Как сделать (намотать) дроссель для сварочного инвертора
Электросварка широко применяется на крупных производствах и в мелких мастерских. Аппараты для соединения металлов электрической дугой тоже бывают разными по размерам и мощности. Но всех их объединяет одна возможная проблема — падение напряжения мешает розжигу дуги и ведению шва. Еще бывает трудно настроить нужную величину тока для конкретной толщины металла. Для решения всего этого используется дроссель в составе оборудования. Что это такое? Как он функционирует? Как сделать дроссель самому на свой аппарат?
Что это такое?
Дроссель для сварочного аппарата своими руками смастерить вполне возможно. Он состоит из сердечника и двух обмоток с определенным сечением, рассчитанным на работу с конкретной величиной тока. Дроссель от крупного сварочного оборудования не подойдет к маленькому агрегату, и наоборот, маленькая модель будет не эффективна на большом сварочном аппарате.
Дроссель получает и накапливает в себе ток от понижающего трансформатора, чем содействует плавному розжигу электрода.
Преимущество самодельного дросселя
Для сварки металла различной толщины применяется несколько способов регулировки силы тока:
- Изменение расстояния между элементами трансформатора. В устройстве сварочных аппаратов имеется две обмотки, между которыми происходит электромагнитная индукция. Благодаря этому понижаются Вольты, и повышаются Амперы. Если сила тока слишком велика, для нормального ведения шва на заданной толщине материала, то обмотки разводятся между собой при помощи винта с резьбой. Это рассеивает индукцию и уменьшает силу тока. Степень регулировки зависит от длины винта и размеров корпуса аппарат. Чем шире настройки этого параметра, тем крупнее сам сварочный агрегат.
- Ступенчатая регулировка на обмотке трансформатора позволяет отсекать часть катушки, пуская ток по более коротком пути. Для уменьшения силы сварочной дуги устанавливают максимально длинный путь напряжению. Но это зависит от количества витков понижающего трансформатора.
- Сопротивление из стальной пружины с креплением клемм через определенный интервал позволяет регулировать силу тока мелкими «шагами», но имеет существенный недостаток в виде быстрого перегрева сопротивления, которое постоянно находится под ногами у сварщика.
Внедрение в схему дросселя решает все эти проблемы одновременно. Это небольшое электротехническое приспособление частично компенсирует недостающее сопротивление, поэтому нет необходимости использовать большие трансформаторы с широкими параметрами регулировки. Настройка тока происходит плавно без ступеней, а под ногами нет раскаленной пружины.
Применение
Сделанный самостоятельно дроссель хорошо взаимодействует на трансформаторах. Поскольку переменный ток отличается треском и разбрызгиванием металла, то добавление в схему этого элемента позволит варить более мягко.
Дроссель для сварочного инвертора и полуавтомата полезен и содействием быстрого розжига дуги. Например, если инвертор должен выдавать 48 V холостого хода, то при падении или скачках напряжения в сети, это значение будет еще меньше. Когда требуется варить электродом МР-3, оптимальное значение тока для которого составляет 70 V, а при 48V он зажигается с трудом, то в случае падения напряжения дугу будет возбудить очень сложно. В результате, запланированные сварочные работы придется отложить до восстановления нормального напряжения.
Дроссель, в сочетании с выпрямителем, способен производить ЭДС самоиндукции, которая пронизывает воздушное пространство и легко поджигает электрод. В случае полуавтомата это содействует легкому началу работ при малейшем поднесении к изделию подающейся из сопла проволоки.
Сочетая в себе две функции (компенсация сопротивления и стабилизация дуги) это устройство позволяет варить тонкий металл в условиях скачущего напряжения. Так, аппараты с дросселем широко используются для сварки кузовов автомобилей на СТО, или нержавеющих тонких емкостей.
Дроссель своими руками
Чтобы знать как намотать дроссель правильно, важно разобраться в его устройстве. Хотя оно простое, поэтапное точное выполнение каждой части обеспечит качественный результат. Для полуавтомата или инвертора, используемых в частном доме и на даче, подойдет дроссель, сделанный следующим образом:
- За основу берется старый трансформатор. Оптимальная модель — это повышающий элемент на ламповом телевизоре с маркировкой «ТСА 270-1». Подобные можно найти у пожилых знакомых в гараже. Размеры его внутренней части идеально подходят под сварочный аппарат для домашнего использования.
- Разборка трансформатора производится путем срезания болтов для освобождения катушек. Или можно повернуть ряд головок в верхней части устройства, и снять катушки напрямую.
- На пустые подковы необходимо установить прокладки, которые будут образовывать индуктивный зазор дросселя. Их можно изготовить из картона с толщиной листа от 0.8 до 1.0 мм. Прокладки приклеиваются на основание подковы.
- Обмотка производится мягким алюминиевым проводом с сечением 36 мм. На каждую катушку следует нанести по 24 витка. С использованием указанного сердечника от старого телевизора получится сделать три слоя по восемь витков в каждом. Между слоями необходимо выполнить качественную изоляцию бумагой и бакелитовым лаком. Это делается ввиду способности устройства к выработке ЭДС самоиндукции, которая появляется при разрыве дуги. Тогда разряд идет по пути наименьшего сопротивления и пробивает воздух, чем возобновляет горение электрода. Если наименьшее сопротивление окажется между витками обмотки, то пробой случится там, что повлечет порчу элемента.
- Наматывать провод нужно в одну сторону на каждой катушке. Благодаря одинаковому направлению получится конструкция, на которой вверху будет перемычка между отводами, соединяющая катушки, а внизу расположатся вход и выход.
- Если при наматывании была допущена ошибка, и катушки получились противоположными по направлению намотки, то выйти из положения можно установкой косой перемычки между верхним и нижним отводами по диагонали.
- Устанавливать дроссель в цепь рекомендуется уже после диодов. Ко входу подключается кабель с диодного моста, а к выходу крепится кабель массы, подающийся на изделие.
Проверка дросселя
После сборки происходит тестирование устройства. Для этого необходимо выполнить сварку на металле, толщина которого будет применяться чаще всего в повседневной работе. Проверяется сила тока, которой должно быть достаточно для хорошего провара, но без прожогов.
Обращать внимание необходимо и на поведение сварочной дуги, ее стабильность, умеренный треск, и плавность горения без чрезмерных брызг. Легкий поджиг электрода и хорошие характеристики дуги будут показателем правильной сборки. Если сила тока значительно упала, то стоит перемотать устройство и удалить несколько витков обмотки на каждой катушке.
Внедрение дросселя в схему полуавтомата, инвертора или обычного трансформатора, облегчает работу с устройством. Накладывать швы становится более удобно, а поджиг электрода происходит плавно и стабильно. Особенно это практично в частном секторе, где скачки напряжения — привычное дело. Самодельное изготовление устройства легко выполнить придерживаясь последовательности приведенной в статье.
Поделись с друзьями
0
0
0
0
Дроссель для сварки на инверторе или полуавтомате, сделанный своими руками
Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.
Принцип работы
Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени.
Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.
Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу.
Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.
Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.
Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно.
Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.
Предназначение
В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения.
Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.
Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.
Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.
Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.
Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода.
Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.
Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.
Материалы для изготовления
Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.
Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком.
В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм.
Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.
Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.
Последовательность действий
Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:
- разобрать трансформатор, очистить катушки от следов старых обмоток;
- изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
- произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
- между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.
Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой.
В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.
Включение и проверка
Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.
Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:
- легкий электроподжиг;
- стабильность дуги;
- относительно слабый треск;
- плавное горение без сильных брызг расплава.
Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока.
Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.
зачем нужен и как его собрать своими руками (инструкция и схема)
Последнее время сварка электрическим током стала крайне популярна в профессиональной сфере та и в домашних условиях, но все мы знаем с каким количеством проблем сталкиваются мастера.
Нынешний рыночный сегмент электротехники предлагает массу аппаратов для сварки с помощью электрической дуги, начиная с маленьких и не очень мощных сварочников для дома и выполнения не больших объёмов и задач, и аж до огромных промышленных машин с высокой производительностью, которые с магазинов на прямую направляться на огромные заводы.
Но такая проблема, как резкие, а главное неконтролируемые перепады напряжения, известна профессионалам и домашним мастерам.
На эти проблемы не может повлиять не сверх дорогая комплектация, не тип применения, это типичный бич сварщика, такие мелочи выводят из себя даже опытных мастеров, а новичок просто навсегда отвернет от работы со сваркой, которая не справляется со своими функций. Такое явление влияет дугу и формирования шва становиться затруднительнее.
Но такая проблема в прошлом, потому что существует такая новация, как дроссель, он на много облегчает процесс варки, и главное, много в чем делает его безопаснее.
Его внедряют в цепь сварочного процесса, и сварка готова для комфортной эксплуатации. Новички конечно не осведомлены о ток, что такое дроссель и чем он полезен, как работает, как сделать его дома. Эта статья пролет свет на все ваши вопросы и даже больше.
Содержание статьиПоказать
Общие ведомости
Так зачем же нам нужен дроссель на сварочном аппарате, возможно ми можем обойтись и без него?Да, конечно можете, но для эффективной и комфортной сварки он просто необходим.
Это маленький элемент, что подключают в цепь, и он обеспечивает стабильное, бесперебойное, плавное нагревание дуги.
На втором этапе он поддерживает это стабильное состояние, к тому же метал не разлетается во все стороны, что часто случается и, между прочем, может привести к сильным ожогам.
При эксплуатации шов выходит аккуратным, аппарат настраивается более точно и даже может сваривает трудные элементы, ну конечно так же много зависит и от профессионализма мастера, в руки которого попала сварка.
Принцип роботы легок, понятен каждому: дроссель пропускает ток через себя, сохраняя его от сварочного аппарата.
А потом этот сохраненный ток и восполняет, те самые скачки напряжения, что позволяет сварке работать стабильно. Еще дроссель с намагничиванием позволяет обеспечить нужное сопротивление, если вдруг напряжение пригнуло вверх.
Покупка дросселя для сварочного аппарата в магазинах это совсем недешевое удовольствие, да, конечно вы можете поискать что-то более бюджетное, но будет ли оно хорошо работать.
Его можно сделать дома самостоятельно, для этого вам прийдется совсем немного логики, времени, недорогих материалов, что наверняка завалялись в гараже.
Конструкции дросселя-это сердцевина с двумя мотками с сечением, он рассчитанным на использование со значением постоянного тока.
Так что, к сожалению, дроссель, что подошёл бы для разных сварочных аппаратов нам не смастерить, жаль, но это факт. Небольшая деталь, очевидно, не потянет сильный сварочник.
Так что желательно знать наперед количество мотков, что нам пригодиться для работы с разными напряжениями.
Регулировка тока
Пример дросселя для сварочного аппарата собранный своими руками
И как же сделать наш шов аккуратным и главное прочным? Правильно, нам понадобиться хорошо отрегулировать ток.
Для этого существует несколько методов:
- Стабилизация, при которой мы увеличиваем и уменьшения расстояния между элементам и сварочным аппаратом. Это наиболее известны способ. То есть что сила тока была меньше, мы должны развести разрезанный сердечник трансформатора. Индукция упадет, а сила тока поползет вниз за ней. Если ваш аппарат большой, то это его плюс так как контролировать ток на нем легче, поскольку интервал регулирования зависим от масштабов доступного размера в теле аппарата.
- Контроль тока на обмотке трансформатора. Это способ просто на просто игнорирует часть катушки, чем увеличивает напряжение, ведь путь, что преодолевает ток становиться меньше. Ну и, то есть если этот самый путь становиться больше, то путь нужно продлить.
- Но также можно контролировать с помощью стальной пружины, к которой мы крепим клемма последовательно. Этот метод мог бы быть хорош, поскольку по не много настраивает ток, но есть нюанс. Этот способ крайне небезопасен, так как разжаренная пружина оказывается в ногах мастера, если вы цените свое здоровье и вам не хочется поджариться, это метод не для вас.
Такая катушка решит практически все ваши проблемы со стабилизацией напряжения. На самом деле оно всегда готова восполнит недостачу этого напряжения, или забрать излишки, что бы позже вновь использовать.
Главное, что небезопасная горячая пружина больше не будет лежать в ваших ногах, ведь безопасность должна быть на первое месте, тем более при такой не легкой работе, настройку произведет дроссель на сварочном аппарате, а мастер может об том не думать.
Использование дросселя
Сварочные трансформаторы лучшая база для создания дросселя домашних условиях. Это не раз доведено на практике.
Он без затруднений, но плавно нагревает нашу дугу, при любом токе, так что он подойдет для обычных дачников, так же для работы на заводах, концернах со скачками напряжением.
Так же вы можете брать дроссель для сварочного аппарата вместе с выпрямителем. Пара дроссель и выпрямитель умеет свойство поднимать электродвижущую силу самоиндукции.
Например, если мы говорим про полуавтоматы, то это пара может запалить дугу даже на большом промежутке от метала.
Самодельный дроссель
Так приступим же к сооружению дросселя на сварочный аппарат дома для этого нам понадобиться знать как намотать катушку. Что бы все сделать в лучшем виде, быстро и качественно мы должны хорошо ориентироваться в том, как дроссель работает.
Все необходимое про функции, устройство дросселя вы узнали их предыдущих разделов, конечно если вы были внимательны.
Также мы написали для вас небольшую инструкцию, используя которую вам точно удастся соорудить прекрасный аппарат. Начнем же нашу не сложную роботу, над очень полезным устройством:
- В первую очередь подыщем старенький трансформатор, он послужит нам прекрасной базой. Специалисты в этом деле советуют использовать части от телевизоров «ТСА 270-1», он должен стать нашим сердечником. Такие мелочи всегда не сложно найти на стихийных рынках, или вам повезло и у вашей бабушки завалялся телевизор нужной модели, ну а если нет, то интернет уж точно вам не откажет в изобилии барахла.
- Далее мы должны добыть из трансформатора необходимые детали, для этого мы должны избавиться от креплений, зачастую они сверху и конечно достать нашу катушку.
- Далее вы должны сформировать прокладки для индукционного прохода, что приклеить к ранее добытому элементу.
- Теперь нас ждет сложный и кропотливый этап, но большой мерой от него зависит результат всей нашей роботы, мы должны намотать провод. Нам понадобиться провод предпочтительно из алюминия с сечением не меньше 36 миллиметров. Далее накладываем 25-26 витков с каждого бока. Если вы нашли все рекомендуемые нами детали, то все должно выходить очень четко, аккуратно. Также очень важна изоляция между витками, вы можете сделать ее бумагой, и конечно залакировать изолирующими смазками.
- Накручивайте шнур в один бок на обеих катушках, иначе это грозит тем, что в конце шнуры будут смотреть в разные стороны, не появиться перемычек между отводами, что соединяют катушки, а вход и выход будут расположены не правильно.
- Но если уже так случилось, что вы намотали так что провода смотрят в разные стороны не проблема-нам нужно приладить диагональную перемычку между верхними и нижними отводами. В вот вторая пара послужит входом и выходом.
- Советует встроить дроссель в сварку после диодов.
Но если даже после всех наших манипуляции напряжение скачет, то нужно просто убрать пару витков с катушки.
Итог
Поздравляю, если вы освоили все наши советы, то вы наверняка сможете сделать дроссель для сварочного аппарата своими руками. Это было совсем не сложно, понадобилось немного усидчивости и технической смекалки.
Но на выходе вы получите качественный аппарат (конечно если все сделали правильно), конечно вы будете гордиться тем, что это сделано своими рукам ,и даже може научить этому кого-то из своих друзей или близких.
Расскажите о ток как вы делали ваш дроссель, какие при этом возникли проблемы, каков был результат, покажите статью друзьям. Всем мира и новых вершин!
Для чего нужен дроссель в сварочном аппарате
Как установить дроссель для сварочного аппарата своими руками, интересует многих, кто взялся собирать сварочный аппарат своими руками или приобрел недорогую модель. Ведь выполнив небольшую доработку, можно получить хорошую технику, не уступающую дорогим образцам. Можно купить как готовый дроссель, так и изготовить его самостоятельно с минимальными финансовыми вложениями.
Схема сварочного аппарата переменного тока с отдельным дросселем: 1 – первичная обмотка, 2 – сердечник, 3 – вторичная обмотка, 4 – обмотка дросселя, 5 – неподвижная часть сердечника дросселя, 6 – подвижная часть сердечника дросселя, 7 – винтовая пара, Др – регулятор тока.
Преимущества дросселя для сварочного аппарата
Функцией дросселя в сварочном аппарате является регулировка силы тока, который применяется для сварки. Он компенсирует недостающее сопротивление в процессе работы. Подключение дросселя следует осуществлять ко вторичной обмотке трансформатора.
Так можно добиться смещения фаз между током и напряжением и облегчить тем самым зажигание электрической дуги в самом начале работы. Это позволит получить равномерное горение сварки и, соответственно, равномерный качественный сварной шов. Сила тока при отсутствии дросселя всегда имеет максимальные показатели, из-за чего могут возникнуть неприятные моменты в процессе сварочных работ.
Схема изготовления сварочного дросселя.
Дроссель может быть установлен в обычный сварочный аппарат, работающий с электродами, и в полуавтомат. Полуавтомат, оснащенный дросселем, позволяет сделать более качественный и глубокий сварной шов с минимальным разбрызгиванием металла. Оптимальным решением будет использование дросселя в паре с выпрямителем тока. Тогда для сварочных работ можно использовать практически все виды электродов и сварка при этом будет мягкой.
Дроссель может быть установлен и на сварочный аппарат, оснащенный понижающим трансформатором. Его необходимо подключать ко вторичной цепи трансформатора. Так, из сварочного аппарата, сделанного своими руками, можно получить полуавтомат, близкий по конструкции с дорогими заводскими моделями.
Как видно, эта деталь имеет большие преимущества. Установить дроссель можно не только на самодельный сварочный аппарат, но и на заводской образец. Данная деталь, установленная на недорогую модель сварочного аппарата, склонного к возникновению различных неполадок, способна облегчить с ним работу и выполнить ее качественно.
Материалы для самостоятельной сборки дросселя
Правильно подобрав материал, сварочный дроссель вполне можно собрать самостоятельно. Он представляет собой обычный сердечник с намотанным проводом. Для этой цели могут подойти многие неисправные электротехнические приборы. Очень часто для его изготовления используются трансформаторы от старых ламповых телевизоров, с которых можно удалить старую обмотку и намотать новую с требуемым сечением.
Схема источника питания инверторного сварочного аппарата.
Еще одним устройством, с которого можно снять дроссель, является старый уличный фонарь. Старую, пришедшую в негодность обмотку с этой детали нужно демонтировать, оставив только картонные прокладки для обеспечения зазора между основным элементом сердечника и замыкающим. В процессе намотки провода эти элементы следует установить на прежнее место.
Для изготовления дросселя подойдет любой магнитопроводящий сердечник с сечением 10 -15 см. Между его частями нужно сделать немагнитный участок, вставив изоляционную прокладку толщиной 0,5 -1 мм.
Для намотки дросселя применяется медный или алюминиевый провод.
Намотка и установка дросселя
Для намотки алюминиевого провода необходимо выбирать сечение 35-40 мм, для медного – достаточно 25 мм. Также можно производить замену провода на медную (4 на 6 мм) или алюминиевую шину с большим сечением. Так, при использовании обычного провода нужно сделать 25-40 витков, а шину нужно намотать в 3 слоя. Если вы выбрали деталь от уличного фонаря, то наматывать провод следует по всей длине одной из ее боковых сторон, пока не заполнится окно.
Перед тем как намотать провод, следует произвести изоляцию ярма. Наматывая провод, не меняйте направление. Следующий слой намотки изолируется от предыдущего хлопчатобумажной тканью, стеклотканью или картоном для изоляции, выполняется нанесение изолирующей пропитки бакелитовым лаком. Выводы при намотке должны быть маркированы.
Ступенчатая регулировка тока сварочной дуги достигается включением на выходе нагрузочного омического сопротивления, представляющего собой спираль из нихрома, через равное количество витков которой делаются отводы с хорошими контактами, выдерживающими большие нагрузки. Воздушный промежуток в сердечнике дросселя не делается. Но такой способ имеет недостаток: большой нагрев нити, порой докрасна.
Плавная регулировка тока достигается благодаря установке подвижных обмоток трансформатора.
Благодаря смене расстояния между первичной и вторичной обмотками трансформатора меняется величина магнитного потока и сопротивление во вторичной обмотке.
Особое внимание следует уделить настройке дросселя.
Настроить его можно так:
- добавив или отмотав количество витков провода;
- изменив в сердечнике размеры воздушного промежутка.
Правильно изготовленный и настроенный дроссель позволит вам работать с самодельным сварочным аппаратом не хуже, чем с дорогой импортной моделью.
Сварка постоянным электрическим током получила широкое применение не только в масштабах крупных производств, но и в домашних мастерских. Современный рынок предлагает десятки (если не сотни) аппаратов для сварки с помощью электрической дуги, начиная от компактных маломощных сварочников, заканчивая промышленными высокопроизводительными агрегатами. Вне зависимости от типа оборудования, применяемого для электросварки, всех их объединяет одна проблема — неконтролируемое падение напряжение, из-за чего розжиг дуги и формирование шва становится затруднительным.
Для решения этой проблемы умельцы придумали дросель, внедряемый в цепь со сварочным оборудованием. У начинающих сварщиков сразу возникнет много вопросов: «Что это за деталь и как она функционирует? Как сделать дроссель самому на свой аппарат? Как рассчитать дроссель правильно?». В этой статье мы постараемся ответить на эти, и многие другие вопросы.
Общая информация
Для чего нужен дроссель? Эта небольшая деталь, подключенная в цепь, обеспечивает плавный розжиг дуги и поддерживает ее стабильность даже при перепадах напряжения, к тому же металл практически не разбрызгивается, шов получается более качественным, можно точно настроить аппарат и без проблем варить тонкий металл.
Принцип работы прост: дроссель пропускает через себя ток, накапливая его от сварочного аппарата. Накопленный ток как раз и используется для компенсации потерянного напряжения. Также дроссель с подмагничиванием обеспечивает нужное сопротивление тока, если напряжение слишком велико.
Совсем не обязательно покупать дроссель в магазине, тем более это далеко не дешевая покупка. Этот агрегат вполне можно смастерить самостоятельно. Его конструкция состоит из сердечника и двух обмоток с сечением, рассчитанным на работу с определенным значением постоянного тока. Именно поэтому не получится изготовить универсальный дроссель, ведь маленькая деталь не справится с мощным сварочником, и наоборот. Так что важно правильно рассчитать, сколько обмотки понадобится для работы с тем или иным напряжением.
Регулировка тока
Регулировка сварочного тока крайне важна для правильной работы и формировании качественного шва. Она может осуществляться несколькими способами:
- Регулировка тока путем изменения расстояния между элементами сварочного аппарата. Самый популярный способ. Чтобы уменьшить силу тока раздвиньте разрезанный сердечник трансформатора. Индукция несколько рассеется, и сила тока станет меньше. Чем больше сварочный агрегат, тем больше возможность регулировать ток, потому что интервал регулировки напрямую зависит от доступного размера в корпусе аппарата.
- Регулировка тока на обмотке трансформатора. Таким способом можно отсечь часть катушки, тем самым увеличив значение напряжения, пуская ток по более короткому пути. Чтобы ослабить ток путь нужно наоборот увеличить.
- Регулировка тока с помощью стальной пружины с креплением клемм через заданный интервал. Это неплохой способ регулировки, он позволяет плавно настраивать ток, но есть один существенный недостаток — пружина сильно нагревается и при этом постоянно находится под ногами у мастера, а это грубейшее нарушение техники безопасности.
Если внедрить в цепь дроссель, то решится большинство проблем, связанных с регулировкой тока. Это на первый взгляд небольшое приспособление способно в полной мере компенсировать недостающие напряжение или наоборот выполнять роль сопротивления, если напряжения слишком много. Настройка тока дросселем происходит очень плавно и сварщику не нужно держать под ногами раскаленную пружину.
Применение дросселя
Дроссель для сварки своими руками лучше всего работает на сварочных трансформаторах. Это доказывает наша практика. Дроссель быстро разжигает дугу даже при значительной потере тока, поэтому его можно без проблем использовать на даче или в цеху с нестабильным напряжением.
Отдельная особенность — это возможность использовать дроссель в паре с выпрямителем. Связка дроссель + выпрямитель способна увеличивать электродвижущую силу самоиндукции. В случае с полуавтоматом такой набор оборудования позволить легко зажечь дугу даже на значительном расстоянии от поверхности металла.
Дроссель своими руками
Теперь давайте разберемся, как дроссель для сварки своими руками можно намотать и как рассчитать дроссель. Чтобы намотать дроссель правильно, нужно досконально знать его устройство и понимать принцип работы. В разделе «Общая информация» мы кратко описали устройство и принцип действия этого прибора. Мы составили небольшую поэтапную инструкцию, следуя которой вы сможете собрать дроссель. Собранная вами деталь подойдет для использования на небольшом производстве или при домашней сварке. Итак, приступим:
- Для начала вам нужно найти старый трансформатор, он будет нашей основой. Опытные мастера советуют брать повышающий элемент из лампового телевизора модели «ТСА 270-1», он будет выступать в роли сердечника. Подобные модели можно легко найти на блошином рынке или поискать в интернете на онлайн-досках объявлений.
- Затем нужно разобрать трансформатор. Делается это просто: нужно срезать болты или повернуть головки в верхней части агрегата, затем снять катушки.
- Полученные «подковы» (как их именуют умельцы) устанавливают специальные прокладки. Их изготавливают из тонкого картона и приклеивают к основанию «подковы». Прокладки нужны для образования индуктивного зазора.
- Теперь нужно намотать провод на «подкову». Для этого берем алюминиевые провода сечением 36 миллиметров. Намотайте 22-24 витка с каждой стороны. Если вам удалось найти сердечник из лампового телевизора, то вы сможете намотать на каждую сторону по 8 витков в два слоя. Не забудьте сделать изоляцию между витками с помощью бумаги и бакелитового лака.
- Провод следует наматывать в одну сторону на каждой из катушек. Это необходимо для того, чтобы в конце провода располагались в одинаковом направлении и вверху была перемычка между отводами, соединяющая катушки, а внизу располагался вход и выход.
- Если вы все же неправильно намотали провода, и они располагаются в разном направлении, то установите по диагонали косую перемычку между верхним и нижним отводами. Вторая пара отводов будет играть роль входа и выход.
- Рекомендуется устанавливать дроссель в сварочном аппарате только после диодов. Подключите ко входу кабель диодного моста.
Если сила тока дросселем наоборот продолжает падать при применении, то нужно убрать несколько витков на каждой из катушек.
Вместо заключения
Теперь вы знаете, как сделать дроссель для сварочного аппарата своими руками и использовать его в своей работе. Самодельный дроссель легко можно собрать своими силами, зная элементарные законы электротехники. Расскажите о своем опыте конструирования дросселя в комментариях и делитесь этой статьей в социальных сетях. Желаем удачи!
Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.
Принцип работы
Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени.
Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.
Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу.
Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.
Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.
Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно.
Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.
Предназначение
В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения.
Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.
Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.
Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.
Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.
Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода.
Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.
Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.
Материалы для изготовления
Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.
Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком.
В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм.
Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.
Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.
Последовательность действий
Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:
- разобрать трансформатор, очистить катушки от следов старых обмоток;
- изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
- произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
- между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.
Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой.
В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.
Включение и проверка
Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.
Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:
- легкий электроподжиг;
- стабильность дуги;
- относительно слабый треск;
- плавное горение без сильных брызг расплава.
Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока.
Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.
Дроссель для сварочного аппарата
Как сделать дроссель для сварочного аппарата своими руками?
Практически каждый мастер хотя бы раз задумывался над тем, как сделать дроссель для сварочного аппарата своими руками. Сегодня продается достаточно большое количество различных устройств, которые можно использовать в условиях малого производства. Это может быть приспособление, которое работает на временном или непрерывном токе, полуавтомат для сварки или изделие с использованием электродов. Однако качественное устройство стоит очень дорого, а бюджетные аналоги быстро приходят в негодность.
Схема сварочного аппарата переменного тока с отдельным дросселем: 1 – первичная обмотка, 2 – сердечник, 3 – вторичная обмотка, 4 – обмотка дросселя, 5 – неподвижная часть сердечника дросселя, 6 – подвижная часть сердечника дросселя, 7 – винтовая пара, Др – регулятор тока.
Для сборки самодельного приспособления для сварки понадобится подобрать и соорудить все нужные элементы, в том числе и дроссель.
Преимущества использования дросселя
Однофазная мостовая схема выпрямления (а). Графики напряжений и тока в трансформаторе (б), напряжения и тока в нагрузке (в).
Дроссель для сварки – это устройство для регулировки силы тока, используемого для выполнения сварочных работ. Элемент нужен для компенсации сопротивления, которого может не хватать. Его можно подсоединить к повторной обмотке трансформаторной конструкции. Это дает возможность смещать фазы между проходящим током и его напряжением, в результате чего облегчается зажигание электродуги в начале работы. Она будет гореть ровно, в связи с чем есть возможность получить сварочный шов хорошего качества. Если не использовать дроссель, то могут появиться проблемы во время сварки.
Дроссель может состоять в конструкции полуавтомата или устройства для сварки, которое предусматривает использование электродов. Полуавтомат с дросселем практически не разбрызгивает металл во время работы. Процесс сварки будет проходить гораздо мягче, чем при отсутствии дросселя. Шов сварки сможет провариваться на существенную глубину. Достоинства подобного элемента не вызывают сомнений. Его можно смонтировать не только на самодельное устройство, но и на приспособление заводского производства. Особенно это касается бюджетных вариантов, склонных к неисправностям. Это сможет существенно облегчить работу на подобных конструкциях и повысить качество сварочного шва.
Какие подручные средства можно использовать
Схема источника питания инверторного сварочного аппарата.
Чтобы соорудить дроссель для сварки своими руками, первым делом нужно подготовить материал. В данном случае можно применить практически любые неиспользуемые электротехнические приспособления. Конструкция являет собой обыкновенный сердечник с намотанным проводом. Для данной цели можно использовать трансформаторную конструкцию, которая ранее была смонтирована в старом телевизоре. Всю обмотку понадобится демонтировать. Сердечник можно будет использовать для намотки провода, длина которого рассчитывается заранее.
Если есть возможность, можно применить детали, которые были установлены в лампочках фонарей. Старые обмотки следует демонтировать, так как они часто неисправны. В процессе намотки провода их понадобится установить на прежнее место.
Для намотки дросселя можно применить любой сердечник сечением приблизительно 12-15 см. Между его элементами понадобится сделать немагнитную часть. Для этого следует закрепить прокладку для изоляции толщиной примерно 0,6-1 мм.
Плавной регулировки тока можно достичь благодаря монтажу подвижных обмоток трансформаторной конструкции. Путем смены расстояния между обмотками можно изменять величину магнитного потока и сопротивление в повторной обмотке.
Преобразование тока в сварочном инверторе.
Для сварки на непрерывном токе к обмотке на выходе трансформаторной конструкции нужно подключить элемент для преобразования временного тока в непрерывный. Такое приспособление называется выпрямителем. Ток может быть не непрерывным, а пульсирующим. Уменьшить пульсацию возможно исключительно путем увеличения емкости конденсаторного устройства.
Чтобы была возможность выполнять регулировку тока дуги с помощью дросселя, между выходом трансформаторной конструкции и точкой нужно включить 3 выпрямителя.
Элементы, которые будут нужны для сооружения дросселя:
- электротехническая конструкция,
- провода,
- трансформатор,
- лампа фонаря,
- картон для изоляции.
Как изготовить дроссель для сварочного устройства
Схема изготовления сварочного дросселя.
Перед выполнением намотки провода понадобится изолировать ярмо.Для намотки дросселя можно использовать провод из алюминия или меди. В первом случае его сечение должно быть примерно 36-40 мм, во втором рекомендуемое сечение составляет 25 мм. Вместо провода можно использовать шину из меди толщиной 4-5 мм. Если планируется использовать алюминиевую деталь, то она должна иметь большую толщину. Провод нужно наматывать в количестве 30-35 витков, шина наматывается в 3 слоя. Если в качестве сердечника будет использоваться элемент от лампочки фонаря, то намотку следует выполнять только на одну боковую часть по всей длине до тех пор, пока окно не заполнится. Направление намотки изменять не допускается. Каждый слой должен быть изолирован от предыдущего. Элементы рекомендуется пропитать бакелитовым лаком.
В процессе намотки через одинаковое количество витков следует делать отводы. Контакты должны быть сильными, так как на них будет ложиться существенная нагрузка.
Установка дросселя оказывает положительное влияние на работу полуавтоматического устройства или обыкновенной самоделки. Для устройства, которое работает на временном токе, рекомендуется использовать приспособление вместе с конструкцией для выпрямления тока. В таком случае будет можно применять практически все возможные электроды.
Дроссель для сварки своими руками можно устанавливать и на устройство с понижающей трансформаторной конструкцией. Элемент нужно подключать на вторичную цепочку трансформатора для сварки. Это даст возможность соорудить устройство фирменного сварочного полуавтомата, который стоит очень дорого. Дроссель следует точно рассчитать по формуле, которая есть в документации, поставляемой вместе с приспособлением. Данное изделие будет иметь трансформаторную конструкцию с хорошим рассеиванием и отличными характеристиками.
Дроссель для инверторного или любого другого аппарата важно правильно настроить.
Дроссель для сварочного аппарата своими руками
Как сделать дроссель для сварочного аппарата постоянного тока
Сварка постоянным электрическим током получила широкое применение не только в масштабах крупных производств, но и в домашних мастерских.
Современный рынок предлагает десятки (если не сотни) аппаратов для сварки с помощью электрической дуги, начиная от компактных маломощных сварочников, заканчивая промышленными высокопроизводительными агрегатами.
Вне зависимости от типа оборудования, применяемого для электросварки, всех их объединяет одна проблема — неконтролируемое падение напряжение, из-за чего розжиг дуги и формирование шва становится затруднительным.
Для решения этой проблемы умельцы придумали дросель, внедряемый в цепь со сварочным оборудованием. У начинающих сварщиков сразу возникнет много вопросов: «Что это за деталь и как она функционирует? Как сделать дроссель самому на свой аппарат? Как рассчитать дроссель правильно?». В этой статье мы постараемся ответить на эти, и многие другие вопросы.
Общая информация
Для чего нужен дроссель? Эта небольшая деталь, подключенная в цепь, обеспечивает плавный розжиг дуги и поддерживает ее стабильность даже при перепадах напряжения, к тому же металл практически не разбрызгивается, шов получается более качественным, можно точно настроить аппарат и без проблем варить тонкий металл.
Принцип работы прост: дроссель пропускает через себя ток, накапливая его от сварочного аппарата. Накопленный ток как раз и используется для компенсации потерянного напряжения. Также дроссель с подмагничиванием обеспечивает нужное сопротивление тока, если напряжение слишком велико.
Совсем не обязательно покупать дроссель в магазине, тем более это далеко не дешевая покупка. Этот агрегат вполне можно смастерить самостоятельно.
Его конструкция состоит из сердечника и двух обмоток с сечением, рассчитанным на работу с определенным значением постоянного тока.
Именно поэтому не получится изготовить универсальный дроссель, ведь маленькая деталь не справится с мощным сварочником, и наоборот. Так что важно правильно рассчитать, сколько обмотки понадобится для работы с тем или иным напряжением.
Регулировка тока
Регулировка сварочного тока крайне важна для правильной работы и формировании качественного шва. Она может осуществляться несколькими способами:
- Регулировка тока путем изменения расстояния между элементами сварочного аппарата. Самый популярный способ. Чтобы уменьшить силу тока раздвиньте разрезанный сердечник трансформатора. Индукция несколько рассеется, и сила тока станет меньше. Чем больше сварочный агрегат, тем больше возможность регулировать ток, потому что интервал регулировки напрямую зависит от доступного размера в корпусе аппарата.
- Регулировка тока на обмотке трансформатора. Таким способом можно отсечь часть катушки, тем самым увеличив значение напряжения, пуская ток по более короткому пути. Чтобы ослабить ток путь нужно наоборот увеличить.
- Регулировка тока с помощью стальной пружины с креплением клемм через заданный интервал. Это неплохой способ регулировки, он позволяет плавно настраивать ток, но есть один существенный недостаток — пружина сильно нагревается и при этом постоянно находится под ногами у мастера, а это грубейшее нарушение техники безопасности.
Если внедрить в цепь дроссель, то решится большинство проблем, связанных с регулировкой тока. Это на первый взгляд небольшое приспособление способно в полной мере компенсировать недостающие напряжение или наоборот выполнять роль сопротивления, если напряжения слишком много. Настройка тока дросселем происходит очень плавно и сварщику не нужно держать под ногами раскаленную пружину.
Применение дросселя
Дроссель для сварки своими руками лучше всего работает на сварочных трансформаторах. Это доказывает наша практика. Дроссель быстро разжигает дугу даже при значительной потере тока, поэтому его можно без проблем использовать на даче или в цеху с нестабильным напряжением.
Отдельная особенность — это возможность использовать дроссель в паре с выпрямителем. Связка дроссель + выпрямитель способна увеличивать электродвижущую силу самоиндукции. В случае с полуавтоматом такой набор оборудования позволить легко зажечь дугу даже на значительном расстоянии от поверхности металла.
Дроссель своими руками
Теперь давайте разберемся, как дроссель для сварки своими руками можно намотать и как рассчитать дроссель. Чтобы намотать дроссель правильно, нужно досконально знать его устройство и понимать принцип работы.
В разделе «Общая информация» мы кратко описали устройство и принцип действия этого прибора. Мы составили небольшую поэтапную инструкцию, следуя которой вы сможете собрать дроссель.
Собранная вами деталь подойдет для использования на небольшом производстве или при домашней сварке. Итак, приступим:
- Для начала вам нужно найти старый трансформатор, он будет нашей основой. Опытные мастера советуют брать повышающий элемент из лампового телевизора модели «ТСА 270-1», он будет выступать в роли сердечника. Подобные модели можно легко найти на блошином рынке или поискать в интернете на онлайн-досках объявлений.
- Затем нужно разобрать трансформатор. Делается это просто: нужно срезать болты или повернуть головки в верхней части агрегата, затем снять катушки.
- Полученные «подковы» (как их именуют умельцы) устанавливают специальные прокладки. Их изготавливают из тонкого картона и приклеивают к основанию «подковы». Прокладки нужны для образования индуктивного зазора.
- Теперь нужно намотать провод на «подкову». Для этого берем алюминиевые провода сечением 36 миллиметров. Намотайте 22-24 витка с каждой стороны. Если вам удалось найти сердечник из лампового телевизора, то вы сможете намотать на каждую сторону по 8 витков в два слоя. Не забудьте сделать изоляцию между витками с помощью бумаги и бакелитового лака.
- Провод следует наматывать в одну сторону на каждой из катушек. Это необходимо для того, чтобы в конце провода располагались в одинаковом направлении и вверху была перемычка между отводами, соединяющая катушки, а внизу располагался вход и выход.
- Если вы все же неправильно намотали провода, и они располагаются в разном направлении, то установите по диагонали косую перемычку между верхним и нижним отводами. Вторая пара отводов будет играть роль входа и выход.
- Рекомендуется устанавливать дроссель в сварочном аппарате только после диодов. Подключите ко входу кабель диодного моста.
Если сила тока дросселем наоборот продолжает падать при применении, то нужно убрать несколько витков на каждой из катушек.
Вместо заключения
Теперь вы знаете, как сделать дроссель для сварочного аппарата своими руками и использовать его в своей работе. Самодельный дроссель легко можно собрать своими силами, зная элементарные законы электротехники. Расскажите о своем опыте конструирования дросселя в комментариях и делитесь этой статьей в социальных сетях. Желаем удачи!
Как сделать (намотать) дроссель для сварочного инвертора
Электросварка широко применяется на крупных производствах и в мелких мастерских. Аппараты для соединения металлов электрической дугой тоже бывают разными по размерам и мощности.
Но всех их объединяет одна возможная проблема — падение напряжения мешает розжигу дуги и ведению шва. Еще бывает трудно настроить нужную величину тока для конкретной толщины металла. Для решения всего этого используется дроссель в составе оборудования.
Что это такое? Как он функционирует? Как сделать дроссель самому на свой аппарат?
Что это такое?
Дроссель для сварочного аппарата своими руками смастерить вполне возможно. Он состоит из сердечника и двух обмоток с определенным сечением, рассчитанным на работу с конкретной величиной тока. Дроссель от крупного сварочного оборудования не подойдет к маленькому агрегату, и наоборот, маленькая модель будет не эффективна на большом сварочном аппарате.
Дроссель получает и накапливает в себе ток от понижающего трансформатора, чем содействует плавному розжигу электрода. Во время ведения шва дуга горит более мягко и меньше разбрызгивается металл сварочной ванны. Если поступающее напряжение слишком велико, то дроссель берет на себя часть функции сопротивления. Это позволяет более точно настраивать аппарат и варить тонкий металл.
Преимущество самодельного дросселя
Для сварки металла различной толщины применяется несколько способов регулировки силы тока:
- Изменение расстояния между элементами трансформатора. В устройстве сварочных аппаратов имеется две обмотки, между которыми происходит электромагнитная индукция. Благодаря этому понижаются Вольты, и повышаются Амперы. Если сила тока слишком велика, для нормального ведения шва на заданной толщине материала, то обмотки разводятся между собой при помощи винта с резьбой. Это рассеивает индукцию и уменьшает силу тока. Степень регулировки зависит от длины винта и размеров корпуса аппарат. Чем шире настройки этого параметра, тем крупнее сам сварочный агрегат.
- Ступенчатая регулировка на обмотке трансформатора позволяет отсекать часть катушки, пуская ток по более коротком пути. Для уменьшения силы сварочной дуги устанавливают максимально длинный путь напряжению. Но это зависит от количества витков понижающего трансформатора.
- Сопротивление из стальной пружины с креплением клемм через определенный интервал позволяет регулировать силу тока мелкими «шагами», но имеет существенный недостаток в виде быстрого перегрева сопротивления, которое постоянно находится под ногами у сварщика.
Внедрение в схему дросселя решает все эти проблемы одновременно. Это небольшое электротехническое приспособление частично компенсирует недостающее сопротивление, поэтому нет необходимости использовать большие трансформаторы с широкими параметрами регулировки. Настройка тока происходит плавно без ступеней, а под ногами нет раскаленной пружины.
Применение
Сделанный самостоятельно дроссель хорошо взаимодействует на трансформаторах. Поскольку переменный ток отличается треском и разбрызгиванием металла, то добавление в схему этого элемента позволит варить более мягко. Особенно это чувствуется при работе на трубах отопления, где продолжает подтекать вода из системы.
Дроссель для сварочного инвертора и полуавтомата полезен и содействием быстрого розжига дуги. Например, если инвертор должен выдавать 48 V холостого хода, то при падении или скачках напряжения в сети, это значение будет еще меньше.
Когда требуется варить электродом МР-3, оптимальное значение тока для которого составляет 70 V, а при 48V он зажигается с трудом, то в случае падения напряжения дугу будет возбудить очень сложно.
В результате, запланированные сварочные работы придется отложить до восстановления нормального напряжения.
Дроссель, в сочетании с выпрямителем, способен производить ЭДС самоиндукции, которая пронизывает воздушное пространство и легко поджигает электрод. В случае полуавтомата это содействует легкому началу работ при малейшем поднесении к изделию подающейся из сопла проволоки.
Сочетая в себе две функции (компенсация сопротивления и стабилизация дуги) это устройство позволяет варить тонкий металл в условиях скачущего напряжения. Так, аппараты с дросселем широко используются для сварки кузовов автомобилей на СТО, или нержавеющих тонких емкостей.
Дроссель своими руками
Чтобы знать как намотать дроссель правильно, важно разобраться в его устройстве. Хотя оно простое, поэтапное точное выполнение каждой части обеспечит качественный результат. Для полуавтомата или инвертора, используемых в частном доме и на даче, подойдет дроссель, сделанный следующим образом:
- За основу берется старый трансформатор. Оптимальная модель — это повышающий элемент на ламповом телевизоре с маркировкой «ТСА 270-1». Подобные можно найти у пожилых знакомых в гараже. Размеры его внутренней части идеально подходят под сварочный аппарат для домашнего использования.
- Разборка трансформатора производится путем срезания болтов для освобождения катушек. Или можно повернуть ряд головок в верхней части устройства, и снять катушки напрямую.
- На пустые подковы необходимо установить прокладки, которые будут образовывать индуктивный зазор дросселя. Их можно изготовить из картона с толщиной листа от 0.8 до 1.0 мм. Прокладки приклеиваются на основание подковы.
- Обмотка производится мягким алюминиевым проводом с сечением 36 мм. На каждую катушку следует нанести по 24 витка. С использованием указанного сердечника от старого телевизора получится сделать три слоя по восемь витков в каждом. Между слоями необходимо выполнить качественную изоляцию бумагой и бакелитовым лаком. Это делается ввиду способности устройства к выработке ЭДС самоиндукции, которая появляется при разрыве дуги. Тогда разряд идет по пути наименьшего сопротивления и пробивает воздух, чем возобновляет горение электрода. Если наименьшее сопротивление окажется между витками обмотки, то пробой случится там, что повлечет порчу элемента.
- Наматывать провод нужно в одну сторону на каждой катушке. Благодаря одинаковому направлению получится конструкция, на которой вверху будет перемычка между отводами, соединяющая катушки, а внизу расположатся вход и выход.
- Если при наматывании была допущена ошибка, и катушки получились противоположными по направлению намотки, то выйти из положения можно установкой косой перемычки между верхним и нижним отводами по диагонали. Вторая пара отводов образует вход и выход.
- Устанавливать дроссель в цепь рекомендуется уже после диодов. Ко входу подключается кабель с диодного моста, а к выходу крепится кабель массы, подающийся на изделие.
После сборки происходит тестирование устройства. Для этого необходимо выполнить сварку на металле, толщина которого будет применяться чаще всего в повседневной работе. Проверяется сила тока, которой должно быть достаточно для хорошего провара, но без прожогов.
Обращать внимание необходимо и на поведение сварочной дуги, ее стабильность, умеренный треск, и плавность горения без чрезмерных брызг. Легкий поджиг электрода и хорошие характеристики дуги будут показателем правильной сборки. Если сила тока значительно упала, то стоит перемотать устройство и удалить несколько витков обмотки на каждой катушке.
Внедрение дросселя в схему полуавтомата, инвертора или обычного трансформатора, облегчает работу с устройством. Накладывать швы становится более удобно, а поджиг электрода происходит плавно и стабильно. Особенно это практично в частном секторе, где скачки напряжения — привычное дело. Самодельное изготовление устройства легко выполнить придерживаясь последовательности приведенной в статье.
Поделись с друзьями
Сварочный аппарат своими руками
Самый подходящий по массе и мощности сварочный аппарат — с тороидальным магнитопроводом (например, от сгоревшего электродвигателя мощностью 3-5 кВт)…
Исходя из собственного опыта и практики других самодельных конструкторов, считаю также уместным подчеркнуть, что ток холостого хода у добротного сварочного трансформатора, рассчитанного на подключение к бытовой 220-вольтной сети, должен быть порядка 0,5-1 А.
При меньшем значении данного параметра падает мощность, при большем — греется магнитопровод, а вместе с ним и весь ЭСА.
Не могу также не отметить: если подключение «сварочника» планируется к сети с напряжением 220-380 В, то поверх первичной обмотки крайне желательно иметь дополнительную, 160-вольтную (требуемое число витков уточняется по вольтметру), после которой идет уже вторичная, сварочная.
Корпус такого самодельного сварочного аппарата можно выполнить, например, из перфорированного металлического листа толщиной 1-1,5 мм.
В основании его устанавливается на изоляционных подставках сам тороидальный трансформатор, фиксируемый сверху прижимной планкой-изолятором с двумя шпильками М10.
Перфорационные отверстия диаметром 20 мм — для создания естественной приточной вентиляции, необходимой нашему «сварочнику».
Рис.1. Самодельный сварочный аппарат в сборе: 1 — опора-амортизатор (4 шт.), 2 — кронштейн-шпилька М10 с двумя шайбами и парой гаек (4 компл.
), 3 — облицовка с прорезями для вентиляции: 4 — шпилька М8 с двумя шайбами и парой гаек (2 компл), 5 — основание с вентиляционными отверстиями, 6 — изолирующая подкладка (текстолит гетинакс или деревянная дощечка s10-15, 4 шт.
), 7 — магнитопровод (от электродвигателя мощностью 3-5 кВт), 8 — изоляционная подложка (стеклоткань, 2-3 слоя), 9 — первичная сетевая обмотка (220-380 В, ток холостого хода 0,5-1 А), 10 — дополнительная обмотка, рассчитанная на 160 В, 11 — вторичная сварочная обмотка, 12 — защитная оболочка сварочного трансформатора (стеклоткань, 2-3 слоя), 13 — косынка (4 шт.
), 14 — ручка для переноски (металлическая труба 20×3, 2 шт.
) 15 — прижимная планка (текстолит, гетинакс или деревянная дощечка s10-15), 16 — клеммная панель (13-мм стеклотекстолит или другой термостойкий изолятор), 17 — светоиндикатор (тиратрон МТХ-90 с 60-килоомным МЛТ-0,25 или «неонка» ТН-02 с последовательно соединенным резистором порядка 120 кОм), 18 — клемма 220 В (2 шт.): 19 — сварочная клемма (болт М10 с двумя гайками, парой шайб и гайкой «барашек», латунь или медь, 2 компл.), 20 — «концевик» сварочной обмотки (медь или латунь, лист s1,5, 2 шт.),
материал дет. поз. 3,5 и 13 — металлический лист s1-1,5, тип и количество деталей крепежа для облицовки и клеммной панели не показаны
К основанию крепится (например, на винтах и кронштейнах-уголках) облицовка: тоже из металлического листа, но уже с «прорезной» перфорацией. Расстояние между стенками и трансформатором должно быть, как свидетельствует практика, не менее 30 мм — опять-таки для облегчения условий воздушного охлаждения.
Сверху корпус ужестчается косынками, к которым крепятся скобы-ручки. Основу каждой из таких ручек составляет труба 20×2 мм с боковыми отверстиями диаметром 10,3 мм у концов, в которые вставляются шпильки М10 и привариваются через торцевое окно.
На завершающей стадии сборки устанавливается панель из 10-мм стеклотекстолита (или другого столь же термостойкого изолятора) с располагающимися на ней сетевыми и более мощными сварочными клеммами, а также светоиндикатором «Вкл».
В качестве последнего может использоваться тиратрон МТХ-90 с 60-килоомным резистором или «неонка» МН3 (ТН-0,2) с последовательно соединенным МЛТ-0,25 сопротивлением 120 кОм.
Для регулировки тока при сварке рекомендуется применять самодельный реостат. Основа — 100-мм отрезок асбоцементной трубы диаметром 200-250 мм. В качестве резистентной обмотки используется пружина (стальная хромо ванадиевая проволока диаметром 3-4 мм, навивка — на цилиндрической болванке диаметром 40 мм), например, от сеялки.
Кольцевой реостат сварочного аппарата:
1 — основание-изолятор (асбоцементная труба), 2 — резистентная обмотка (цилиндрическая пружина от сеялки, стальная хромованадиевая проволока диаметром 3-4, навивка диаметром 40, концы отожжены и после установки по месту загнуты под болт М8), 3 — клемма (болт М8 с гайкой и двумя шайбами, 2 компл.), 4 — сварочный кабель с «концевиком», 5 — ручка для переноски (стальная полоса 40×2), 6 — сварочный кабель с двумя «концевиками», 7 — обжимка-изолятор (резиновый шланг 20×3, L50), 8 — ножевой контакт (медная полоса 25×5, L110) Концы пружины-заготовки нагреваются докрасна, пропускаются в просверленные для них отверстия внутрь асбоцементной трубы-основания и плоскогубцами выгибаются под болт М8. Начало получившейся резистентной обмотки соединяется со сварочным 1-м кабелем при помощи самодельной клеммы, состоящей из болта М8, гайки и двух шайб. Ну а регулируемый токосъём осуществляется при помощи медного ножа-регулятора, вставляемого между витками пружины реостата. Конечно же, нелишне оснастить ЭСА и достаточно мощным выпрямителем, что позволит выполнять качественную сварку на постоянном токе. Как свидетельствует практика, самыми приемлемыми оказываются технические решения, в основе которых — так называемый выпрямительный мост на диодах, способных отдавать в нагрузку прямой ток не менее 100 А. С целью лучшего охлаждения каждый из полупроводниковых вентилей желательно снабжать радиатором, имеющим площадь теплоотдачи порядка 200 см2. Довольно хорошие эксплуатационные характеристики, например, у выпрямительного моста, состоящего из двух групп мощных разнополярных диодов В200 и ВЛ200, конструктивное исполнение которых (с «анодным» либо, наоборот, «катодным» отводом тепла и имеющим отличительные корпуса, соответственно, зеленого или малинового цвета) позволяет легко объединять их в суперкомпактный блок с «плюсо-минусовой» и «минусо-плюсовой» контактно-радиаторными группами, между которыми устанавливается резиновая прокладка. Для надежного поджигания дуги обычно используют конденсатор или дроссель. Однако последний предпочтительнее в силу свойственных ему высоких энергоемкостных и эксплуатационных качеств. Сама же конструкция зависит от используемого магнитопровода. Наиболее доступным для многих является «железо» сгоревших трансформаторов. Точнее — пакеты типовых конфигураций из электротехнической стали.
Рис.3. Схема выпрямительно-дроссельного блока
Варианты сварочного дросселя на стержневом магнитопроводе (а) и на броневом (б), составлением из двух типовых стержневых сердечников:
1 — магнитопровод (пакет, набранный из наиболее доступных пластин трансформаторной стали), 2 — изолирующая прокладка (2-3 слоя стекло изоляционной ленты), 3 — обмотка (35-40 витков кабеля с общим сечением медных жил 25 мм2 или алюминиевых 35-40 мм2), 4 — стяжной кронштейн (металлический уголок 15×15 или 25×25, 4 шт.), 5 — стяжка (шпилька с двумя гайками и шайбами Гровера, 4 или 8 компл.)
Неплохие дроссели получаются, в частности, когда в качестве магнитопровода для них — стержневой сердечник шириной 30 мм и толщиной пакета 150-250 мм (от старого блока электропитания) или два спаренных, приспособленных как своеобразный броневой с пакетом толщиной 100-150 мм. Обмотка содержит от 35 до 40 витков хорошо изолированного провода (токопроводящей шины, кабеля) сечением 35-40 (алюминий) или 25 (медь) мм2. Достоинство: можно использовать любой электрод. Именно такие дроссели легко встраивать в выпрямители или оформлять в виде отдельных блоков. Если приходится заниматься сваркой помногу да к тому же использовать 4-мм электроды, то не обойтись без принудительного воздушного охлаждения. При этом сам вентилятор желательно устанавливать непосредственно на выпрямителе сварочного аппарата.
В последнем авторском варианте пришлось пойти на установку более мощных радиаторов от 500-амперных диодов. В результате получился самодельный сварочный аппарат, который по своим технико-эксплуатационным параметрам способен быть, что называется, на равных со сварочными аппаратами промышленного изготовления.
А.Певнев, г. Димитровград, Ульяновская обл.Самодельный сварочный аппарат из старого электродвигателяТочечная сварка своими руками
Использование сварочного дросселя
Сварочный аппарат есть, практически у каждого мало-мальски уважающего себя хозяина. Как правило, в последнее время приобретаются аппараты относительно невысокого качества, которые, после небольшой и недорогой доработки, совершенно не уступают лучшим фирменным образцам. Одной из таких доработок является установка дросселя для сварки .
Что это дает? Во-первых стабилизируется сварочный ток.
При использовании сварочного аппарата переменного тока поджиг электрода возможен только при достижении уровня напряжения, необходимого для поджига и соответствующей синусоиды электрического тока.
Включение в конструкцию дросселя позволяет сместить фазы между током и напряжением, что приводит к более легкому началу сварочных работ и более ровному горению и, соответственно, более качественному сварному шву.
При современном строительстве одну из ключевых ролей играет пол, особенно если он должен обладать не только внешними показателями, но и сохранять тепло. Паркетный пол считается оптимальным решением. Паркет Киев есть разных видов, цветовых решений и в его выборе есть определенные нюансы.
Сварочные дроссели применяются как в сварочных аппаратах, использующих электроды, так и в полуавтоматах. В случае применения в полуавтомате, значительно уменьшается разбрызгивание металла, а работа становится более мягкой, причем шов проваривается более глубоко.
Для изготовления сварочного дросселя своими руками умельцы используют трансформаторы от старых, желательно ламповых, телевизоров. Для начала снимается полностью вся намотка, а на «железо» наматывается провод, исходя из предварительных расчетов.
Стоит отметить, что весьма неплохое качество при изготовлении сварочного дросселя своими руками можно получить, если использовать в качестве заготовки дроссели от сгоревших ламп уличного освещения.
Как правило, обмотка содержит от 25 до 40 витков провода, сечением 35-40 мм2, если используется алюминиевый провод и от 25 мм2, в том случае, если удалось раздобыть медный.
Неплохо подходит для намотки дросселя шинка — как алюминиевая, так и медная.
Итак, можно ставить дроссель на, практически, любой сварочный аппарат, но специалисты все-таки советуют использовать его совместно с выпрямительным блоком — это относится только к сварочным аппаратам, работающим с переменным током. В этом случае достигается двойная цель. Получается более мягкая работа и возможность варить любыми электродами.
Существуют конструкции, в которых дроссель работает в паре с понижающим трансформатором. В этом случае расчет дросселя должен бытьолее точным и производится по формулам, которые можно найти в специализированной литературе.
При такой реализации конструкции предпочтительное место установки дросселя — вторичная цепь сварочного трансформатора. Стоит заметить, что именно таким образом располагается дроссель в некоторых дорогих сварочных полуавтоматах импортного производства. Преимущества здесь налицо. При таком расположении трансформатор обладает нормальным рассеиванием и весьма жесткой внешней характеристикой.
Регулировка работы дросселя — весьма ответственное дело. Несмотря на все расчеты, добиться устойчивой и безупречной работы с первого раза, практически невозможно. Обычно количество витков подбирают опытным путем отматывая или, наоборот, добавляя витки. Еще один способ регулировки заключается в изменении воздушного зазора в магнитопроводе — в этом случае регулировка более плавная.
Дроссель для сварочного аппарата своими руками
- Расчет сечения проводов первичной обмотки трансформатора
- Расчет сечения проводов вторичной обмотки трансформатора
- Выпрямитель для сварочного аппарата
- Способы регулирования тока сварочной дуги
- Как сделать дроссель и намотать его правильно?
Понижающий трансформатор является основой простейшего сварочного аппарата. Более сложным является сварочный аппарат, у которого на выходе имеется выпрямитель, который переменное напряжение преобразует в постоянное. Такие сварочные аппараты называют выпрямителями.
Трансформаторы бывают трех видов: тороидальный, стержневой и броневой, различия между ними можно увидеть на рисунке выше.
Самым сложным является сварочный аппарат, преобразующий входную частоту сети питания 50 Гц сначала в постоянное напряжение, как у выпрямителей, с последующим преобразованием его в переменное, частота которого измеряется уже килогерцами. Это инвертор.
Сделать своими руками инвертор по силам только тому, кто хорошо разбирается в радиоэлектронике и в используемой там элементной базе. Для этого специалиста не нужно объяснять, для чего нужен дроссель и где его место в схеме. А неподготовленному человеку целесообразно объяснить, что такое трансформатор и выпрямитель к нему.
Расчет сечения проводов первичной обмотки трансформатора
Схема устройства сварочного трансформатора.
Теория трансформаторов сложна тем, что она основана на законах электромагнитной индукции и других явлений магнетизма. Однако, не используя сложный математический аппарат, можно пояснить, как работает трансформатор и можно ли его собрать самостоятельно.
Вручную трансформатор можно намотать на металлическом сердечнике, собранном из пластин трансформаторной стали. Проще выполнить намотку на стержневой или броневой сердечник, чем на тороидальный.
Сразу же следует обратить внимание, что на изображении хорошо видна разница в толщине проводов: тонкий провод расположен непосредственно на сердечнике, и в нем явно видно большее количество витков. Это первичная обмотка.
Более толстый провод и с меньшим количеством витков – это вторичная обмотка.
Не учитывая потери мощности внутри трансформатора, рассчитаем, каким должен быть ток I1 в его первичной обмотке. Идеальное напряжение сети равно U=220 В. Зная потребляемую мощность, например, P=5 кВт, имеем:
I1 = Р:U= 5000_220=22,7 А.
По току в первичной обмотке трансформатора определяем диаметр провода. Плотность тока для бытового сварочного трансформатора должна быть не более 5 А/мм 2 сечения провода. Следовательно, для первичной обмотки потребуется провод сечением S1 =22,7:5=4,54 мм 2 .
По сечению провода определяем квадрат, его диаметр d без учета изоляции:
d 2 =4S/π=4×4,54/3,14=5,78.
Извлекая корень квадратный, получаем d=2,4 мм. Эти расчеты выполнены для медных жил провода. При намотке проводов с алюминиевым сердечником полученный результат необходимо увеличить в 1,6-1,7 раза.
Для первичной обмотки применяют медный провод, изоляция которого должна хорошо выдерживать высокие температуры. Это стеклотканевая или хлопчатобумажная изоляция. Подойдет резиновая и резинотканевая изоляция. Провода, имеющие ПВХ изоляцию, применять не следует.
Доработка сварочного аппарата
Выбор бытовых сварочных аппаратов на современном рынке огромен — от трансформаторных и инверторных до аппаратов плазменной резки.
Основная область использования данной электроаппаратуры в бытовых целях — ремонт авто — мототехники, сварочные работы на малых строительных площадках (дачное строительство).
В данной статье предлагаю рассмотреть некоторые моменты по модернизации бытовых трансформаторных сварочных аппаратов на примере сварки фирмы BlueWeld модель Gamma 4.185.
Рассмотрим принципиальную схему аппарата — как видите ничего сложного-обычный силовой трансформатор,с первичной обмоткой на 220/400В, с тепловой защитой и вентилятором охлаждения.
Рабочий ток прибора (от 25 до 160А) регулируется посредством выдвижной части сердечника трансформатора.Аппарат расчитан на работу с покрытыми электродами от 1,5 до 4мм диаметром.
Что же явилось предпосылкой к модернизации данного устройства? Прежде всего нестабильность питающего напряжения в том районе, где планировалось использование данного аппарата — в иные дни оно едва достигало 170В (кстати, некоторые инверторные аппараты просто не запускаются при таком напряжении питания).
Кроме того, аппарат изначально не предназачен для выполнения сварных швов с высокими эстетическими характеристиками (например при применении электродуговой сварки в процессе художественной холодной ковки металла или при сварке тонкостенных профильных труб) — в общем основным назначением аппарата было”спаять” между собой две железных болванки.
Помимо всего прочего, ”зажечь” дугу этой сваркой было весьма затруднительно даже при номинальном напряжении питания — про пониженное напряжение вообще говорить не приходится.
В итоге было решено прежде всего перевести аппарат на постоянный ток (для стабильности электрической дуги и как следствие увеличения качества сварного соединения) а также повысить напряжение выхода для более стабильного и легкого розжига электрода. Для этих целей идеально подошла схема выпрямителя/умножителя конструкции А.Трифонова — принципиальная электрическая схема (а) и вольт-амперные характеристики (б) показаны на рисунке.
Особую роль в этом техническом решении казалось бы обычного выпрямителя, играет перемычка Х1Х3-вставив ее,получают из обычного диодного моста VD1-VD4 с низкочастотным фильтром C1C2L1 выпрямительное устройство, на выходе которого в режиме холостого хода мы имеем удвоенное напряжение (по сравнению с вариантом работы прибора без перемычки).
Рассмотрим более подробно работу схемы. Положительная полуволна напряжения поступает на полупроводниковый вентиль VD1 и зарядив конденсатор С1 до максимума возвращается к началу обмотки трансформатора. В другой полупериод, заряд проходит к конденсатору С2, а от него к вентилю VD2 и далее к обмотке.
Конденсаторы С1 и С2 соединены таким образом, что результирующее напряжение оказывается равным суммарному (удвоенному) напряжению, которое и подводится через дроссель на держатель электрода и таким образом способствует стабильному разжиганию дуги. Вентили VD3 и VD4 при замкнутой перемычке Х2Х3 и отсутствии сварочной дуги в работе схемы не участвуют.
Главным достоинством схемы является то,что при применении обычной схемы моста имеет место резкое снижение выпрямленного напряжения при увеличении тока нагрузки в момент зажигания дуги-приходится ставить электролитические конденсаторы огромной емкости — 15000мкф, и все это при том, что в момент касания электродом свариваемых поверхностей и мнгновенного разряда конденсатора большой емкости, происходит микровзрыв плазмы с разрушением покрытия электрода, а это ухудшает розжиг. Теперь немного о деталях конструкции.
В качестве вентилей диодного моста применимы полупроводниковые диоды Д161 или В200 со стандартными радиаторами для них.
Если у вас в наличии имеются 2 диода Д161 и 2 диода В200 вы можете сделать мост более компактным — диоды исполнены с разной проводимостью и радиаторы можно скрепить шпильками прямо между собой, не применяя прокладок. В качестве конденсаторов, перестраховавшись, применил набор неполярных конденсаторов МБГО (можно МБГЧ,МБГП).
Емкость каждого получилась по 400 мкф, чего вполне хватило для стабильной работы аппарата. Токовый дроссель L1 намотан на сердечнике от трансформатора ТС-270 проводом сечением 10мм квадратных.
Сварочный аппарат своими руками: комплектация, чертежи, схемы и проекты самодельных аппаратов (110 фото)
Основная часть специалистов считает, что создание аппарата для сварки не потребует особых навыков. Но прежде чем приступить к его изготовлению, нужно чётко понять в каких целях его можно использовать.
Очень важно, чтобы схема сварочного аппарата была как можно проще, изредка, даже применяют трансформаторы, изъятые из микроволновой печи. Изделие обязано функционировать от бытовой электрической сети с напряжением в 220В.
При этом выделяют целый каталог самодельных аппаратов, функционирующих от электрической сети в 380В.
Комплектация
Сборка аппарата, в большинстве ситуаций, совершается для осуществления мелких сварочных работ, требуемых в бытовых условиях.
В комплектацию представленного аппарата включены следующие компоненты:
Блок питания
Главным компонентом в нём считается преобразователь (трансформатор), его можно создать из бывшего автотрансформатора или же из преобразователя, изъятого из микроволновой печи. Если используется последний вариант, то вынимая трансформатор из микроволновой печи нужно быть предельно осторожными, чтобы не навредить основной обмотке.
Блок выпрямителя
Главными компонентами представленного оборудования являются диоды. Подборка мощности диодов выполняется таким образом, чтобы они были в состоянии выдержать предварительно установленные нагрузки. Для охлаждения диодов применяются специальные радиаторы, изготовленные из сплава алюминия.
При разметке установочной платы обязательно нужно оставить место для дроссели, которая создана сглаживать импульсы. Сборка выпрямителя выполняется на отдельной плате с применением гетинакса или текстолина.
Блок инвертора
Инвертор трансформирует поступающий из выпрямителя постоянный ток в переменный, который характеризуется высокой частотой колебания. Трансформация осуществляется с применением электронных схем на мощных транзисторах или тиристорах.
Изготовить сварочный инвертор своими руками – не трудно, главное, подобрать все представленные компоненты, присутствующие в комплектации. К тому же можно значительно сэкономить на дополнительной обмотке преобразователя, используя не медные провода, а медную жесть.
Технология сборки сварочного аппарата
Если вас интересует, как сделать сварочный аппарат собственноручно, то нужно следовать такому плану:
Выпрямитель располагается на одном пульте управления с преобразователем и дросселю. Регулятор силы тока располагается на панели управления.
С имеющихся катушек преобразователя (не задевая сердечник) удаляются дополнительные обмотки. К основной обмотке прикасаться не нужно, а вот среднюю можно перемотать проводом, выполняя отводы через последующие тридцать витков.
Клеммы для выведения дополнительного типа обмотки преобразователя изготавливаются из трубок, из меди, диаметр которых равен 10-12 миллиметров, в длину они достигают 30-40 миллиметров. Одна сторона клеммы расклепывается и в образовавшейся пластине просверливается выемка размером около десяти миллиметров, с обратной стороны, вставляется предварительно зачищенный провод.
С панели, размещённой сверху преобразователя, удаляются винты, оснащённые гайками, и заменяются усовершенствованными винтами, типа М10 – к ним подсоединяются клеммы.
Для выведения основной обмотки создается отдельная плата и прикрепляется к преобразователю. Предварительно в плате нужно создать 10-11 отверстий, в диаметре достигающих 6 миллиметров, и соединить с ними винты М6, содержащие две гайки и шайбы. Далее, осуществляется параллельное соединение двух боковых обмоток, а затем добавление к ним средней обмотки.
Главной характеристикой самодельного сварочного аппарата является то, что к электрической сети он может быть подключен только через рубильник, используя провода сечения около 1,5 мм2.
С фото сварочного аппарата, изготовленного своими руками можно ознакомиться в нашей галерее.
Если при изготовлении представленного аппарата своими руками возникают трудности, то всегда можно приобрести сварочный аппарат в магазине.
svarnoy.info
Свежие записи
Свежие комментарии
- Дмитрий к записи Связаться с нами
- admin к записи Продолжение: DXF для твердотопливного котла 9 кВт.
- admin к записи Чертежи шахтного твердотопливного котла 9 кВт
- ric к записи Повышение эффективности производства
- Сварщик к записи Сварка труб через «операцию»
Сварочные аппараты переменного тока
Сварочные аппараты переменного тока, подразделяют на четыре основные группы: сварочные аппараты
? с отдельным дросселем,
? со встроенным дросселем,
? подвижным магнитным шунтом,
? с увеличенным магнитным рассеянием и подвижной обмоткой.
Они отличаются по конструкции и по электрической схеме. Сварочные аппараты состоят из понижающего трансформатора и устройства — дросселя, подвижного магнитного шунта, подвижной обмотки — для создания падающей внешней характеристики и регулирования сварочного тока. Трансформатор обеспечивает питание дуги переменным током напряжением 60…70 В.
Сварочные аппараты с отдельным дросселем (рис. 1) состоят из понижающего трансформатора и дросселя (регулятора тока). Трансформатор Тр имеет сердечник (магнитопровод) 2 из пластин, отштампованных из тонкой трансформаторной стали толщиной 0,5 мм. На сердечнике расположены первичная 1 и вторичная 3 обмотки. Первичная обмотка из изолированной проволоки подключается к сети переменного тока напряжением 220 или 380 В. Во вторичной обмотке, изготовленной из медной шины, индукцируется напряжение 60…70 В. Небольшое магнитное рассеивание и малое омическое сопротивление обмоток обеспечивают незначительное внутреннее падение напряжения и высокий к.п.д. трансформатора. Последовательно с вторичной обмоткой в сварочную цепь включена обмотка 4 (из голой медной шины) дросселя Др. Обмотка имеет асбестовые прокладки, пропитанные теплостойким лаком. Сердечник дросселя также набран из пластин тонкой трансформаторной стали и состоит из двух частей: неподвижной 5, на которой расположена обмотка дросселя, и подвижной 6, перемещаемой с помощью винтовой пары 7. При вращении рукоятки по часовой стрелке воздушный зазор а увеличивается, против часовой стрелки—уменьшается.
Сварочные аппараты с отдельным дросселем
Рис. 1
При возбуждении дуги (при коротком замыкании) большой ток, проходя через обмотку дросселя, создает мощный магнитный поток, наводящий э.д.с. дросселя, направленную против напряжения трансформатора. Вторичное напряжение, развиваемое трансформатором, полностью поглощается падением напряжения в дросселе. Напряжение в сварочной цепи почти достигает нулевого значения.
При возникновении дуги сварочный ток уменьшается, вслед за ним уменьшается э.д.с. самоиндукции дросселя, направленная против напряжения трансформатора, и в сварочной цепи устанавливается рабочее напряжение, необходимое для устойчивого горения дуги, меньшее, чем напряжение холостого хода. Изменяя зазор а между неподвижным, и подвижным магнитопроводами, изменяют индуктивное сопротивление дросселя и тем самым ток в сварочной цепи. При увеличении зазора магнитное сопротивление магнитопровода дросселя увеличивается, магнитный поток ослабляется, уменьшается э.д.с. самоиндукции катушки и ее индуктивное сопротивление. Это приводит к возрастанию сварочного тока. При уменьшении зазора сварочный ток уменьшается. Один оборот рукоятки винтовой пары изменяет сварочный ток примерно на 20 А.
По этой схеме изготовлены сварочные трансформаторы типа СТЭ. Трансформаторы СТЭ-24-У и СТЭ-34-У не сложны по устройству и безопасны в работе и поэтому их широко применяют при ручной дуговой сварке.
Сварочные аппараты со встроенным дросселем (рис.2) имеют электромагнитную схему, разработанную акад. В. П. Никитиным. Магнитопровод трансформатора состоит из основного сердечника на котором расположены первичная 2 и вторичная 6 обмотки собственно трансформатора, и добавочного сердечника 4 с обмоткой 5 дросселя (регулятора тока). Добавочный магнитопровод расположен над основным и состоит из неподвижной и подвижной частей, между которыми с помощью винтовой пары 3 устанавливается необходимый воздушный зазор а.
Сварочные аппараты со встроенным дросселем
Рис. 2
Магнитный поток, создаваемый обмоткой дросселя, может иметь попутное или встречное направление с потоком, создаваемым вторичной обмоткой трансформатора, в зависимости от того как включены эти обмотки.
Сварочный ток регулируют, изменяя воздушный зазор а, чем больше зазор а, тем больше сварочный ток.
Этот принцип действия лежит в основе конструкции следующих сварочных трансформаторов СТЭ-24-У, СТЭ-34-У, СТН-350, СТН-500, СТН-700, ТСД-500, ТСД-1000-3, ТСД-2000.
Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом (рис. 3)
Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом
Рис. 3
имеют замкнутый магнитопровод, у которого на одном стержне расположены первичная 4 и вторичная 3 обмотки трансформатора, а на другом — реактивная обмотка 1. Между ними находится стержень — магнитный шунт 2. Шунт замыкает магнитные потоки, создаваемые первичной и реактивной обмотками. При этом образуются магнитные потоки рассеяния, которые создают значительное индуктивное сопротивление. Таким образом, обеспечивается падающая внешняя характеристика трансформатора.
Сварочный ток регулируют, перемещая магнитный шунт вдоль направления магнитного потока. При выдвижении шунта рассеяние магнитных потоков первичной и реактивной обмоток уменьшается, вследствие чего уменьшается индуктивное сопротивление трансформатора. При этом сварочный ток возрастает. По такому принципу работают аппараты типа СТАН и СТШ.
Сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Трансформатор имеет магнитопровод, на обоих стержнях которого расположены по две катушки: одна с первичной обмоткой, а вторая — со вторичной обмоткой. Катушки первичной обмотки закреплены неподвижно в нижней части сердечника, а катушки вторичной обмотки перемещаются по стержню с помощью винтовой пары. Сварочный ток регулируют изменением расстояния между первичными и вторичными обмотками. При увеличении этого расстояния магнитный поток рассеяния возрастает, а сварочный ток уменьшается. По этому принципу изготовлены такие трансформаторы ТС-120, ТС-300, ТС-500, ТСК-300, ТСК-500, ТД-300, ТД-500.
И еще несколько слов о сварочных инверторах
Сварочный инвертор — это современно и правильно, хотя бы потому, что электроэнергии ему нужно почти в два раза меньше, чем обычному сварочному аппарату. |
Сварочный инвертор это устройство преобразующее входной переменный ток в постоянный, далее с помощью транзисторных ключей постоянный ток преобразуется в переменный с частотой выше 50 кГц и подаётся на высокочастотный сварочный трансформатор с последующим выпрямлением. Система управления с помощью обратных связей формирует идеальные выходные характеристики для любого способа сварки.
Благодаря высокой частоте, вес и размеры силового трансформатора снижаются в разы по сравнению с традиционными сварочными аппаратами. Например, обычный сварочный трансформатор на 160А весит 18кг, в то время как силовой трансформатор сварочного инвертора на 160А весит всего 0,25кг и по размерам чуть больше пачки сигарет.
Сварочные инверторы являются наиболее современными источниками сварочного тока. В отличие от трансформаторов и выпрямителей, у инверторов отсутствует силовой трансформатор. Работа сварочного инвертора построена на принципе фазового сдвига (инверсии) напряжения, осуществляемого электронной микропроцессорной схемой с покаскадным усилением тока (обычно микропроцессором типа IGBT). За счёт применения такого принципа удаётся получить широкий спектр вольт-амперных характеристик — от крутопадающей до возрастающей — с очень гладкой кривой тока, отклонения которого снижены до уровня десятых долей процента, что позволяет добиваться высокого качества сварки. Включение в схему высокочастотного генератора расширяет сферу применения инверторных источников питания и позволяет использовать их практически для любого метода дуговой сварки и для плазменной резки.За счёт небольшой массы, инверторы малой мощности очень перспективны для использования при монтаже ответственных металлоконструкций и трубопроводов, к сварным соединениям которых предъявляются повышенные требования, а условия работы не позволяют применять громоздкое промышленное оборудование, предназначенное для работы в цеховых условиях. Мощные инверторы промышленного типа позволяют создавать сварочные комплексы для любого вида дуговой сварки, построенные по модульному принципу — на основе одного источника тока. Все инверторы имеют плавную регулировку сварочного тока, а цифровая схема микропроцессора и введение ячеек памяти позволяет организовать запоминание нескольких наиболее часто применяемых режимов сварки.
Наш — более чем 25-летний опыт продажи и ремонта сварочных инверторов различных типов позволяет сформулировать основные потребительские характеристики этих сварочных аппаратов:
1. Малый вес (3-13 кг) и скромные размеры сварочных инверторов позволяют производить сварку, легко перемещаясь вместе с аппаратом;
2. В инверторе нет силового трансформатора, а значит нет внутренних потерь на перемагничивание железа, на нагрев обмоток при взаимодействии их электромагнитных полей, на поглощение части электромагнитной индукции регулировочным шунтом — то есть КПД инвертора просто несопоставим с КПД обычного сварочного трансформатора или выпрямителя. Так, при сварке электродом диаметром 3 мм обычный аппарат потребляет не менее 6-7 кВт, а любой, даже самый простенький инвертор не более 3,5 кВт;
3. Микропроцессорное управление сварочного инвертора обеспечивает устойчивую обратную связь тока и напряжения на дуге с выходными параметрами аппарата — при зажигании дуги аппарат генерирует дополнительный импульс тока (так называемый «горячий старт»), а при коротком замыкании сварочный ток сразу отключается — то есть «приморозить» электрод здесь практически невозможно;
4. Сварочный инвертор имеет значительно более широкий, чем у обычного аппарата, диапазон регулировки сварочного тока, что особенно важно при сварке тонкими электродами (диаметром 1,6 или 2 мм) — дуга на малых токах «шепчет», брызг нет — не сварка, а одно удовольствие.
5. Что же касается стоимости сварочных инверторов, то она уже достаточно давно, и не без участия производителей из КНР, вплотную приблизилась к стоимости традиционных сварочных аппаратов, тем более, что цены на обычные аппараты тоже на месте не стоят — так что разница в цене заслуженная.
Теперь о недостатках (ну как же без них) или, скажем так — об особенностях эксплуатации сварочных инверторов.
Здесь надо четко различать:
— эксплуатация на производстве;
— использование аппарата дома, в гараже, на даче.
На производстве основной враг инвертора пыль, причем любая — и от «болгарки» и от реконструкции стен.
На втором месте — желание, с помощью ивертора, разрезать пополам рельс. Разумеется, такие желания не всегда совпадают с возможностями аппарата, тем более что резать такой «сварщик» старается быстро и тепловое реле аппарата просто не успевает среагировать на такую сверхнагрузку. В результате дорогостоящий модуль I.G.B.T. — «сердце» аппарата, выходит из строя прежде, чем аппарат отключится сам.
Дальше идут такие «мелочи» как небрежное обращение с аппаратом, продолжение его эксплуатации при появлении явных признаков неисправности, ослабление фиксации сварочных кабелей в панельных гнездах, да и просто передача инвертора неквалифицированному сварщику, хотя и «асы» тоже бывают хороши.
Что же касается эксплуатации аппарата в быту, то здесь характерны следующие проблемы: заметно низкое (ниже 180 В) напряжение в дачной или гаражной электросети (владелец аппарата даже и в этом случае, по наивности, ждет от него эффективной работы), а второе место делят между собой зимнее хранение аппарата в сарае или в гараже и передача аппарата соседу.
Но в большинстве случаев, аппараты у частных владельцев живут долго и счастливо.
Есть у сварочных инверторов еще одна особенность. Это труднопроизносимое название. Многие так и норовят сказать «инвектор». Впрочем, на отличные потребительские характеристики инверторов это почти не влияет.
Поэтому, договариваемся сразу, сварочный инвертор, как всякий хороший и дорогостоящий инструмент, надо беречь, на землю не бросать, кому попало не доверять, почаще продувать от пыли (хотя бы «обратным ходом» пылесоса) и все будет хорошо, тем более, что наш Сервис-центр давно уже освоил практически любой ремонт сварочных инверторов. ________________________________________________________________________________
НЕМНОГО ТЕОРИИ.
Принцип действия инвертора.
Инвертор — это устройство, преобразующее постоянное напряжение в высокочастотное переменное. Конвертор — устройство для понижения или увеличения постоянного напряжения, иногда с промежуточным высокочастотным звеном. С появлением инверторных источников более простые неинверторные стали называть конвенциональными, т.е. традиционными.
Схема выпрямителя с двухтактным транзисторным (рис.1) инвертором наиболее удобна для объяснения процесса инвертирования. Входной выпрямительный блок V1 преобразует переменное напряжение сети в постоянное, которое сглаживается с помощью низкочастотного фильтра L1, С1. Затем выпрямленное напряжение Uвс преобразуется в однофазное переменное U1 высокой частоты с помощью инвертора на двух транзисторах VT1 и VT2. Далее напряжение понижается трансформатором Т до U2, выпрямляется блоком вентилей V2, проходит через высокочастотный фильтр L2, С2 и подается на дугу в виде сглаженного напряжения.
Рис.1 Схема выпрямителя с транзисторным инвертором
Подробнее рассмотрим процесс инвертирования. При подаче сигнала на базу транзистора VT1 отпирается его коллекторная цепь, и по первичной обмотке трансформатора Т в интервале времени t1 протекает ток в направлении, показанном тонкой линией. При снятии сигнала с базы этот ток прекращается. С некоторой задержкой отпирается транзистор VT2, при этом в интервале времени t2 ток по трансформатору идет уже в другом направлении, показанном пунктиром. Таким образом, по первичной обмотке трансформатора идет переменный ток. Длительность его периода Т и частота переменного тока f = 1/Т зависят от частоты запуска транзисторов, определяемой системой управления. Обычно частота устанавливается на уровне 1-100 кГц. Поскольку эта частота не зависит от частоты сети, такой инвертор называют автономным. Иногда инвертор конструктивно объединяют с трансформатором Т, выпрямительным блоком V2 и фильтром L2-C2. Такое устройство называют конвертором, у него на выходе, как и на входе, постоянное напряжение, но меньшей величины.
Если на входе инвертора установлен мощный накопительный конденсатор С1, то напряжение инвертора U1 имеет прямоугольную форму, как показано на рис.2. Такую конструкцию называют автономным инвертором напряжения (АИН). Напротив, если на входе инвертора установить мощный дроссель L1, а обмотку трансформатора Т шунтировать конденсатором, то сглажен будет уже входной ток. Такой преобразователь называется инвертором тока (АИТ). Наконец, возможна конструкция, в которой благодаря наличию последовательно соединенных индуктивности и емкости образуется колебательный контур с синусоидальным током, она названа резонансным инвертором (АИР).
Регулирование режима сварки осуществляется несколькими способами. Например, если входной выпрямительный блок выполнить тиристорным, то при увеличении напряжения Uвс увеличивается и амплитуда высокочастотного напряжения U2 и среднее значение Uв выпрямленного напряжения (рис.2а):
Uвс ↑ => U1 ↑ => U2 ↑ => Uв ↑
Возможно также регулирование изменением частоты импульсов (рис.2б):
f ↑ => T ↓ => Uв ↑
Но наибольшее распространение получил способ широтно-импульсного регулирования (рис.2в):
t ↑ => Uв ↑,
поскольку при постоянной частоте облегчается выбор параметров выходного фильтра, а также снижается спектр электромагнитных помех, которые легче устранить входным фильтром.
Рис.2 Осциллограммы при регулировании напряжения изменением амплитуды (а), частоты (б) и ширины импульсов (в).
В выпрямителе с инвертором используется амплитудное, частотное и широтное регулирование режима.
Естественные внешние характеристики выпрямителя зависят от конструкции инвертора и трансформатора. Искусственные характеристики формируются с помощью обратных связей по току и напряжению.
Сварочные свойства выпрямителей с инвертором, как правило, лучше, чем у конвенциональных источников, и объясняется это высоким быстродействием инвертора. Если у неинверторного однофазного выпрямителя длительность переходного процесса составляет не менее полупериода стандартного переменного тока, т. е. около 0,01 с, то у выпрямителя с инвертором быстродействие характеризуется значениями 0,0005 с и меньше. При механизированной сварке в углекислом газе такой выпрямитель способен обеспечить сложный алгоритм изменения тока с целью управления переносом электродного металла при длительности отдельных этапов цикла около 1 мс. Высокие динамические свойства выпрямителя с инвертором проявляются и в случае программного управления процессом ручной дуговой сварки, например по циклограмме. В этом случае легко обеспечивается горячий пуск в начале сварки, быстрый переход от одного из заранее настроенных режимов к другому при попеременной сварке то нижних, то вертикальных швов, сварка пульсирующей дугой с регулируемой формой импульса и т. д.
Достоинства и недостатки выпрямителя с инвертором тесно связаны друг с другом. Здесь энергия претерпевает по крайней мере четыре ступени преобразования. Тем не менее, такой выпрямитель экономичен и весьма перспективен. Дело в том, что сердечник высокочастотного трансформатора имеет очень малые сечение и массу. Обычно сердечник весит в десятки раз меньше, чем сердечник трансформатора на 50 Гц. В целом, такой выпрямитель имеет замечательные массо-энергетические характеристики: 0,02-0,1 кг на 1 А сварочного тока и 1-4 кг на 1 кВт потребляемой мощности, т. е. весит в 5-15 раз меньше других выпрямителей.
Выпрямитель с инвертором пока еще дороже конвенциональных источников, поэтому его рекомендуют использовать в тех случаях, где имеют значение малые масса и габариты — при сварке на монтаже, в быту, на ремонтных работах. В эксплуатации такой источник чрезвычайно экономичен. Его коэффициент мощности близок к 1, КПД не ниже 0,7, а иногда достигает 0,9.
СТАТЬЯ ПО СВАРОЧНЫМ ИНВЕРТОРАМ
Для чего нужен дроссель в сварочном аппарате
Как сделать дроссель для сварочного аппарата постоянного тока
Сварка постоянным электрическим током получила широкое применение не только в масштабах крупных производств, но и в домашних мастерских.
Современный рынок предлагает десятки (если не сотни) аппаратов для сварки с помощью электрической дуги, начиная от компактных маломощных сварочников, заканчивая промышленными высокопроизводительными агрегатами.
Вне зависимости от типа оборудования, применяемого для электросварки, всех их объединяет одна проблема — неконтролируемое падение напряжение, из-за чего розжиг дуги и формирование шва становится затруднительным.
Для решения этой проблемы умельцы придумали дросель, внедряемый в цепь со сварочным оборудованием. У начинающих сварщиков сразу возникнет много вопросов: «Что это за деталь и как она функционирует? Как сделать дроссель самому на свой аппарат? Как рассчитать дроссель правильно?». В этой статье мы постараемся ответить на эти, и многие другие вопросы.
Общая информация
Для чего нужен дроссель? Эта небольшая деталь, подключенная в цепь, обеспечивает плавный розжиг дуги и поддерживает ее стабильность даже при перепадах напряжения, к тому же металл практически не разбрызгивается, шов получается более качественным, можно точно настроить аппарат и без проблем варить тонкий металл.
Принцип работы прост: дроссель пропускает через себя ток, накапливая его от сварочного трансформатора или любого другого аппарата. Накопленный ток как раз и используется для компенсации потерянного напряжения. Также дроссель с подмагничиванием обеспечивает нужное сопротивление тока, если напряжение слишком велико.
Совсем не обязательно покупать дроссель в магазине, тем более это далеко не дешевая покупка. Этот агрегат вполне можно смастерить самостоятельно.
Его конструкция состоит из сердечника и двух обмоток с сечением, рассчитанным на работу с определенным значением постоянного тока.
Именно поэтому не получится изготовить универсальный дроссель, ведь маленькая деталь не справится с мощным сварочником, и наоборот. Так что важно правильно рассчитать, сколько обмотки понадобится для работы с тем или иным напряжением.
Регулировка тока
Регулировка сварочного тока крайне важна для правильной работы и формировании качественного шва. Она может осуществляться несколькими способами:
- Регулировка тока путем изменения расстояния между элементами сварочного аппарата. Самый популярный способ. В конструкции аппарата предусмотрены обмотки, которые можно механически регулировать. Чтобы уменьшить силу тока ослабьте винты и разведите катушки с обмотками. Индукция несколько рассеется, и сила тока станет меньше. Чем больше сварочный агрегат, тем больше возможность регулировать ток, потому что интервал регулировки напрямую зависит от доступного размера в корпусе аппарата.
- Регулировка тока на обмотке трансформатора. Таким способом можно отсечь часть катушки, тем самым увеличив значение напряжения, пуская ток по более короткому пути. Чтобы ослабить ток путь нужно наоборот увеличить.
- Регулировка тока с помощью стальной пружины с креплением клемм через заданный интервал. Это неплохой способ регулировки, он позволяет плавно настраивать ток, но есть один существенный недостаток — пружина сильно нагревается и при этом постоянно находится под ногами у мастера, а это грубейшее нарушение техники безопасности.
Если внедрить в цепь дроссель, то решится большинство проблем, связанных с регулировкой тока. Это на первый взгляд небольшое приспособление способно в полной мере компенсировать недостающие напряжение или наоборот выполнять роль сопротивления, если напряжения слишком много. Настройка тока дросселем происходит очень плавно и сварщику не нужно держать под ногами раскаленную пружину.
Применение дросселя
Дроссель для сварки своими руками лучше всего работает на сварочных трансформаторах. Это доказывает наша практика.
Его также можно использовать и с инверторным типом оборудования, но эффективность может быть несколько ниже.
Дроссель для сварочного инвертора и сварочного полуавтомата быстро разжигает дугу даже при значительной потере тока, поэтому его можно без проблем использовать на даче или в цеху с нестабильным напряжением.
Отдельная особенность — это возможность использовать дроссель в паре с выпрямителем. Связка дроссель + выпрямитель способна увеличивать электродвижущую силу самоиндукции. В случае с полуавтоматом такой набор оборудования позволить легко зажечь дугу даже на значительном расстоянии от поверхности металла.
Дроссель своими руками
Теперь давайте разберемся, как дроссель для сварки своими руками можно намотать и как рассчитать дроссель. Чтобы намотать дроссель правильно, нужно досконально знать его устройство и понимать принцип работы.
В разделе «Общая информация» мы кратко описали устройство и принцип действия этого прибора. Мы составили небольшую поэтапную инструкцию, следуя которой вы сможете собрать дроссель для сварочного полуавтомата или инвертора.
Собранная вами деталь подойдет для использования на небольшом производстве или при домашней сварке. Итак, приступим:
- Для начала вам нужно найти старый трансформатор, он будет нашей основой. Опытные мастера советуют брать повышающий элемент из лампового телевизора модели «ТСА 270-1», он будет выступать в роли сердечника. Подобные модели можно легко найти на блошином рынке или поискать в интернете на онлайн-досках объявлений.
- Затем нужно разобрать трансформатор. Делается это просто: нужно срезать болты или повернуть головки в верхней части агрегата, затем снять катушки.
- Полученные «подковы» (как их именуют умельцы) устанавливают специальные прокладки. Их изготавливают из тонкого картона и приклеивают к основанию «подковы». Прокладки нужны для образования индуктивного зазора.
- Теперь нужно намотать провод на «подкову». Для этого берем алюминиевые провода сечением 36 миллиметров. Намотайте 22-24 витка с каждой стороны. Если вам удалось найти сердечник из лампового телевизора, то вы сможете намотать на каждую сторону по 8 витков в два слоя. Не забудьте сделать изоляцию между витками с помощью бумаги и бакелитового лака.
- Провод следует наматывать в одну сторону на каждой из катушек. Это необходимо для того, чтобы в конце провода располагались в одинаковом направлении и вверху была перемычка между отводами, соединяющая катушки, а внизу располагался вход и выход.
- Если вы все же неправильно намотали провода, и они располагаются в разном направлении, то установите по диагонали косую перемычку между верхним и нижним отводами. Вторая пара отводов будет играть роль входа и выход.
- Рекомендуется устанавливать дроссель в сварочном аппарате только после диодов. Подключите ко входу кабель диодного моста, а к выходу подключите кабель массы.
Если сила тока дросселем наоборот продолжает падать при применении, то нужно убрать несколько витков на каждой из катушек.
Вместо заключения
Источник: https://svarkaed.ru/oborudovanie-dlya-svarki/detali-i-prisposobleniya/kak-sdelat-drossel-dlya-svarochnogo-apparata-postoyannogo-toka.html
Дроссель для сварочного аппарата своими руками
Дроссель — промышленное название такого электротехнического элемента, как катушка индуктивности. Это приспособление имеет широкий спектр применения, в частности, мощный дроссель можно использовать для улучшения рабочих характеристик полуавтомата или инвертора для сварки.
Принцип работы
Основное свойство катушки индуктивности, представляющей собой магнитопровод, намотанный с соблюдением определенных условий вокруг ферромагнитного сердечника, – это стабилизация силы тока по времени.
Проще говоря, напряжение, приложенное к катушке, вызывает плавное нарастание силы тока на выходе. Изменение полярности приводит к такому же плавному уменьшению силы тока.
Главным фактором является то условие, что ток, проходящий по дросселю, не может резко возрастать или снижаться. Именно это и определяет ценность использования дросселя для сварки — компенсация сопротивления позволяет избежать резких скачков по амперажу.
Это позволяет подстраховаться от случайного прожига свариваемых заготовок, уменьшить разбрызгивание плавящегося металла и точно подобрать параметры тока для сварки по заданной толщине металла. Шансы получить хороший шов с применением дросселя для сварки значительно выше.
Параметр, определяющий коэффициент изменения по току — индуктивность. Измеряется она в Гн (генри) — за 1 секунду при напряжении в 1 В через дроссель с индуктивностью в 1 Гн может пройти только 1 А.
Число витков на катушке напрямую влияет на величину индуктивности. Она прямо пропорциональна количеству витков, возведенному в квадрат. Но если надо изготовить сварочный дроссель своими руками, то высчитывать точное число витков не обязательно.
Так как параметры сварочных аппаратов бытового назначения в большинстве своем стандартны и общеизвестны, сварщику для изготовления дросселя собственноручно достаточно будет воспользоваться приведенной ниже инструкцией.
Предназначение
В инверторе для сварки дроссель необходим, чтобы создать на электроде электрическую дугу. Поджиг происходит при достижении определенного уровня напряжения.
Сварочный дроссель увеличивает сопротивление, что смещает фазы между током и напряжением и позволяет производить более плавный поджиг. Сам по себе этот факт часто позволяет избежать прожигания заготовки, особенно если сварке подвергаются детали из тонкого листового металла.
Плавное изменение силы тока позволяет не испортить заготовку резкой подачей завышенной мощности, оптимально установить температуру дуги и, соответственно, не допустить разбрызгивания металла при сохранении нужной глубины обработки.
Другое ценное его свойство — это частичная защита от нестабильного напряжения в сети.
Дроссель для сварочного инвертора существенно облегчает поджиг электрода, который должен загораться при более высоком напряжении, чем выдает инвертор.
Примером может служить электрод MP-3, вольтаж для возгорания которого должен составлять 70 В. Выходной дроссель для сварки может существенно облегчить работу с этим электродом для инвертора, который выдает всего 48 В в режиме холостого хода.
Это происходит благодаря явлению самоиндукции. Устройство индуцирует ЭДС (электродвижущую силу), которая вызывает пробой воздуха и вспыхивание сварочной дуги, стоит только поднести присадку на расстояние в несколько миллиметров от поверхности металла.
Дроссель для сварки подключается ко вторичной обмотке трансформатора в аппарате. Его можно использовать в аппаратах любого типа — как в самодельных, так и заводского изготовления, работающих по любому принципу — инверторных, с понижающим трансформатором и тому подобное.
Материалы для изготовления
Дроссель для дооборудования полуавтомата либо инвертора можно собрать своими руками, используя конструктивные элементы из старой техники — ламповых телевизоров, уличных фонарей старой конструкции и других устройств, в которых имеется трансформатор.
Конструктивно он представляет собой сердечник из материала, проводящего магнитное поле, но не проводящего электрический ток либо надежно заизолированного, и трех слоев обмоток, разделенных диэлектриком.
В качестве основы для сердечника подойдет либо специальный материал — феррит, обладающий данными свойствами, либо ярмо (подкова) от старого трансформатора. Намотка устройства ля сварки делается алюминиевым или медным проводом сечением 20-40 мм.
Если используется алюминий, то сечение провода должно быть не менее 36 мм, медный провод может быть тоньше. Подойдет плоская медная шина сечением 8 мм.
Габариты сердечника должны позволять намотку примерно 30 витков шины данного сечения, с учетом прокладок-диэлектриков. Рекомендуется сердечник от повышающего трансформатора советского телевизора ТСА 270-1.
Последовательность действий
Когда необходимые инструменты и материалы подготовлены, можно приступать к изготовлению дросселя для сварки. Алгоритм действий такой:
- разобрать трансформатор, очистить катушки от следов старых обмоток;
- изготовить из стеклоткани, картона, пропитанного бакелитовым лаком, либо иных подходящих диэлектриков прокладки, которые в дальнейшем будут играть роль индуктивного (воздушного) зазора. Их можно просто приклеить к соответствующим поверхностям катушек. Толщина прокладки должна составлять 0,8-1,0 мм;
- произвести намотку на каждую катушку толстого медного или алюминиевого провода. Ориентироваться стоит на круглый провод из алюминия с сечением 36 мм либо медный с аналогичным омическим сопротивлением. На каждую «подковку» наносится 3 слоя по 24 витка в каждом;
- между слоями проложить диэлектрический материал — стеклоткань, пропитанный бакелитовым лаком картон или другой диэлектрик. Прокладки должны быть надежными, так как дроссель такой конструкции склонен к самопробою между намотками. Если сопротивление между намотками будет ниже, чем сопротивление воздуха между электродом и присадкой, то пробой произойдет именно между намотками, и устройство ля сварки будет необратимо повреждено.
Намотку надо производить равномерно, без перехлестов, строго в одну и ту же сторону, чтобы «мостик» между катушками был с одной стороны будущего дросселя, а контакты входа и выхода с другой.
В случае ошибки перемычку можно установить и косо. Важно, чтобы ее установка превращала катушки с разным направлением обмотки в катушки с одинаковым направлением по факту.
Включение и проверка
Дроссель для сварки подключается к системе между диодным мостом и массой — контактом, который идет на соединение со свариваемым материалом. Выход диодного моста соединяется со входом дросселя, к выходу собранной катушки индуктивности — соответственно контакт массы.
Всю конструкцию для сварки в сборе необходимо протестировать на кусочке металла того же химического состава и толщины, с каким в дальнейшем планируется вести большую часть сварочных работ. Показателями качества являются:
- легкий электроподжиг;
- стабильность дуги;
- относительно слабый треск;
- плавное горение без сильных брызг расплава.
Учтите, что введение этого элемента в конструкцию сварочного аппарата приводит не только к стабилизации работы, но и к некоторому падению силы тока. Если инвертор или полуавтомат начал варить хуже, то значит — упала сила тока.
Дроссель нужно отсоединить и снять несколько витков с каждой катушки. Точное количество витков в каждом конкретном случае подбирается эмпирическим путем.
Источник: https://svaring.com/welding/prinadlezhnosti/drossel-dlja-svarki
Что такое дроссель и для чего он нужен?
В этой статье мы расскажем читателям энциклопедии домашнего мастера что такое дроссель и для чего он нужен. Drossel — это немецкое слово, которое обозначает сглаживание. Конкретно будем говорить об электрическом дросселе.
Сейчас трудно найти электрическую схему в которой нет данного устройства, которое даже в цифровой век широко используется в технике.
Он нужен для регулирования либо отсекания, в зависимости от назначения — сглаживать резкие скачки тока или отсекать электрические сигналы другой частоты, постоянный ток отделять от переменного.
Конструкция и принцип работы
Прежде всего поговорим о том, из чего состоит данный элемент цепи и как он работает. На схемах обозначение дросселя следующее:
Внешний вид изделия может быть таким, как на фото:
Это катушка из провода намотанного на сердечник с магнитопроводом, или без корпуса в случае высоких частот. Похож на трансформатор только с одной обмоткой. Краткий экскурс в физику, ток в катушке не может мгновенно измениться. Проведем мысленный эксперимент — у нас есть источник переменного тока, осциллограф, дроссель.
Во время начала полу волны мы наблюдаем нарастание тока с запозданием, это вызвано индуцированием магнитного потока в сердечнике.
Происходит постепенное нарастание тока в обмотках, когда с источника переменного тока сигнал уходит на спад, мы наблюдаем спад тока в дросселе, опять же с некоторым опозданием, поскольку магнитное поле в магнитопроводе продолжает толкать ток в катушке и не может быстро изменить свое направление.
Получается в какой-то момент ток из внешнего источника противодействует току, наведенному магнитопроводом дросселя. В цепях переменного тока назначение дросселя — выступать ограничителем или индуктивным сопротивлением.
Для постоянного тока данный элемент схемы не является сопротивлением или регулирующим элементом. Этот эффект используют для устройств, в электрических цепях, где нужно ограничить ток до нужной величины, при этом избежать излишней громоздкости и выделения тепла.
Интересное пояснение по данному вопросу вы также можете просмотреть на видео:
Наглядное сравнение, объясняющее принцип работыТеоретическая часть вопроса
Область применения
Дроссель предназначен для того, чтобы сделать нашу жизнь светлее. Конкретно в люминесцентных лампах он ограничивает ток через колбу, до нужной величины, избегая его чрезмерное увеличение через лампу.
Люминесцентный светильник в основном состоит из дросселя, стартера, люминесцентной лампы. В двух словах описание работы люминесцентного светильника происходит так:
Из сети ток через дроссель проходит на одну из нитей накала люминесцентной лампы, далее попадает на стартерное устройство, далее на вторую нить накала и уходит в сеть. В стартерном устройстве пластина из биметалла нагревается тлеющим разрядом газа, выпрямляется под действием тепла и замыкает цепь.
В этот момент начинают работать нити накала, на концах лампочки, разогревая пары ртути в колбе люминесцентной лампы. Через короткий промежуток времени, пластина в стартере остывает и возвращается в исходное положение.
Во время разрыва цепи происходит резкий всплеск напряжения в дросселе, происходит пробой газа в колбе люминесцентной лампы, и возникает тлеющий разряд, лампочка начинает светить, работающая лампа шунтирует стартер, выключая его из цепи более низким сопротивлением.
В электронных схемах современных экономических люминесцентных ламп тоже есть рассматриваемый в статье элемент, но из-за более высоких частот он имеет миниатюрные размеры. А принцип работы и назначение остались те же.
Также дроссель обязательный элемент в схемах ламп ДРЛ, натриевых ламп ДНАТ, металлогалогеновых лампочек CDM.
В импульсных блоках питания в схемах преобразователях назначение дросселя — блокировать резкие всплески от трансформатора, пропуская сглаженное напряжение. Грубо говоря в этом случае он играет роль фильтра.
В электрических сетях они также устанавливаются, но называются реакторами. Назначение дугогасительного реактора — предотвращать появление самостоятельной дуги во время однофазного короткого замыкания на землю, также как и прочих реакторов, которые так или иначе регулируют или же ограничивают величину тока через них, специально или в случае нештатной ситуации.
С помощью дросселя можно улучшить дешевый или самодельный сварочный аппарат, установив его во вторичную цепь. Сварочный трансформатор собранный с дросселем будет варить не хуже фирменных аппаратов, дуга станет ровной и не будет рваться, шов будет равномерно залит.
Поджог дуги станет происходить намного легче и просадка сетевого напряжения будет меньше влиять на появление и горение дуги. Даже неспециалист сможет быстро достичь хороших результатов в сварке, делая всевозможные поделки у себя дома.
Вот мы и рассмотрели устройство дросселя, принцип работы и назначение. Надеемся, что теперь вы полностью разобрались, для чего нужен данный элемент схемы!
Будет интересно прочитать:
Источник: https://samelectrik.ru/chto-takoe-drossel.html
Понятие об устройстве сварочного трансформатора и регулятора (дросселя)
СВАРКА И РЕЗКА МЕТАЛЛОВ
Сварочные трансформаторы применяют при сварке переменным током для понижения напряжения заводской сети с 220—380 в до 60—65 в, необходимого для возбуждения сварочной дуги.
Изменение величины сварочного тока осуществляется регулятором (дросселем). Трансформатор и регулятор могут быть сделаны в виде отдельных аппаратов или объединены в одном корпусе и иметь обмотки на общем сердечнике.
При помощи трансформатора можно понижать напряжение и повышать его, пропуская первичный ток по соответствующей обмотке. Трансформатор, от которого получают ток низкого напряжения, называется понижающим. Трансформатор, позволяющий получать ток высокого напряжения, называется повышающим. Сварочные трансформаторы являются понижающими.
Основой трансформатора (рис. 6, а) является замкнутый сердечник /, набранный из большого количества одинаковых пластин, отштампованных из тонкой (0,5 мм) листовой трансформаторной (электротехнической) стали и стянутых шпильками; на сердечнике помещены обмотки 2 и 3, имеющие различное число витков.
Если по обмотке 2 с большим числом витков пропускать переменный ток, то он будет намагничивать сердечник /, создавая в нем переменный магнитный поток. Этот магнитный поток воздействует на витки второй обмотки 3, вследствие чего в ней появляется индуктированный переменный ток, но другого напряжения, величина которого зависит от числа витков в обмотке 3.
Чем больше витков имеет обмотка 3, тем выше напряжение индуктируемого в ней
тока, и наоборот. Так как обмотка 3 сварочного трансформатора имеет меньше витков, чем обмотка 2, то возникающий в обмотке 3 ток будет иметь меньшее напряжение, но большую величину.
сварочного трансформатора и регулятора (дросселя)» width=»413″ height=»147 «/>Рис. 6. Схемы трансформатора (а) и отдельного регулятора-дросселя (б) |
Обмотка 2, в которую поступает ток из сети, называется п е р — в и ч н о й, а обмотка 3, от которой ток отводится в сварочную цепь, — вторичной. На рис. 6, а путь магнитного потока в сердечнике показан пунктирными линиями.
Для получения более компактной конструкции трансформатора катушки его первичной и вторичной обмоток обычно помещаются на обоих стержнях сердечника. Первичная обмотка делается двухслойной, из медного изолированного провода прямоугольного профиля и располагается поверх вторичной обмотки.
Вторичная обмотка — однослойная, имеет большее сечение и выполнена из голого медного провода прямоугольного профиля.
На рис. 6, б показана схема отдельного регулятора. Регулятор имеет наборный сердечник 1 с обмоткой 2, включаемой последовательно в сварочную цепь. Сердечник имеет подвижную часть 3, которую можно перемещать вправо или влево с помощью винта 4, вращаемого рукояткой 5.
При этом воздушный промежуток а между неподвижной и подвижной частями сердечника будет увеличиваться или уменьшаться. Когда по обмотке 2 преходит переменный ток, в сердечнике возникает переменный магнитный поток, линии которого условно показаны пунктиром на рис. 6, б.
Этот поток будет тем меньше, чем больше величина воздушного промежутка а, так как последний создает значительное сопротивление для прохождения магнитного потока по сердечнику.
Магнитный поток, пересекая витки обмотки регулятора, в свою очередь индуктирует в них электродвижущую силу, направленную против движения тока в обмотке, образуя дополнительное сопротивление прохождению тока в сварочной цепи. Это дополнительное
сопротивление называют индуктивным; оно будет тем выше, чем меньше промежуток а. Следовательно, уменьшая величину воздушного промежутка а, мы увеличиваем индуктивное сопротивление в сварочной цепи и тем самым уменьшаем сварочный ток.
Наоборот, при увеличении воздушного промежутка а магнитный поток уменьшается, что уменьшает индуктивное сопротивление, вследствие чего сварочный ток возрастает. Обмотка регулятора выполнена из голого медного провода прямоугольного сечения.
Существуют различные конструкции сварочных трансформаторов, описание устройства которых дано в главе XVIII.
Сварка – технологический процесс, используемый на многих производствах, для соединения деталей путем их нагрева и установления межатомных связей. Существует более ста видов сварки, которые классифицируются по различным признакам. Классификация по …
Лазерная гравировка и резка
Такая технология гравировки, резки и раскроя материала использует лазер высокого уровня мощности. Лазерный луч, который сфокусирован, двигается в графической программе по траектории отрисованного эскиза. Используются разные материалы: двухслойный пластик, органическое …
Как правильно выбрать сварочный кабель для своего апарата?
Как правильно выбрать сварочный кабель? На обеспечение бесперебойной работы сварочного оборудования, а также длительность его эксплуатационного срока зависит то, как правильно выбрать сварочный кабель. Необходимо, чтобы это было приспособление высокого …
Источник: https://msd.com.ua/svarka-i-rezka-metallov/ponyatie-ob-ustrojstve-svarochnogo-transformatora-i-regulyatora-drosselya/
Сварка в доме – нужна ли она
Домашнее хозяйство будет неполным без сварочного аппарата, даже если он небольшой мощности. Работа в гараже, на приусадебном участке или даже в квартире иногда требует подключения сварки.
Но не покупать же дорогой инвертор, если сварка может понадобиться раз в год или реже. Поэтому многие мастера делают такое устройство своими руками.
А для этого нужна несложная и работоспособная схема аппарата на основе маломощного трансформатора, желательно схемы постоянного тока.
Аппарат, работающий в широком диапазоне тока и напряжения, для дома совершенно не нужен. Чаще будет необходима маломощная сварка – скрепить несколько листов металла, соединить уголки или швеллера, полосы и прутья.
А для маломощного сварочного аппарата и схема будет упрощенной. Первые сварочные аппараты работали на переменном токе, и за неимением других вполне всех устраивали.
Для такого агрегата достаточно было сделать понижающий трансформатор и снабдить его силовыми кабелями с электрододержателем.
Аппараты для сварки переменным током делятся на четыре типа:
- Схема с отдельным дросселем.
- Устройство со встроенным дросселем.
- С магнитным подвижным шунтом.
- С подвижной обмоткой и увеличенным магнитным рассеиванием.
Пульсации переменного тока аппарата сглаживались Т-образным фильтром, который состоит (на схеме) из дросселей Др1, Др2 и конденсаторов С1-С4. Дроссель сварочного агрегата обычно использовался или от люминесцентных ламп, или наматывался на самодельной катушке.
С увеличением площади сечения железа дросселя уменьшалась вероятность вхождения магнитной системы в режим насыщения. Если это происходило при большом токе нагрузки (например, при резке металла), то индуктивность дросселей резко уменьшалась и сварочный ток не сглаживался.
Соответственно, дуга горела неустойчиво.
Принципиальная схема сварочного аппарата переменного тока имела недостатки – работа только соответствующими электродами, невозможность регулировки тока дуги, подключения более мощных электродов и, вследствие этого – часто залипание электрода, приводящее к перегреву и выходу из строя обмоток трансформатора. С появлением полупроводников схема несколько усложнилась, но работать сваркой на постоянном токе стало удобнее и безопаснее.
И всего-то для этого нужно было в устройство добавить диодный мост. Так появился аппарат постоянного тока. Правда, диоды должны быть мощными и оснащаться охладительными радиаторами. Впоследствии схема усложнилась – добавились сглаживающие фильтры, регуляторы сварочного тока (механические или электронные), схемы защиты от КЗ и перегрева.
Простая схема сварочного аппарата работала хорошо, но удовлетворяла не всем требованиям технологий обработки металлов. По-прежнему, хотя и стало возможным работать любыми электродами, они залипали, и первой деталью, которая чаще всего выходила из строя, стали диоды.
Радиаторы не всегда помогали, поэтому для предотвращения их перегрева сначала появились вентиляторы, а затем и транзисторно-тиристорные схемы защиты.
Такая электронная начинка предохраняла устройство не только от короткого замыкания при залипании, но и предохраняла аппарат от перегрева.
Постоянным током стало возможным работать и электродами, и электродной проволокой без обмазки. Для розжига сварочной дуги на малых значениях тока напряжение на II обмотке трансформатора Uхх должно быть повышено до 70-85 В. Электроды можно использовать и более тонкие – начиная с 2-х мм. Мощные тиристоры (симисторы) позволяют плавно регулировать ток, изменяя напряжение на II обмотке в диапазоне 0,1 Uхх-0,9Uхх.
Требования к магнитопроводу
Такая схема приобрела универсальность – кроме сварочных работ, этим сварочным аппаратом стало возможно заряжать аккумуляторы, подключать к нему ТЭНы и использовать в других целях.
В домашних условиях сборка универсального сварочного аппарата с током сварки 15-250 А – дело неблагодарное. Поэтому самодельная сварка часто имеет маленькую мощность, при которой возможно использование электродов диаметром 2-4 мм.
Но для работы на малых токах применения схем с электронной регулировкой сварочного тока не избежать.
Поэтому, проанализировав требования к конструкциям любительских аппаратов для дома, можно очертить круг выполняемых параметров для них:
- Устройство должно иметь маленькие габариты и небольшой вес.
- Напряжение питания — 220 В, 50 Гц.
- Время непрерывной работы — сжигание 4-5 электродов диаметром 2-4 мм.
Первое требование определяется мощностью сварочного агрегата, поэтому их вполне можно регулировать. Время безопасной работы аппарата зависит теплостойкости изоляции, трансформаторного железа и провода для I и II обмоток. Для домашней сварки можно использовать стержневой магнитопровод. Сердечник в устройство набирается из пластин, изготовленных из электротехнической стали любой формы, но толщиной 0,3-0,6 мм.
Кроме традиционных прямоугольных сердечников, особым спросом пользуются тороидальные сердечники. Аппарат на таком железе работает в 3-5 раз эффективнее – не перегревается, диаметр электродов не критичен, габариты сварочного устройства постоянного тока намного меньше, электрические потери в сердечнике минимизированы за счет круглой формы. В изготовлении такой сварочный аппарат сложнее, но результат стоит того.
Сердечник для тора обычно изготавливается из трансформаторного ленточного железа – его сворачивают в рулон. Чтобы увеличить внутренний диаметр окна, часть ленты изнутри отматывается и наматывается снаружи. Расчетное сечение сварочного магнитопровода необходимо принимать как минимум 55 см2.
Требования к обмоткам трансформатора
Плотность тока в обмотке должна быть 5 А/мм2. Мощность II обмотки рассчитывается по формуле P2=Iсв х Uсв. Сечение провода может быть в пределах 5-7 мм2. Также для вторичной обмотки может использоваться медная прямоугольная шина диаметром до 3 мм. Сечение провода S в квадратных миллиметрах рассчитывается по формуле:
S = (∏х D)/4 или S = ∏*R2; где:
D — диаметр провода без обмотки. Если нет провода нужного диаметра, обмотку можно намотать два слоя. Общее сечение двух проводов вычисляется по формуле: D х 1,41. Если для обмоток трансформатора используется алюминиевый провод, то его сечение увеличивается в 1,7 раза.
Количество витков первичной обмотки рассчитывается по формуле:
W1=(k2 х S)/U1, где:
- k2 — постоянная величина.
- S — сечение ярма, см2.
Первичная обмотка в устройство наматывается термостойким медным проводом в стеклотканевой (МГТФ) или хлопчатобумажной изоляции (ПЭЛБО). Провод в ПВХ использовать не рекомендуется – при длительной работе изоляция может оплавиться и привести к короткому замыканию в обмотке.
Источник: http://GoodSvarka.ru/oborudovanie-i-materiali/svarka-v-dome/
Работа над полуавтоматом самодельным сварочным: технология изготовления
- Дата: 25-05-2015
- 388
- : 24
Те мастера, которые увлекаются сварочными работами, не раз задумывались над тем, как соорудить установку для проведения сопряжения элементов и деталей.
Описанный ниже самодельный сварочный полуавтомат будет иметь следующие технические характеристики: напряжение электросети, равное 220 В; уровень потребляемой мощности, не превышающий 3 кВа; работает в повторно-кратковременном режиме; корректируемоерабочего напряжения является ступенчатым и варьируется в пределах 19-26 В.
Сварочная проволока подается со скоростью в пределах от 0 до 7 м/мин, тогда как ее диаметр равен 0,8 мм. Уровень сварочного тока: ПВ 40% — 160 А, ПВ 100% — 80 А.
Практика показывает, что подобный полуавтомат сварочный способен демонстрировать отличную работоспособность и длительный срок жизнедеятельности.
Устройство полуавтомата для сварки.
Подготовка элементов перед началом работ
В роли сварочной проволоки следует применять обычную, ту, что имеет диаметр в пределах 0,8 мм, она реализуется в катушке по 5 кг. Такой сварочный полуавтомат невозможно будет изготовить без наличия сварочной горелки на 180 А, которая имеет евроразъем.
Приобрести ее можно в отделе, специализирующемся на продаже сварочного оборудования. На рис. 1 можно увидеть схему сварочного полуавтомата. Для установки понадобится выключатель питания и защиты, для него можно использовать однофазный автомат АЕ (16А).
При работе аппарата возникнет необходимость перехода между режимами, для этого можно применить ПКУ-3-12-2037.
Схема питания сварочного полуавтомата.
От наличия резисторов можно отказаться. Их цель состоит в скорой разрядке конденсаторов дросселя.Что касается конденсатора С7, то в тандеме с дросселем он способен стабилизировать горение и поддерживать дугу. В качестве наименьшей его емкости может выступить 20000 мкф, тогда как наиболее подходящий уровень равен 30000 мкф.
Если попытаться внедрить другие разновидности конденсаторов, которые обладают не столь внушительными размерами и более значительной емкостью, то они станут проявлять себя не в достаточной степени надежно, так как будут довольно скоро выгорать.
Для изготовления сварочного полуавтомата предпочтительнее использовать конденсаторы старого типа, расположить их нужно в количестве 3-х штук в параллель.
Силовые тиристоры на 200 А имеют достаточный запас, допустимо установить и на 160 А, однако функционировать они станут на пределе, в последнем случае возникнет необходимость использовать довольно мощные вентиляторы при работе. Используемые В200 следует устанавливать на поверхности негабаритной алюминиевой основы.
Изготавливая сварочный полуавтомат своими руками, процесс нужно начинать с намотки трансформатора ОСМ-1 (1кВт).
Схема самодельного приспособления для обмотки трансформаторов.
Его первоначально предстоит полностью разобрать, железо следует на время отложить. Предстоит изготовить каркас катушки, применив для этого текстолит толщиной равной 2 мм, такая необходимость возникает по той причине, что свой каркас не имеет достаточного запаса прочности.
Габариты щеки должны быть равны 147х106 мм. В щеках нужно подготовить окно, габариты которого равны 87х51,5 мм. На этом можно считать, что каркас полностью готов.
Теперь нужно отыскать обмоточный провод Ø1,8 мм, предпочтительнее использовать тот, что имеет усиленную стекловолоконную защиту.
Изготавливая сварочный полуавтомат своими руками, нужно создать на первичной обмотке следующее количество витков: 164 + 15 + 15 + 15 + 15. В промежутке между слоями нужно проложить изоляцию, применив тонкую стеклоткань. Провод предстоит наматывать с максимальной плотностью, в противном случае он может не влезть.
Схема намотки сварочного трансформатора.
Для подготовки вторичной обмотки нужно использовать алюминиевую шину, которая имеет стеклянную изоляцию с габаритами, равными 2,8х4,75 мм, приобрести ее можно у обмотчиков. Понадобится около 8 м, однако приобрести материал нужно с некоторым запасом. Намотку следует начинать с образования 19 витков, после предстоит обеспечить петлю, направленную под болт М6, затем необходимо сделать еще 19 оборотов.
Концы должны иметь длину по 30 см, что понадобится для проведения дальнейших работ.
При изготовлении полуавтомата сварочного следует учесть, что если для работы с габаритными элементами вам может быть недостаточно тока при подобном напряжении, то на этапе монтажа или уже в процессе дальнейшего использования аппарата можно переделать вторичную обмотку, дополнив ее еще тремя витками на плечо, в конечном результате это позволит получить 22+22.
Сварочный полуавтомат должен обладать обмоткой, которая укладывается впритык, по этой причине следует мотать очень аккуратно, это позволит расположить все верно.
При использовании для образования первичной обмотки эмальпровода затем в обязательном порядке нужно произвести обработку посредством лака, минимальное время удержания катушки в нем ограничено 6 часами.
Схема первичной и вторичной обмоток.
Теперь можно смонтировать трансформатор и подсоединить его к электросети, что позволит определить ток холостого хода, который должен быть равен примерно 0,5 А, уровень напряжения на вторичной обмотке должен быть эквивалентен 19-26 В. При совпадении условий можно на время отложить трансформатор и приступить к выполнению следующего этапа.
Делая сварочный полуавтомат своими руками, взамен ОСМ-1 для силового трансформатора допустимо использовать 4 единицы ТС-270, однако они обладают несколько иными габаритами, при необходимости для этого случая можно самостоятельно рассчитать данные для осуществления намотки.
Намотка дросселя
Изготовление корпуса из старого блока питания.
Для проведения намотки дросселя следует использовать трансформатор на 400 Вт эмальпровод Ø1,5 мм или больше. Намотку нужно произвести в 2 слоя, укладывая изоляцию между слоями, при этом нужно соблюдать требование, которое заключается в необходимости как можно более плотной укладки провода.
Теперь предстоит использовать алюминиевую шину с размерами в 2,8х4,75 мм, при намотке нужно осуществить 24 витка, остаток шины должен быть равен 30 см. Сердечник следует монтировать с обеспечением зазора в 1 мм, параллельно с этим предстоит уложить заготовки текстолита.
При самостоятельном изготовлении сварочного полуавтомата дроссель допустимо намотать на железе, позаимствованном от лампового старого телевизора.
Для питания схемы можно использовать готовый трансформатор. Его выдача должна составить 24 В при 6 А.
Сборка корпуса
На следующем этапе можно приступать к сборке корпуса установки. Для этого можно использовать железо, толщина которого равна 1,5 мм, углы предстоит соединить методом сварки. В качестве основания механизма рекомендуется использовать нержавеющую сталь.
В роли мотора может выступить та модель, которая применяется в стеклоочистителе машины марки ВАЗ-2101. Необходимо избавиться от концевика, который работает на возврат в крайнее положение.
В подкатушечнике для получения тормозного усилия используется пружина, можно для этого применить совершенно любую, которая есть в наличии.
Тормозной эффект будет более внушительным, если на это станет влиять воздействие сжатой пружины, для этого предстоит закрутить гайку.
Для того чтобы сделать полуавтомат своими руками, нужно подготовить следующие материалы и инструменты:
- эмальпровод;
- проволоку;
- однофазный автомат;
- трансформатор;
- сварочную горелку;
- железо;
- текстолит.
Изготовление такой установки окажется посильной задачей для мастера, который заблаговременно ознакомился с представленными выше рекомендациями. Этот автомат окажется намного более выгодным в плане стоимости по сравнению с той моделью, что была произведена в условиях завода, а ее качество не окажется ниже.
Источник: https://moyasvarka.ru/instrumenty/poluavtomat-samodelnyi-svarochnyi.html
Как сделать дроссель для сварочного аппарата своими руками?
Практически каждый мастер хотя бы раз задумывался над тем, как сделать дроссель для сварочного аппарата своими руками.
Сегодня продается достаточно большое количество различных устройств, которые можно использовать в условиях малого производства.
Это может быть приспособление, которое работает на временном или непрерывном токе, полуавтомат для сварки или изделие с использованием электродов. Однако качественное устройство стоит очень дорого, а бюджетные аналоги быстро приходят в негодность.
Схема сварочного аппарата переменного тока с отдельным дросселем: 1 – первичная обмотка, 2 – сердечник, 3 – вторичная обмотка, 4 – обмотка дросселя, 5 – неподвижная часть сердечника дросселя, 6 – подвижная часть сердечника дросселя, 7 – винтовая пара, Др – регулятор тока.
Для сборки самодельного приспособления для сварки понадобится подобрать и соорудить все нужные элементы, в том числе и дроссель.
Преимущества использования дросселя
Однофазная мостовая схема выпрямления (а). Графики напряжений и тока в трансформаторе (б), напряжения и тока в нагрузке (в).
Дроссель для сварки — это устройство для регулировки силы тока, используемого для выполнения сварочных работ. Элемент нужен для компенсации сопротивления, которого может не хватать. Его можно подсоединить к повторной обмотке трансформаторной конструкции.
Это дает возможность смещать фазы между проходящим током и его напряжением, в результате чего облегчается зажигание электродуги в начале работы. Она будет гореть ровно, в связи с чем есть возможность получить сварочный шов хорошего качества.
Если не использовать дроссель, то могут появиться проблемы во время сварки.
Дроссель может состоять в конструкции полуавтомата или устройства для сварки, которое предусматривает использование электродов. Полуавтомат с дросселем практически не разбрызгивает металл во время работы. Процесс сварки будет проходить гораздо мягче, чем при отсутствии дросселя.
Шов сварки сможет провариваться на существенную глубину. Достоинства подобного элемента не вызывают сомнений. Его можно смонтировать не только на самодельное устройство, но и на приспособление заводского производства. Особенно это касается бюджетных вариантов, склонных к неисправностям.
Это сможет существенно облегчить работу на подобных конструкциях и повысить качество сварочного шва.
Какие подручные средства можно использовать
Схема источника питания инверторного сварочного аппарата.
Чтобы соорудить дроссель для сварки своими руками, первым делом нужно подготовить материал. В данном случае можно применить практически любые неиспользуемые электротехнические приспособления.
Конструкция являет собой обыкновенный сердечник с намотанным проводом. Для данной цели можно использовать трансформаторную конструкцию, которая ранее была смонтирована в старом телевизоре. Всю обмотку понадобится демонтировать.
Сердечник можно будет использовать для намотки провода, длина которого рассчитывается заранее.
Если есть возможность, можно применить детали, которые были установлены в лампочках фонарей. Старые обмотки следует демонтировать, так как они часто неисправны. В процессе намотки провода их понадобится установить на прежнее место.
Для намотки дросселя можно применить любой сердечник сечением приблизительно 12-15 см. Между его элементами понадобится сделать немагнитную часть. Для этого следует закрепить прокладку для изоляции толщиной примерно 0,6-1 мм.
Плавной регулировки тока можно достичь благодаря монтажу подвижных обмоток трансформаторной конструкции. Путем смены расстояния между обмотками можно изменять величину магнитного потока и сопротивление в повторной обмотке.
Преобразование тока в сварочном инверторе.
Для сварки на непрерывном токе к обмотке на выходе трансформаторной конструкции нужно подключить элемент для преобразования временного тока в непрерывный. Такое приспособление называется выпрямителем. Ток может быть не непрерывным, а пульсирующим. Уменьшить пульсацию возможно исключительно путем увеличения емкости конденсаторного устройства.
Чтобы была возможность выполнять регулировку тока дуги с помощью дросселя, между выходом трансформаторной конструкции и точкой нужно включить 3 выпрямителя.
Элементы, которые будут нужны для сооружения дросселя:
- электротехническая конструкция;
- провода;
- трансформатор;
- лампа фонаря;
- картон для изоляции.
Схема изготовления сварочного дросселя.
Перед выполнением намотки провода понадобится изолировать ярмо.Для намотки дросселя можно использовать провод из алюминия или меди. В первом случае его сечение должно быть примерно 36-40 мм, во втором рекомендуемое сечение составляет 25 мм. Вместо провода можно использовать шину из меди толщиной 4-5 мм. Если планируется использовать алюминиевую деталь, то она должна иметь большую толщину.
Провод нужно наматывать в количестве 30-35 витков, шина наматывается в 3 слоя. Если в качестве сердечника будет использоваться элемент от лампочки фонаря, то намотку следует выполнять только на одну боковую часть по всей длине до тех пор, пока окно не заполнится. Направление намотки изменять не допускается. Каждый слой должен быть изолирован от предыдущего.
Элементы рекомендуется пропитать бакелитовым лаком.
В процессе намотки через одинаковое количество витков следует делать отводы. Контакты должны быть сильными, так как на них будет ложиться существенная нагрузка.
Установка дросселя оказывает положительное влияние на работу полуавтоматического устройства или обыкновенной самоделки. Для устройства, которое работает на временном токе, рекомендуется использовать приспособление вместе с конструкцией для выпрямления тока. В таком случае будет можно применять практически все возможные электроды.
Дроссель для сварки своими руками можно устанавливать и на устройство с понижающей трансформаторной конструкцией. Элемент нужно подключать на вторичную цепочку трансформатора для сварки.
Это даст возможность соорудить устройство фирменного сварочного полуавтомата, который стоит очень дорого. Дроссель следует точно рассчитать по формуле, которая есть в документации, поставляемой вместе с приспособлением.
Данное изделие будет иметь трансформаторную конструкцию с хорошим рассеиванием и отличными характеристиками.
Дроссель для инверторного или любого другого аппарата важно правильно настроить.
Ступенчатая регулировка тока дуги сварки может быть достигнута путем включения на выходе омического сопротивления, являющего собой нихромовую спираль, через одинаковое количество витков которой следует сделать отводы с контактами, выдерживающими любые нагрузки. Недостаток данного способа заключается в том, что в этом случае будет сильно нагреваться нить.
Когда настройка дросселя для сварки будет выполнена успешно, можно приступать к выполнению сварочных работ.
Существующие методы регулировки тока дуги сварки
Схема сварки тонкого металла при помощи инвертора.
Выполнять регулировку тока дуги можно с помощью изменения воздушной щели. Трансформаторное устройство может быть в таких режимах:
- Холостой ход. Временное напряжение подается на вход трансформаторного устройства. В повторной обмотке инициируется ЭДС, однако ток в выходной цепочке отсутствует.
- Нагрузочный режим. В процессе зажигания дуги она замкнет выходную цепочку, которая состоит из повторной обмотки трансформаторного устройства и обмотки дросселя. Будет протекать ток, значение которого может быть определено сопротивлением данных обмоток. Степень воздействия будет зависеть исключительно от размера щели в стержне.
- Режим короткого замыкания. Электрод касается соединяемых деталей. В сердечнике трансформаторной конструкции должен быть создан временный магнитный поток. В повторной обмотке следует инициировать ЭДС. Ток в цепочке будет определяться значением сопротивления дросселя и обмотки трансформаторного устройства.
Сопротивление будет возрастать в случае увеличения щели. Это должно привести к уменьшению магнитного потока. В конечном итоге ток дуги возрастет. Подобный метод позволяет выполнять плавную регулировку тока, поэтому его рекомендуется использовать.
Недостаток подвижной системы заключается в том, что в случае вибрации металла катушка станет ненадежной во время прохождения временного тока. В этом случае регулировку можно сделать ступенчатой. Для этого дроссель следует изготавливать так, чтобы в проводе не было щели.
Соорудить сварочный дроссель своими руками несложно. Чтобы все сделать правильно, понадобится следовать технологии, подготовить все нужные элементы и соблюдать последовательность действий.
Источник: https://masterinstrumenta.ru/svarka/drossel-dlya-svarochnogo-apparata-svoimi-rukami.html
Путаница между тороидальным трансформатором и индукционной катушкой (дросселем)
Сердечник трансформатора и индуктор могут иметь самые разные формы. Тороид — это лишь одна из многих форм, точно так же, как цилиндр, или квадрат, или форма, которая выглядит как «Эль»Если это дроссель, а я не говорю, что это так, то это дифференциальный дроссель (в отличие от синфазного дросселя). Дроссель — это, по сути, катушка индуктивности, оптимизированная для работы с потерями на высоких частотах (в силу выбора материала сердечника), поэтому он отводит высокочастотную энергию.Это индуктор, специально созданный для того, чтобы быть неэффективным на высоких частотах, поэтому они рассеиваются в виде тепла.
Чтобы заполнить промежутки, дифференциальный дроссель представляет собой нечто подобное, но вместо этого является трансформатором, и через каждую обмотку пропускается ток двух линий, так что магнитные поля компенсируются внутри трансформатора, поэтому высокие частоты, общие для обеих линий подавлен.
Тороидальный трансформатор (или вообще любой трансформатор) можно перемотать с помощью всего лишь одного витка провода, чтобы превратить его в индуктор.или вы можете оставить намотанный тороидальный трансформатор и последовательно соединить первичную и вторичную обмотки друг с другом в соответствующем направлении, чтобы он стал индуктором. Технически вы также можете использовать трансформатор со всеми разомкнутыми обмотками, кроме одной, и тогда он также станет индуктором. Конечно, если вы сделаете это, это будет эффективное использование провода, и у вас будет множество открытых соединений, которые могут находиться под очень высоким напряжением. Будет ли он действовать как дроссель (отводить высокочастотную энергию, как я описал выше), зависит от используемого материала сердечника.
Разделы, выделенные жирным шрифтом выше, могут напрямую отвечать по крайней мере на некоторые из заданных вами вопросов.
Так вот, я ничего не знаю о сварке, но я думаю, что этот индуктор, чтобы заряд, накопленный в конденсаторе, не разряжался мгновенно и не замыкался на заготовке, вызывая короткую, но яркую вспышку. Если я прав, то это для того, чтобы самым грубым образом отрегулировать ток, выходящий из конденсаторов. В этом смысле это не дроссель в том смысле, что он должен рассеивать высокочастотную энергию.
Резистор утечки какого размера? Обычно я бы сказал как минимум 1 мегаом. Возможно, выше, в зависимости от того, при каком высоком напряжении работает ваша вещь и при каком низком токе она работает. Чем выше напряжение или ниже ток, тем больший резистор следует использовать. ОДНАКО, эти типы значений только гарантируют, что конденсаторы не будут оставаться заряженными на смертельном уровне в течение дня или более после того, как вы выключите устройство. Они не делают крышки быстро безопасными, поскольку они гарантируют, что если кто-то прикоснется к ним день или неделю спустя, он получит смертельный удар током.Для разрядки конденсаторов до безопасного уровня с такими значениями резисторов отвода утечки может потребоваться несколько минут или больше.
В сварочном аппарате, где клеммы крышки четко видны наружу и к ним можно легко прикоснуться, может быть стандартным использование спускных резисторов гораздо меньшего номинала, чтобы они разряжались очень быстро после выключения устройства, чтобы сделать его безопасным.
В этой ветке задан аналогичный вопрос:
https://www.electro-tech-online.com/threads/questions-re-mig-welder-circuit.88194/
Этот резистор составляет 50 Ом, и обсуждается, почему он такой низкий и мощный с точки зрения управления мощностью. 50 Ом действительно разрядили бы колпачки очень быстро, так что сварочные наконечники не были бы опасны вскоре после выключения сварочного аппарата. В нити также есть некоторые предположения о том, что резистор выполняет двойную функцию, поскольку он позволяет «разгрузить» ток через конденсаторы, когда ток прерывается, поскольку катушка индуктивности вызовет выброс очень высокого напряжения, если току некуда течь, повреждающие компоненты.
Катушки индуктивности накапливают энергию в своем магнитном поле и используют ее для сглаживания изменений тока. Если вы прервете ток, протекающий через катушку индуктивности, она высвободит эту накопленную энергию, чтобы попытаться сохранить этот ток на аналогичном уровне (путем создания напряжения, иногда очень высокого напряжения, которое заставит этот ток пробить все на своем пути. усилия по поддержанию нынешнего уровня).
Мостовой выпрямитель с конденсатором и дроссельным фильтром
Это напоминает старые добрые времена, когда все блоки питания были сконструированы таким образом.О линейных источниках питания написаны целые книги.Насколько я помню, входные фильтры дросселей (индукторов) использовались для сильноточных приложений. Входной фильтр дросселя имеет лучшее регулирование напряжения, чем может быть достигнуто с конденсаторным входом, хотя напряжение будет ниже. Оба моих сварщика Miller используют входной дроссельный фильтр.
Двухполупериодный мостовой выпрямитель имеет период цикла 8 мсек. Когда напряжение на мосту падает, хороший фильтр будет подавать ток до тех пор, пока напряжение снова не возрастет.Конденсатор делает это, накапливая заряд и разряжаясь в цепи при падении напряжения. Уравнения, определяющие заряд / разряд: q = CV, где q — заряд в ампер-секундах, C — емкость в фарадах, V — напряжение, i = dq / dt, где i — ток, а dq / dt — время. скорость изменения заряда (здесь небольшой расчет LOL).
Вывод здесь — чтобы выдерживать высокие токи, требуется большой накопленный заряд. Точные расчеты довольно сложны, но обратная сторона расчета огибающей показывает, что выдержать ток 50 А в течение 8 мсек.время потребует емкости порядка полфарада. Большинство конденсаторов класса Фарад, которые я видел, рассчитаны на более низкое напряжение, чем у сварочного аппарата. Конденсаторы могут быть подключены последовательно для увеличения рабочего напряжения за счет емкости. Два последовательно включенных конденсатора на 1 фарад на 12 вольт будут иметь рабочее напряжение 24 вольта и общую емкость 0,5 фарада. Для максимального напряжения 75 В вам потребуются шесть последовательно соединенных конденсаторов, чтобы общая емкость составляла 1,95 Вт.17 фарад.
Дроссели, напротив, накапливают энергию в виде магнитного потока. Магнитный поток пропорционален току, протекающему через обмотки, и довольно легко сконструировать дроссель, способный выдерживать высокие токи, с которыми сталкиваются сварщики. Когда напряжение падает, магнитное поле начинает разрушаться, вызывая обратную ЭДС, которая увеличивает падение напряжения.
Я использовал старые трансформаторы, заменив оригинальные обмотки на одну обмотку провода, способного пропускать требуемый ток.Старый трансформатор зарядного устройства можно эффективно использовать в качестве дросселя, просто используя вторичную обмотку.
Цепь сварочного инвертораSMPS | Проекты самодельных схем
Если вы ищете вариант замены обычного сварочного трансформатора, сварочный инвертор — лучший выбор. Сварочный инвертор удобен и работает от постоянного тока. Текущий контроль поддерживается с помощью потенциометра.
Автор: Dhrubajyoti Biswas
Использование топологии с двумя переключателями
При разработке сварочного инвертора я применил прямой инвертор с топологией с двумя переключателями.Здесь входное линейное напряжение проходит через фильтр электромагнитных помех, а затем сглаживается с большой емкостью.
Однако, поскольку импульс тока включения имеет тенденцию быть высоким, необходимо наличие цепи плавного пуска. Поскольку переключение включено и конденсаторы первичного фильтра заряжаются через резисторы, мощность дополнительно обнуляется путем включения реле.
В момент переключения мощности транзисторы IGBT используются и далее используются через управляющий трансформатор прямого затвора TR2 с последующим формированием схемы с помощью регуляторов IC 7812.
Использование микросхемы UC3844 для управления ШИМ
В этом сценарии используется схема управления UC3844, которая очень похожа на UC3842 с ограничением ширины импульса до 50% и рабочей частотой до 42 кГц.
Цепь управления получает питание от вспомогательного источника питания 17 В. Из-за больших токов в обратной связи по току используется трансформатор Tr3.
Напряжение регистра считывания 4R7 / 2W более или менее равно выходному току. Выходной ток можно дополнительно контролировать с помощью потенциометра P1.Его функция заключается в измерении пороговой точки обратной связи, а пороговое напряжение на выводе 3 UC3844 составляет 1 В.
Одним из важных аспектов силовых полупроводников является то, что они нуждаются в охлаждении, и большая часть выделяемого тепла отводится через выходные диоды.
Верхний диод, состоящий из 2x DSEI60-06A, должен выдерживать ток в среднем 50 А и потери до 80 Вт.
Нижний диод, т.е. STTh300L06TV1, также должен иметь средний ток 100А и потери до 120Вт.С другой стороны, общие максимальные потери вторичного выпрямителя составляют 140 Вт. Выходной дроссель L1 дополнительно подключен к отрицательной шине.
Это хороший сценарий, поскольку на радиатор не подается высокочастотное напряжение. Другой вариант — использовать диоды FES16JT или MUR1560.
Однако важно учитывать, что максимальный ток нижнего диода в два раза больше тока верхнего диода.
Расчет потерь IGBT
На самом деле расчет потерь IGBT — сложная процедура, поскольку, помимо потерь на проводимость, еще одним фактором являются потери при переключении.
Также каждый транзистор теряет около 50 Вт. Выпрямительный мост также теряет мощность до 30 Вт и размещается на том же радиаторе, что и IGBT, вместе с диодом сброса UG5JT.
Также есть возможность заменить UG5JT на FES16JT или MUR1560. Потеря мощности диодов сброса также зависит от конструкции Tr1, хотя потери меньше по сравнению с потерей мощности от IGBT. Выпрямительный мост также приводит к потере мощности около 30 Вт.
Кроме того, при подготовке системы важно не забывать масштабировать максимальный коэффициент нагрузки сварочного инвертора.Основываясь на измерениях, вы можете быть готовы выбрать правильный размер датчика обмотки, радиатора и т. Д.
Еще один хороший вариант — добавить вентилятор, так как он будет контролировать нагрев.
Принципиальная схема
Детали обмотки трансформатора
Коммутационный трансформатор Tr1 намотан на два ферритовых EE сердечника, и оба они имеют сечение центральной колонны 16×20 мм.
Таким образом, общее поперечное сечение составляет 16×40 мм. Следует соблюдать осторожность, чтобы не оставлять воздушных зазоров в области сердечника.
Хороший вариант — использовать 20 витков первичной обмотки, намотав ее 14 проводами диаметром 0,5 мм.
С другой стороны, вторичная обмотка состоит из шести медных полос 36×0,55 мм. Трансформатор прямого привода Tr2, который разработан с низкой паразитной индуктивностью, следует трехсторонней схеме намотки с тремя витыми изолированными проводами диаметром 0,3 мм и обмотками по 14 витков.
Активная часть изготовлена из стали h32 с диаметром средней колонны 16мм и без зазоров.
Трансформатор тока Tr3 изготовлен из дросселей для подавления электромагнитных помех. В то время как первичная обмотка имеет только 1 виток, вторичная обмотана 75 витками провода 0,4 мм.
Важным моментом является соблюдение полярности обмоток. В то время как L1 имеет ферритовый сердечник EE, средний столбец имеет поперечное сечение 16×20 мм с 11 витками медной полосы 36×0,5 мм.
Кроме того, общий воздушный зазор и магнитная цепь установлены на 10 мм, а его индуктивность составляет 12 мкГн cca.
Обратная связь по напряжению на самом деле не мешает сварке, но определенно влияет на потребление и потерю тепла в режиме ожидания.Использование обратной связи по напряжению очень важно из-за высокого напряжения около 1000 В.
Кроме того, ШИМ-контроллер работает с максимальным рабочим циклом, что увеличивает расход энергии, а также увеличивает количество нагревательных компонентов.
Постоянный ток 310 В может быть извлечен из сети 220 В после выпрямления через мостовую сеть и фильтрации через пару электролитических конденсаторов 10 мкФ / 400 В.
Источник питания 12 В можно получить от готового блока адаптера 12 В или собрать дома с помощью информации, представленной здесь :
Цепь для сварки алюминия
Этот запрос был отправлен мне одним из преданных читателей этого блога Mr.Хосе. Вот подробности требования:
Мой сварочный аппарат Fronius-TP1400 полностью работоспособен, и меня не интересует его конфигурация. Эта устарелая машина является первым поколением инверторных машин.
Это основное устройство для сварки покрытым электродом (сварка MMA) или вольфрамовой дугой (сварка TIG). Переключатель позволяет выбор.
Это устройство выдает только постоянный ток, что очень удобно для сварки большого количества металлов.
Есть несколько металлов, таких как алюминий, которые из-за быстрой коррозии при контакте с окружающей средой необходимо использовать пульсирующий переменный ток (прямоугольная волна от 100 до 300 Гц), что способствует устранению коррозии в циклах с обратной полярностью и поверните плавку в циклы прямой полярности.
Существует мнение, что алюминий не окисляется, но это неверно, что происходит так, что в нулевой момент, когда он вступает в контакт с воздухом, образуется тонкий слой окисления, который с этого момента сохраняет его от следующего последующего окисление.Этот тонкий слой усложняет сварку, поэтому используется переменный ток.
Мое желание — сделать устройство, которое будет подключено между клеммами моего сварочного аппарата постоянного тока и горелки, чтобы получить переменный ток в горелке.
Вот где у меня возникли трудности в момент создания этого преобразователя CC в AC. Увлекаюсь электроникой, но не специалист.
Итак, я прекрасно понимаю теорию, я смотрю на микросхему HIP4080 или аналогичную таблицу данных, чтобы увидеть, что ее можно применить в моем проекте.
Но моя большая трудность в том, что я не делаю необходимый расчет значений компонентов. Может быть, есть какая-то схема, которую можно применить или адаптировать, я не нахожу ее в Интернете и не знаю, где искать, поэтому прошу вашей помощи.
Конструкция
Для того, чтобы гарантировать, что процесс сварки может устранить окисленную поверхность алюминия и обеспечить эффективное сварное соединение, существующий сварочный стержень и алюминиевая пластина могут быть объединены с полной мостовой приводной ступенью. , как показано ниже:
Rt, Ct можно рассчитать методом проб и ошибок, чтобы получить колебания МОП-транзисторов на любой частоте от 100 до 500 Гц.Чтобы узнать точную формулу, вы можете обратиться к этой статье.
Th Вход 15 В может быть запитан от любого адаптера переменного тока 12 В или 15 В постоянного тока.
Словарь сварочного аппарата Fronius
Т
Взаимодействие с другими людьмиTAC
Во время выполнения прихваток с помощью TAC импульсная дуга TIG приводит в движение жидкую сварочную ванну.Это приводит к ускоренному сращиванию элементов и, следовательно, к более короткому процессу прихватывания. Взаимодействие с другими людьмиПрихватка
Прихватывание относится к соединению компонентов перед фактическим процессом сварки. Взаимодействие с другими людьмиТандемная сварка
При тандемной сварке два полностью изолированных проволочных электрода плавятся в сварочной горелке и в общей сварочной ванне.Этот процесс обеспечивает особенно высокую скорость наплавки, которая может быть преобразована в скорость сварки или объемное заполнение. Этот процесс сварки известен в Fronius под торговой маркой TWIN. Взаимодействие с другими людьмиТемпер цвета
Цвета закалки — это поверхностные яркие окраски металлов, обычно вызванные тепловым воздействием и окислением. Этого можно избежать, используя различные формовочные и защитные газы. Взаимодействие с другими людьмиТеплопроводность
Теплопроводность — это материальная величина, которая описывает, насколько хорошо материал проводит тепло. Материалы с высокой теплопроводностью трудно поддаются сварке и требуют специальной обработки перед началом сварки (например, алюминий) или требуют высокой температуры предварительного нагрева (например, медь). Взаимодействие с другими людьмиПроцессы термического соединения
Процессы термического соединения относятся к соединению материалов за счет нагрева и / или применения силы.К ним относятся сварка прессом и сварка плавлением. Взаимодействие с другими людьмиTIG AC
Это сварка TIG с использованием переменного тока, при которой полярность электрода быстро меняется с положительной на отрицательную. Он в основном используется при сварке алюминия. Взаимодействие с другими людьмиОстановка TIG Comfort
Остановка процесса сварки без включения горелки путем кратковременного подъема и опускания электрода. Взаимодействие с другими людьмиКонтактное зажигание TIG
При обычном контактном зажигании TIG вольфрамовый электрод поднимается с заготовки. Затем выполняется заданная последовательность начала сварки. Взаимодействие с другими людьмиTIG DC
Сварка TIG на постоянном токе, при которой полярность электрода отрицательная на протяжении всего процесса сварки.В исключительных случаях также можно использовать DC plus. Взаимодействие с другими людьмиНаплавочная сварка TIG
Наплавка вольфрамовым электродом в среде инертного газа универсальна и идеально подходит для наплавки высоколегированных металлов и сталей. Процесс сварки обеспечивает высококачественные чистые и точные поверхности с небольшим количеством брызг. Взаимодействие с другими людьмиБесконтактное зажигание TIG (высокочастотное зажигание)
При сварке TIG дуга может зажигаться бесконтактным способом.Здесь используется источник высокого напряжения, который временно подключается к высокочастотному и маломощному. Взаимодействие с другими людьмиСварка TIG
Сварка вольфрамом в среде защитного газа — это процесс сварки в защитном газе. Здесь дуга горит между неплавящимся вольфрамовым электродом и заготовкой. Узнайте больше о сварке TIG Взаимодействие с другими людьмиВРЕМЯ процесс
ВРЕМЯ означает переданную ионизированную расплавленную энергию.Процесс сварки TIME является синонимом высокопроизводительной сварки проволокой MAG. Взаимодействие с другими людьмиВремя близнец
С Time Twin два цифровых источника питания, которыми можно управлять по отдельности, работают в одном газовом сопле и в общей сварочной ванне. Оба проволочных электрода полностью изолированы. Это сокращает время цикла и повышает качество сварки и экономическую эффективность высокопроизводительной сварки. Взаимодействие с другими людьмиДопуск
Это технический термин для обозначения зазора между двумя листами в продольном направлении и / или по высоте пластин. Взаимодействие с другими людьмиРасстояние между резаком и заготовкой
Расстояние от горелки до заготовки — это расстояние между газовым соплом и заготовкой.Для достижения оптимальных результатов необходимо выбрать правильное расстояние, которое должно оставаться постоянным во время сварки. Взаимодействие с другими людьмиЛогика включения горелки
Можно установить два альтернативных режима работы: 2-тактный и 4-шаговый (разница в том, как работает кнопка горелки). Выбор между этими двумя пошаговыми режимами позволяет сварщику решить, хотят ли они удерживать кнопку горелки постоянно или только для начала и остановки сварки.В 2-тактном режиме кнопка горелки удерживается нажатой во время сварки и отпускается для ее завершения. В 4-тактном режиме триггер нажимается и снова отпускается (то же действие повторяется для завершения сварки). Это упрощает работу сварщика с горелкой, что дает положительный эффект, особенно когда используются более длинные сварные швы. Взаимодействие с другими людьмиTouchHF
Зажигание с помощью высоковольтных импульсов, вызываемых прикосновением к заготовке. Взаимодействие с другими людьмиTPS / i
Эти устройства представляют собой полностью оцифрованные инверторные источники питания с микропроцессорным управлением. Универсальный контроллер контролирует весь процесс сварки. Фактические данные измеряются непрерывно, и устройство немедленно реагирует на любые изменения. Алгоритмы специальных правил обеспечивают поддержание желаемого целевого состояния.Программная система является решающим фактором для свойств сварных швов источников питания, а не жесткая аппаратная система, которую практически невозможно изменить. Это обеспечивает высокую точность процесса сварки, точную воспроизводимость результатов сварки и отличные рабочие характеристики. Подробнее о TPS / i Взаимодействие с другими людьмиTPS / i TWIN Push
Это новейшая сварочная система для тандемной сварки, основанная на системной платформе Fronius TPS / i.Подробнее о TPSI TWIN Push Взаимодействие с другими людьмиTransPocket
Серия TransPocket включает источники питания для электродной сварки с полностью цифровой инверторной технологией. Эти сварочные системы характеризуются удобством использования, долговечностью, высокой производительностью и мобильностью.Подробнее о TransPocket Взаимодействие с другими людьмиTransSteel
TransSteel — это полностью оцифрованный инверторный источник питания с микропроцессорным управлением. Модульная конструкция и внутреннее программное обеспечение упрощают добавление или обновление системы.Основное применение — сварка стали методом GMAW. Центральный блок управления связан с процессором цифровых сигналов. Они контролируют весь процесс сварки. Фактические данные измеряются непрерывно, поэтому устройство может немедленно реагировать на любые изменения. Специальные алгоритмы управления контролируют весь процесс сварки и обеспечивают поддержание желаемого целевого состояния. Система программного обеспечения является решающим фактором для свойств сварного шва. Это дает возможность вносить постоянные улучшения и адаптации.Подробнее о TransSteel Взаимодействие с другими людьмиTransTig
TransTig — это полностью оцифрованная серия TIG, которая может использоваться для приложений постоянного тока (DC). Подробнее о TransTig Взаимодействие с другими людьмиВольфрамовый электрод
Вольфрамовый электрод является неплавящимся электродом для сварки TIG.Дополнительная информация о вольфрамовых электродах Взаимодействие с другими людьмиВключения вольфрама
Если вольфрамовый электрод касается сварочной ванны во время сварки TIG, частицы электрода могут попасть в расплавленную массу и вызвать сбои сварки или включения вольфрама. Взаимодействие с другими людьмиВиды излучения в электрической дуге
Электрическая дуга испускает видимое излучение, невидимое инфракрасное или тепловое излучение и невидимое ультрафиолетовое излучение.AMOGREENTECH — RELL Power
Amogreentech, подразделение AMO Group, производит железоаммофильные и нанокристаллические магнитные компоненты, обеспечивающие высокий КПД силовых преобразователей, а также точные измерения.
Порошковая сердцевинаВысокая эффективность достигается за счет отличных потерь в сердечнике.
Основные характеристики- Снижает общую стоимость компонентов по сравнению с другими решениями
- Высокая эффективность
- Самый низкий рост температуры среди порошковых материалов
- Дроссели PFC для блоков питания ПК
- Дроссели PFC для блоков питания серверов / рабочих станций
- Дроссели PFC для промышленных ПК
- Дроссели PFC для блоков питания LCD / PDP TV
- Выходные дроссели для блоков питания General Industrial
- OBC для электромобиля
Синфазный дроссель
Удаляет синфазный шум, который обычно возникает в цепях.
Основные характеристики- Высокая проницаемость
- Компактный размер
- Уменьшить витки обмотки
- Низкое сопротивление постоянному току
- Высокое сопротивление в широком диапазоне частот
- Соответствует стандартам EN 500081 и EN 500082
- Низкопрофильный (высота 1 ~ 5 мм)
- Фильтрация синфазных помех EMI / EMC
- Телекоммуникации
- Трансформаторы интерфейса передачи данных
- Трансформаторы тока высокой точности
- Преобразователи импульсные высокоточные
- Устройства защиты от замыканий на землю
Широкое применение в качестве сердечника для индукторов.
Основные характеристики- Низкие потери на вихревые токи и потери на гистерезис
- Высокая плотность потока насыщения (Bs, 1.56T)
- Низкотемпературный подъем
- Меньший размер компонента
- Высокая эффективность
- Трансформаторы для сварочных аппаратов, средств связи и т. Д.
- Индукторы для ветроэнергетического генератора, топливного элемента, солнечного инвертора
- Катушки индуктивности для повышающего / понижающего преобразователя HEV, FCV, UPS и т. Д.
Широкое применение в качестве сердечника для индукторов.
Основные характеристики- Низкие потери на вихревые токи и потери на гистерезис
- Высокая плотность потока насыщения (Bs, 1.56T)
- Низкотемпературный подъем
- Меньший размер компонента
- Высокая эффективность
- Трансформаторы для сварочного аппарата, ул.пр.
- Индукторы для ветроэнергетического генератора, топливного элемента, солнечного инвертора
- Дроссели для повышающего / понижающего преобразователя HEV, FCV, UPS и т. Д.
Обеспечивает точное измерение первичного тока.
Основные характеристики- Очень малая и большая погрешность линейной фазы и амплитуды
- Легко компенсируемая фазовая ошибка
- Очень низкие потери и низкотемпературная зависимость, соответствует требованиям RoHS
- Превосходная линейность и точность
- Постоянный фазовый сдвиг и отсутствие насыщения по постоянному току
- Устойчивость к внешнему магнитному полю
- Незначительная ошибка малой амплитуды, очень низкие потери
- Можно использовать стойкость к постоянным магнитам
- Соответствует RoHS
- Датчик мощности и приборы с очень высокой точностью
- 0.Измерители мощности 2 ~ 1.0 класса
- Все виды оборудования требуют измерения тока с высокой точностью и малым коэффициентом погрешности
Патент США на схему управления выходом для инвертора Патент (Патент № 4,897,522, выдан 30 января 1990 г.)
Настоящее изобретение относится к высокочастотным инверторам того типа, который используется в качестве источников питания для операций дуговой сварки, и, в частности, к усовершенствованной схеме управления выходной мощностью для такого инвертора.
Изобретение особенно применимо для высокочастотного инвертора, используемого для D.C. Сварка, при которой выпрямленный источник питания постоянного тока попеременно переключается на намагничивание и перемагничивание в противоположном направлении магнитного потока сердечника выходного трансформатора. Операция переключения выполняется двумя отдельно и попеременно работающими переключающими средствами, такими как полевые транзисторы, при этом одно переключающее средство активируется для намагничивания сердечника выходного трансформатора, а другое переключающее средство активируется для повторного намагничивания сердечника. При чередовании работы двух переключающих средств высокочастотный переменный ток магнитно соединяется с вторичными обмотками одного и того же сердечника.Упомянутый высокочастотный вторичный ток направляется средствами выпрямления, такими как быстродействующие диоды, через средство фильтрации электрического тока, такое как индуктор, к выходным клеммам сварочного аппарата постоянного тока.
Вторичный каскад выходного трансформатора для инвертора того типа, на который, в частности, направлено настоящее изобретение, имеет две секции обмотки, которые подвергаются раздельному выпрямлению. Когда сердечник выходного трансформатора намагничивается в одном направлении, а затем повторно намагничивается в противоположном направлении, секции вторичной обмотки поочередно поляризованы для прямого смещения диодов, к которым они подключены по отдельности.Таким образом, высокочастотные импульсы электрического тока соответствующей полярности направляются к индуктору сварочного аппарата, через индуктор к выходным клеммам сварочного аппарата постоянного тока и, таким образом, к сварочной станции.
Первое и второе переключающие средства инвертора управляются электрическими триггерами или стробирующими импульсами с выбранной длительностью импульса (шириной импульса) и частотой повторения. Чтобы контролировать величину выходного тока или напряжения сварочного аппарата, ширина пусковых импульсов варьируется.Поскольку для операции сварки требуется больше тока или напряжения, ширина пусковых импульсов, возбуждающих или приводящих в действие альтернативно управляемые средства переключения инвертора, увеличивается пропорционально желаемому увеличению выходной мощности.
Эта схема инверторного каскада с управляемой обратной связью обычно осуществляется схемой широтно-импульсной модуляции, управляемой напряжением, работающей на выбранной частоте, например 20 кГц. Эти модуляторы обычно используются в источниках питания инвертора с электрическим переключением, как описано в данном документе, и доступны в виде стандартных пакетов интегральных схем, знакомых специалистам в данной области техники.Выбранная частота работы влияет на время отклика сварщика на сигналы обратной связи или считывания напряжения и, таким образом, влияет на способность сварщика реагировать на небольшие возмущения сварочной дуги. Высокая частота (выше примерно 10 килогерц) необходима для существенного повышения производительности. Частота работы также влияет на слышимость дуги и схемы сварочного аппарата и, таким образом, сводит к минимуму нежелательный шум и повышает привлекательность оператора при частоте выше примерно 20 кГц.следует выбрать. Частоты, превышающие эти пределы, будут удовлетворять вышеупомянутым ограничениям, но будут иметь нежелательный эффект увеличения мощности, теряемой в переключателях и выпрямительных элементах, и увеличения требований, предъявляемых к схеме стробирующего триггера.
Как уже было описано, источник питания высокочастотного инверторного типа относительно известен и имеет при применении источника питания для дуговой сварки возможные преимущества меньшего размера и веса, а также возможность стать лучшим аппаратом для дуговой сварки благодаря более быстрой обратной связи. время отклика схемы.Эти инверторы могут использоваться для самых разных операций дуговой сварки постоянным током. Однако конструктивное ограничение, заключающееся в минимизации первичного тока инвертора и, следовательно, тока средства переключения для получения преимуществ по размеру и весу по сравнению с традиционными источниками питания для дуговой сварки и минимизации затрат на средства переключения, диктует использование инверторного трансформатора, имеющего наивысшую возможное соотношение первичного и вторичного витков. Это соотношение должно определяться напряжением, требуемым процессом сварки, при максимальном выходном токе инверторного сварочного аппарата.К сожалению, максимальное выходное напряжение таких инверторов, работающих даже при существенно пониженном выходном токе, слишком мало по величине, чтобы обеспечить надлежащий потенциал ионизации дуги для процесса SMAW (сварка штучной сваркой), когда сохраняется большая длина дуги. Кроме того, относительно плоская кривая выходного напряжения / тока сварочного аппарата (то есть изменение всего на несколько вольт на изменение тока на 100 ампер), как правило, не допускает переходной рабочей точки, необходимой для сварки штучной сваркой, такой как 50 вольт при 50 амперы.Таким образом, когда использовались высокочастотные инверторные источники питания описанного выше типа, для стабилизации дуги требовались относительно дорогие стержневые электроды.
Этот недостаток может быть преодолен с помощью средства накопления энергии, такого как индуктор, подключенный к выходной схеме сварочного аппарата для хранения и последующего выделения энергии с достаточно высоким потенциалом, чтобы обеспечить как потенциал ионизации дуги, так и рабочую точку напряжения / тока, необходимую для надлежащего операция. Однако индуктор, способный обеспечить эти характеристики, значительно увеличил бы вес и размер сварщика.Улучшение стабильности работы стержневого электрода может быть реализовано за счет использования электрода, который имеет значительное количество стабилизирующего покрытия. Это покрытие дорогое, а также является существенным ограничением использования относительно небольшого высокочастотного инверторного источника питания, предназначенного для всего диапазона сварочных операций на постоянном токе.
Таким образом, сварочный аппарат с высокочастотным инвертором, имеющий минимальные размеры и вес, обычно ограничен в своей работе из-за низкой характеристики максимального выходного напряжения и более низкой общей характеристики напряжения в зависимости от тока.Было высказано предположение, что эта проблема может быть решена путем увеличения количества витков во вторичных обмотках, увеличения емкости выходного индуктора или, с некоторой выгодой, использования стержневых электродов с высокостабилизированным электродным покрытием. Но по причинам, указанным ранее, эти решения нежелательны.
ИЗОБРЕТЕНИЕНастоящее изобретение преодолевает недостатки, изложенные выше, и позволяет создавать повышенное максимальное выходное напряжение и высокое напряжение при желаемом рабочем токе для высокочастотного инвертора типа, управляющего выходным или нагрузочным трансформатором, при минимизации увеличения тока, протекающего при первичная обмотка выходного трансформатора.
В соответствии с настоящим изобретением дополнительные обмотки предусмотрены на противоположных концах вторичной обмотки трансформатора. Эти вспомогательные обмотки на каждом конце вторичной обмотки создают дополнительный источник напряжения и тока, который выпрямляется однонаправленным устройством, подключенным последовательно с каждой вспомогательной обмоткой. Компонент ограничения тока, такой как индуктор, ограничивает количество тока, протекающего в каждой вспомогательной обмотке, и, таким образом, ограничивает количество тока, добавляемого к импульсу первичного тока, но все же создает желаемую характеристическую кривую напряжение / ток для выхода сварочного аппарата.Инвертор будет иметь максимальное сварочное напряжение, существенно большее, чем полученное без вспомогательных обмоток. Это повышенное максимальное выходное напряжение желательно вместе с увеличением напряжения на характеристической кривой. Эти рабочие параметры, достигаемые вспомогательными обмотками, обеспечивают удовлетворительную сварку штангой, даже когда штекерный электрод снабжен небольшим стабилизирующим покрытием или вообще без него. Таким образом, использование настоящего изобретения преобразует источник питания высокочастотного инвертора в источник питания, имеющий относительно высокое максимальное выходное напряжение и более высокие характеристики напряжения без отраженного сильноточного потока в первичном каскаде выходного трансформатора источника питания.При использовании настоящего изобретения происходит минимальное увеличение среднеквадратичного значения тока, обрабатываемого переключающими устройствами на первичной стороне выходного трансформатора.
В соответствии с настоящим изобретением каждая вспомогательная обмотка вторичной обмотки трансформатора снабжена индуктивностью, включенной последовательно с выпрямительным диодом. Таким образом регулируется величина тока, протекающего во вспомогательных обмотках. Дополнительная обмотка увеличивает уровни напряжения для различных уровней выходного тока.Таким образом, характеристическая кривая источника питания смещается в направлении увеличения напряжения вверх с незначительными возмущениями на входной стороне трансформатора. Среднеквадратичный ток входного каскада не увеличивается до такой степени, что это приводит к чрезмерному нагреву коммутационных устройств.
В соответствии с предпочтительным вариантом осуществления изобретения компонентами ограничения тока для вспомогательных обмоток вторичной ступени источника питания являются индукторы. Из-за выбранной рабочей частоты эти индукторы относительно малы и, в предпочтительном варианте осуществления, имеют значение индуктивности, выбранное для получения 50 ампер при 50 вольт на выходных клеммах сварочного аппарата.Использование индуктивного реактивного сопротивления приводит к естественному падению выходного сигнала при высоких токах, что дополнительно улучшает контроль над индуцированным током в первичной обмотке.
В соответствии с другим аспектом настоящего изобретения выпрямительный диод в цепях управления током каждой из вспомогательных обмоток заменен кремниевым управляемым выпрямителем (SCR). Когда первичная обмотка индуцирует импульс тока соответствующей полярности в одной из вспомогательных обмоток, SCR этой конкретной вспомогательной обмотки может срабатывать или включать.Используя SCR в качестве выбираемых выпрямительных устройств, можно активировать или деактивировать вспомогательные обмотки по мере необходимости. В соответствии с этим аспектом изобретения измеряется средний ток на выходе сварочного аппарата. Если средний ток превышает предварительно выбранный уровень, тиристоры обеих вспомогательных обмоток блокируются или деактивируются. Таким образом, инвертор работает так, как будто вспомогательные обмотки не существуют, если только не требуется работа инвертора с низким током. Затем работают тиристоры, и они проводят ток в унисон с импульсами, подаваемыми на первичные обмотки.
Использование настоящего изобретения обеспечивает удовлетворительные характеристики нестабилизированного стержневого электрода, такого как электроды по классификации EXX10. Этот общий класс электродов имеет низкую стабилизацию, которую до сих пор нельзя было использовать в высокочастотном инверторе того типа, на который направлено настоящее изобретение. Конечно, настоящее изобретение улучшает работу стержневых электродов других классов, некоторые из которых имеют стабилизирующее покрытие, например EXX11 и EXX13. Таким образом, настоящее изобретение позволяет использовать стержневой электрод с низкой стабилизацией для стержневой сварки.Но он также улучшает работу некоторых стабилизированных электродов для сварки штангой, повышая характеристику напряжения на выходе инвертора. Это улучшение по сравнению со стандартной выходной схемой для высокочастотного инвертора, как описано выше.
В соответствии с предпочтительным вариантом осуществления изобретения каждая из вспомогательных обмоток имеет шесть витков и использует последовательное индуктивное реактивное сопротивление. Эта конструкция повышает напряжение на выходах с низким током, не используя выходное напряжение вспомогательных обмоток на высоких уровнях тока, поскольку индуктивное реактивное сопротивление имеет выбранное высокое падение реактивного сопротивления.Следовательно, повышенный ток в первичных обмотках источника питания из-за тока во вспомогательных обмотках менее очевиден при более высоких выходных токах даже в пределах диапазона выходного тока, который проводят тиристоры.
В соответствии с настоящим изобретением предлагается усовершенствованный высокочастотный инвертор для подачи постоянного тока на сварочную станцию, включая электродный элемент и элемент детали. Этот инвертор включает в себя выходной трансформатор, имеющий сердечник, первичные обмотки, а также первую и вторую вторичные обмотки, соединенные последовательно в общем переходе, чтобы определить разнесенные концы обмоток, иногда называемые первым и вторым выходными выводами.Таким образом, две секции вторичных обмоток подключены к выходу через выпрямительное устройство, чтобы позволить току течь через каждую из вторичных обмоток во время попеременного намагничивания и повторного намагничивания сердечника трансформатора. Импульсы постоянного тока фильтруются через стандартный дроссель и направляются на сварочную станцию, поскольку ток течет в соответствующих направлениях в первичных обмотках выходного трансформатора. Усовершенствование изобретения включает в себя первую вспомогательную обмотку повышения напряжения, соединенную с первой вторичной обмоткой и последовательно с ней, и первое средство цепи управления током для подключения первой вспомогательной обмотки к одному из элементов сварочной станции.Это первое средство цепи управления током включает в себя однонаправленное устройство, направленное в том же направлении, что и однонаправленное устройство, используемое для выпрямления первой вторичной обмотки. Следовательно, ток, протекающий в первой вторичной обмотке, добавляется к току, протекающему в первой вспомогательной обмотке. Поскольку обмотки соединены так, что напряжения складываются, выходное напряжение увеличивается. Схема управления током для вспомогательной обмотки дополнительно включает в себя элемент ограничения тока, так что ток является аддитивным, но имеет ограниченный характер.Таким образом, увеличенный ток за счет увеличенного индуцированного напряжения ограничивается до степени, в которой он протекает через цепь управления током, связанную со вспомогательной обмоткой. Вторая обмотка повышения вспомогательного напряжения подключена последовательно ко второй вторичной обмотке таким же образом, как и первая вспомогательная обмотка. Таким образом, две вспомогательные обмотки с устройствами ограничения тока являются дополнительными витками во вторичной обмотке. Это индуцирует более высокое напряжение, чтобы добавить импульсы тока, создаваемые двумя вторичными обмотками, к нормальным импульсам тока, подаваемым на дроссель.В предпочтительном варианте максимальное выходное напряжение увеличивается с 43 вольт до примерно 110 вольт с шестью дополнительными витками в каждой вспомогательной обмотке. Ограничитель тока позволяет пропускать 50 ампер при 50 вольт при работе на 20 кГц.
Основной целью настоящего изобретения является обеспечение улучшения схемы управления выходом инвертора, которая позволяет увеличивать максимальное выходное напряжение и увеличивать напряжение на кривой вольт-амперной характеристики без увеличения индуцированного протекания тока в первичной части цепь управления.
Другой целью настоящего изобретения является создание улучшенной схемы управления, как определено выше, которая позволяет инвертору работать в режиме сварки штучным электродом с минимальным стабилизирующим покрытием или без него.
Еще одной задачей настоящего изобретения является обеспечение схемы управления, как определено выше, причем эта схема управления может быть добавлена к стандартной выходной цепи высокочастотного инвертора с относительно небольшими затратами и без необходимости увеличения пропускной способности по току для переключения. устройства, используемые в инверторе.Высокая частота означает работу в общем диапазоне 3-35 кГц и предпочтительно около 20 кГц.
Эти и другие цели и преимущества станут очевидными из следующего описания вместе с прилагаемыми чертежами.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙРИС. 1 — принципиальная электрическая схема, показывающая предпочтительный вариант осуществления настоящего изобретения;
РИС. 2 — кривая вольт-амперной характеристики системы высокочастотного инвертора, показанной на фиг.1 без использования настоящего изобретения;
РИС. 3 — схематически представленная кривая вольт-амперной характеристики вспомогательных обмоток, используемых в качестве обмоток повышения напряжения в настоящем изобретении и работающих на частоте 20 кГц;
РИС. 4 представляет собой составную характеристическую кривую напряжение / ток, используемую для иллюстрации преимущества использования настоящего изобретения в высокочастотном инверторе того типа, который обычно имеет характеристическую кривую, показанную на фиг. 2;
РИС.5 — сравнительный график токового протекания тока в первичном каскаде выходного трансформатора, показывающий преимущество использования настоящего изобретения в отношении характеристик входного тока источника питания, показанного на фиг. 1;
РИС. 6 — электрическая схема, показывающая самый широкий аспект настоящего изобретения;
РИС. 7 — составная кривая вольт-амперной характеристики, показывающая дополнительные аспекты настоящего изобретения;
РИС. 8 — упрощенная схема, аналогичная фиг.6, показывающий использование переключаемого однонаправленного устройства во вспомогательных обмотках; и,
РИС. 9 представляет собой типичную характеристическую кривую напряжение / ток, полученную с использованием настоящего изобретения и иллюстрирующую дополнительный аспект изобретения.
ПРЕДПОЧТИТЕЛЬНЫЙ ВАРИАНТ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯСсылаясь на чертежи, на которых изображения предназначены для иллюстрации предпочтительного варианта осуществления изобретения, а не для его ограничения, на фиг. 1 показан высокочастотный инвертор 10 такого типа, который имеет трехфазный вход 12 и трехфазный мостовой выпрямитель и сеть 14 фильтров для создания D.C. Выход показан как два отдельных набора выходных клемм 16a, 16b и 18a, 18b. Конечно, выход выпрямителя — это одна положительная и отрицательная клемма. Два набора выходных клемм являются типичными по своей природе, чтобы показать мощность, подаваемую на выходной трансформатор 20 через первую первичную обмотку 22 и вторую первичную обмотку 24. В этом варианте осуществления одна обмотка используется для намагничивания сердечника C, а отдельная обмотка используется для повторного намагничивания. ядро. В некоторых высокочастотных инверторах ток в противоположных направлениях проходит через единственную обмотку, которая служит первичной обмоткой выходного трансформатора.Два набора переключающих устройств S1, S2 и S3, S4 используются для намагничивания и перемагничивания сердечника C трансформатора 20. Переключающие устройства S1-S4 показаны как полевые транзисторы. Срабатывание устройств S1, S2 вызывает протекание тока в направлении A через первую первичную обмотку 22. Аналогичным образом замыкание или приведение в действие переключателей или переключающих устройств S3, S4 вызывает протекание тока в направлении B через вторую первичную обмотку. обмотка 24. Таким образом, сердечник C трансформатора 20 попеременно намагничивается и повторно намагничивается посредством попеременной работы коммутационных комплектов.Это вызывает индуцированное напряжение в обмотке вторичного или выходного каскада инвертора, содержащего вторичную обмотку 40, показанную разделенной на отдельные секции 42, 44. Эти секции могут быть отдельными обмотками или секциями одной обмотки, поскольку они поляризованы в в том же направлении. Отвод в центре обмотки 40 представляет собой общий переход 50. Разнесенные концы обмоток 52, 54 составляли выходной каскад для инвертора до включения настоящего изобретