания трансформаторного типа преобразует электричество высокого и слабого тока из электросети в высокое и низкое напряжение (обычно от 17 до 45 В и от 55 до 590 А).Выпрямитель используется для преобразования переменного тока в постоянный для получения постоянного тока на выходе. Перемещение магнитного шунта внутрь и наружу трансформатора помогает изменять выходной ток. Последовательный реактор к вторичной обмотке регулирует выходное напряжение от набора отводов на вторичной обмотке трансформатора. Этот тип блока питания наименее дорогой, но громоздкий. Это низкочастотные трансформаторы, которые должны иметь такую ​​высокую намагничивающую проводимость, чтобы избежать ненужных шунтирующих токов. Трансформатор также может иметь значительную проводимость утечки для защиты от короткого замыкания в случае прилипания сварочного стержня к персоналу.Индуктивность рассеяния может изменяться, поэтому оператор может устанавливать выходной ток [3].

С появлением мощных полупроводников, таких как полевой транзистор с изолированным затвором (IGFET), также известный как MOSFET (металлооксидный полупроводниковый полевой транзистор), теперь также можно создать импульсный источник питания, способный справляться с высокими нагрузками при дуговой сварке. Эти конструкции известны как инверторные сварочные аппараты. Электроснабжение переменного тока сначала выпрямляется в питание постоянного тока; затем переключатель питания постоянного тока (инвертировать) в понижающий трансформатор на высокой частоте для получения необходимого сварочного напряжения или тока.Частота переключения обычно составляет от 20 кГц до 100 кГц. Высокая частота коммутации резко уменьшает габариты понижающего трансформатора. Масса магнитных компонентов (трансформатор и проводники) быстро уменьшается с увеличением рабочей (коммутационной) частоты. Циркуляционный преобразователь может также обеспечивать такие функции, как управление мощностью и защита от перегрузки. Этот тип сварочных аппаратов (на основе инвертора) более эффективен и обеспечивает лучший контроль переменных функциональных параметров, чем обычные сварочные аппараты.Микроконтроллер управляет IGBT или IGFET в инверторной машине, поэтому электрические характеристики сварочной мощности могут быть изменены с помощью программного обеспечения [4].

Наш подход к этому проекту реализован через проектирование и создание его подсистемы ввода, блока управления и подсистемы вывода. Сварка металла происходит, когда блок управления и выходная подсистема соединяются вместе через свариваемый токопроводящий объект. Сварка — это процесс соединения двух или более похожих или разнородных материалов с / без приложения тепла и / или давления с использованием или без использования присадочного материала.

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 933

ISSN 2229-5518

В разработке мы начали с систему в целом и начинаем разбивать ее на системы. Удобным инструментом, используемым на этом этапе, является блок-схема, показанная на рис. 1. Блок-схема изображает иерархию того, как подсхемы инвертора
будут взаимодействовать и взаимодействовать друг с другом.Аппаратный прототип был реализован или реализован на экспериментальном макете. Это было достигнуто за счет реализации подсистемы ввода
инвертора в подсистему вывода. Они были тщательно выполнены в соответствии с блок-схемой проекта и окончательной принципиальной схемой.
Системная блок-схема проекта инверторного сварочного аппарата представлена ​​на рис.
Буфер генератора
Усилитель мощности
Трансформатор

O / P
Источник питания
Обратная связь

Система представляет собой гибкий источник питания, спроектированный как источник тока, соответствующий блок-схеме, показанной на рис.который состоит из следующих этапов.

для переключения питания постоянного тока. Выходной сигнал каскада генератора усиливается с помощью транзистора (9013). Это

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 934

ISSN 2229-5518

усиленный сигнал запускает металлооксидный Полевой транзистор с Vgs больше порогового напряжения.Частота работы схемы определяется каскадом генератора.

Трансформаторы сварочные рассчитаны на характер сварочных работ. Для сварочного аппарата инверторного типа трансформатор имеет небольшие размеры и меньший вес по сравнению с обычным сварочным аппаратом. В аппарате для дуговой сварки для сварки используется электрический разряд. Этот разряд известен как дуга.
Напряжение, необходимое для поддержания дуги, равно
В = C + DL [5] …………………………………………………… ………………………………………….. …………………… (1) Где; C = от 15 до 20 вольт
D = от 2 до 3 вольт
L = длина дуги в мм и ее значение составляет примерно от 2 до 4 мм. Дуга поддерживается при напряжении примерно от 24 до 30 вольт. Проектная спецификация
Выходное напряжение = 25 В переменного тока
Выходной ток = 80 А Входное напряжение = 48 В постоянного тока
Номинальная мощность трансформатора = 3 кВА K = 0,45
F = 50 Гц
BM = 1,2 Т
Плотность тока, j = 3.2 A мм-2 или 3,2 x 106 A / м2
Коэффициент площади Kw = 0,3

Вольт на оборот

Вт = K KVA [6] ……………… ………………………………………….. …………………. (2)
Для прямоугольной волны,
Расчет площади жилы, Ai

Vt = 0,45 3 = 0,78
Vt = 4,44 fBm Ai [6] ……………………………………… ………………………………………….. …………………………… (3)
A1 =
0,78

4.44 x 50 x 1,2
= 0,0029,28 м2 или 29,28 см2

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 935

ISSN 2229-5518

Общая площадь железа Ag =

Ai
0,9
3 ………………………….. ………………………………………….. ……………………………. (4)

29,28 = 32,53 см2
0,9
Принимая 0,9 в качестве коэффициента суммирования.
Ширина центральной конечности = 2 x ширина боковой конечности
= 2 x a …………………………. ………………………………………….. ………………………………………….. …………….. (5) Глубина керна, b = 2,5 x ширина центрального лимба = 2,5 x 2a = 5a
Ag = bx 2a = 5a x 2a = 10a2. ………………………………………….. ………………………………………………………. (6)
Следовательно, 10 a2 = 32,53
Так как a = 1,80

a = 32,53 = 1,80 см
10
b = 5 x 1,80 = 9 см
Глубина сердечника, b = высота ярма для типа оболочки, Hy

Глубина ярма Dy = ширина боковая конечность = 1,80 см

Aw =
кВА

2,22 xfx B x A x K xjx 10-3
[7] …………………. ………………………………………….. …………….. (7)
Aw =
3

2.22 x 50 x 1,2 x 2,928 x 10-3 x 0,3 x 3,2 x 106 x 10-3
Aw = 8,01 x 10-3 м2 или 80,1 см2
Aw = высота окна (Hw) x ширина окна (Ww)

HW = 3
WW
HW = 3 Ww
Aw =
3Ww
= w 2
[6] ………………………. ………………………………………….. ………………………………………. (8)

IJSER © 2015 http://www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 936

ISSN 2229-5518

Ww =

80.1 = 5,2 см
3
Следовательно, Hw = 3 x 5,2 = 15,6 см
Общая высота H = Hw + 2 ……………………. ………………………………………….. …………………………………… (9)
= 15,6 + ( 2 x 1,80) = 19,2 см
Общая ширина W = (2 x Ww) + (4 xa) ………………………. ………………………………………….. ……………….. (10)
= (2 x 5,2) + (4 x 1,80) = 17,6 см
Обмотка
V1

Витки первичной обмотки T1 =
Вт
…………………………………………… ………………………………………….. …… (11)

48 = 62
0,78
Общее количество витков на первичной обмотке составляет 124 (с отводом по центру)
Ток первичной обмотки
I1 =

Мощность ………. ………………………………………….. ……………………………… (12)
V1

= 3000
48
= 62,5 A
Принимая ток 3,2 A / мм2 для первичной обмотки, площадь проводника
a1 =
62.5

3,2
= 19,53 мм2
Для расчета диаметра проводника
a1 = πr =
πd2

4
………………….. ………………………………………….. ………………………………………….. ………. (13)
Где a1 = площадь первичного проводника, d = проводник

d = (4 x 40)
3,142
= 4,996 мм
Витки вторичной обмотки T2 =

V2. ………………………………………….. ……………………………………………. (14)
Вт

IJSER © 2015 http://www.ijser.org

Международный журнал научных и технических исследований, Том 6, Выпуск 5, май 2015 г. 937

ISSN 2229-5518

T2 =
25

0,78
= 32
В то время как При расчете числа витков вторичной обмотки выбирается допуск 5%, чтобы компенсировать падение напряжения в обмотке.
Следовательно,
T = 32 +  5
+ 32  = 34

2  100 


Ток вторичной обмотки
I2 =

Мощность ………….. ………………………………………….. ………………………… (15)
V2

= 3000
25
= 120 A
Потребляемый ток 3,2 А / мм2 для вторичной обмотки, площадь проводника

a = 120
= 40 мм2

2 3,2

Для расчета диаметра проводника
a 2 = πr =
πd2

4
…………………………………………… ………………. (16)
Где a2 = площадь вторичного проводника, d = проводник

d = (4 x 120)
3,142
= 12,4 мм

RT (R8 + R9) и C1, подключенные к контактам 6 и 7 микросхемы SG3524 соответственно, определяют частоту колебаний. Используя приведенное ниже уравнение, мы определяем значение неизвестного параметра.

f = 1,18
C1CT
[8] ………………………………… ………………………………………………………… ………………………… (17)
Предположим, C1 = 0,1 x 10-6 F и требуемая частота f = 50 Гц
Следовательно,

f = 1,18
0,1 x 10−6 x 50
= 236 кОм
IC SG3524 используется в секции колебаний этого инвертора. Эта ИС используется для генерации частоты 50 Гц, необходимой для генерации переменного тока инвертором. Для запуска этого процесса питание от батареи подается на вывод 15 SG3524 через транзистор NPN (TIP41).D3 у основания Q3, как показано на рис. используется для регулирования напряжения питания микросхемы SG3524. Штырь 8 подключается к отрицательной клемме аккумулятора. Выводы 6 и 7 ИС являются выводами колебательной секции. Частота, создаваемая ИС, зависит от номинала конденсатора и резистора, подключенных к этим контактам. Конденсатор (0,1 мкФ) подключен к выводу 7. Этот конденсатор определяет частоту 50 Гц на выходе ИС. Контакт 6 — это контакт синхронизирующего сопротивления. Сопротивление на этом выводе составляет

IJSER © 2015 http: // www.ijser.org

Международный журнал научных и технических исследований, том 6, выпуск 5, май 2015 г. 938

ISSN 2229-5518

постоянная частоты генератора. Предустановленный переменный резистор (20 кОм) подключен к земле от контакта 6 IC. Эта предустановка используется для того, чтобы значение выходной частоты можно было установить на постоянное значение 50 Гц. Фиксированное сопротивление
220 кОм подключено последовательно с переменным резистором, как показано на рис.соотношением:

F = 1,30
C1CT
[9]. ………………………………………….. ………………………………………….. …………………………… (18)
Где F — частота в кГц, RT — полное сопротивление на выводе 6, а CT — это общая емкость на выводе 7. Следовательно, чтобы получить частоту 50 Гц,
Дано CT = 0,1 мкФ

F = 1,30
50 x (0,1 X 10-6)
= 260 кОм
Следовательно , RT необходимо изменять на 100K, чтобы получить частоту 50 Гц.В нашей конструкции мы использовали постоянный резистор 200 кОм и переменный резистор 100 кОм.
Сигналы, генерируемые в секции генератора IC, достигают секции триггера IC. Этот раздел преобразует входящие сигналы в сигналы с изменяющейся полярностью. В этом сигнале изменение полярности означает, что когда первый сигнал положительный, второй будет нулевым, а когда первый сигнал станет нулевым, второй будет положительным. Следовательно, для достижения частоты 50 Гц этот процесс чаще всего повторяется каждые 50 раз в секунду i.е. пульсирующий сигнал с частотой 50 Гц генерируется внутри триггерной секции ИС.
Этот переменный сигнал частоты 50 Гц имеет выход на выводах 11 и 14 IC.
Этот пульсирующий сигнал также может быть известен как сигнал возбуждения MOS. Этот управляющий сигнал MOS на контактах 11 и
14 находится в диапазоне 4,6 — 5,4 В. Напряжение
на этих контактах должно быть одинаковым, потому что любое изменение напряжения на этих контактах может привести к повреждению полевого МОП-транзистора
на выходе.
Так как опорное напряжение для усилителя ошибки (вывод 2) устанавливается равным 2.5В с использованием делителя напряжения. Следовательно, напряжение, подаваемое на контакт 1, составляет 2,5 В.
Использование делителя напряжения:

Предположим, R4 = 4700,
Vpin 1 = Vref x

R 4
R 4 + R 3
………………… ………………………………………….. ………………………………………….. .. (19)
Vpin 1 = 2,5 v
2,5 = 5 x
4700

4700 + R 3
R3 = 4700 или 4,7 K

IJSER © 2015 http://www.ijser.org

International Journal of Научно-технические исследования, Том 6, Выпуск 5, май 2015 г. 939

ISSN 2229-5518

Vpin 2 = Vout x

R s
R s + R 5
…………………………………………… ………………………………………….. ……………….. (20)
RS = R6 + R7, обратите внимание, что Vout — положительное значение, которое в нашем дизайне равно 14,5 В. Требуемое напряжение на выводе 2 равно 2,5 В

Предположим, R5 = 100 K;
R s =

Vpin2 x R s
………………………………… ………………………………………….. ……………………………………. (21)
Ваут
+ Впин2
R s =
2.5 x 100 000

14,5 — 2,5
= 20,833 кОм


Принимая предустановку R6 как 20 кОм, затем R7 = 0,83 K
Vpin 15 = VD3 — VBE (Q3)
Vpin 15 = 13 — 0,7 = 12,3 В

После Проектирование и конструкция, испытание на обрыв и короткое замыкание. Также производилась физическая работа машины.
Клещи электрододержателя плотно зажимают электрод при различных рабочих положениях; следовательно, на ключе не было замечено никакого искрения. Производство дуги с электродом разной толщины было очень удовлетворительным для металлургического завода.
Он обладает хорошими характеристиками и высокой производительностью. Испытания показали, что конструкция соответствует ожидаемым требованиям по сравнению с обычным аппаратом для дуговой сварки.

В данной работе успешно представлена ​​конструкция инверторного аппарата для однофазной дуговой сварки 3 кВА, 50 Гц.
Успешное завершение этой работы откроет возможности для трудоустройства и повысит уровень жизни большинства людей в странах третьего мира, таких как Нигерия.Это также снизит зависимость стран третьего мира от импортных товаров.

V1 = первичное напряжение V2 = вторичное напряжение Vt = количество оборотов на вольт

IJSER © 2015 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 940

ISSN 2229-5518

I1 = первичный ток
I2 = вторичный ток
F = частота (герцы)

U1
D4 D6
+ 48V
D7 D5

PC 123

4.7 кОм R1
U2 D3
13 В
TIP41
Q3

100 кОм

R6

20 кОм

1 кОм

R5

4,7 кОм

R7
R3

4,7 кОм R4 4
5
16
15
14
13 R2
12
330 Ом
10 кОм
D1
R10
T1
9012
Q2
6

R9 100K 200 кОм

R8 7

C1 8

0 .1 мкФ

11
10 10 кОм
9 R14
10 кОм
R11
D2
9012
Q2
T2
0,1 мкФ
C2 R13
R12

47 кОм

© C3
10 кОм
1 мкФ, 50v

9000 2015 http://www.ijser.org

International Journal of Scientific & Engineering Research, Volume 6, Issue 5, May-2015 941

ISSN 2229-5518

R17
Q4 1KΩ

T2 T1
R24
1KΩ
Q11
Q5
Q6
Q7
Q8
Q9
Q10
R18
1 кОм
R19
1 кОм
R20
1 кОм
R21
1 кОм
R22 48 В
1 кОм
R23
R25
1 кОм 1 кОм 1 кОм
R23
R25
1 кОм

1 кОм
R28
1 кОм
R29
1 кОм
R30
Q12
Q13
Q14
Q15
Q16
Q17
1 кОм D8
D9 1 кОм
a
N1
A2 A1
первичный


электрод / Холд
N2
U2 U2


IJSER © 2015 http: // www.ijser.org

Международный журнал научных и инженерных исследований, том 6, выпуск 5, май 2015 г. 942

ISSN 2229-5518

[1] А. Александер, Р. Бонарт и Е. Виткрафт, Р., Основы сварки, резки, пайки, пайки и наплавки металлов, , Лондон: John Deere Publishing, стр. 234-256, 2000.
[2] A. Althouse, K. Bowditch, & Turnquist, Modern Welding .Лондон: Goodheart-Wilcox Company, Inc., стр. 456-461, 2004 г.
[3] M.G. Скажем, Характеристики и конструкция машины переменного тока , Лондон: Pitman, pp.176-198,
1978
[4] Б.А. Эзекой, «Характеристики и характеристики твердотельного инвертора и его применение в фотоэлектрической системе
», Тихоокеанский научно-технический журнал, Том 8, вып. 1, pp.68-72, May 2007.

[5] E.Lincolin, The Procedure Handbook of Arc Welding, (14th edition), New Jersey: Prentice Hall Inc., pp

1-6, 1994.
[6] KM Murthy Vishnu, Computer-Aided Design of Electrical Machines , Sultan Bazar: Adithya Art printers, pp.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *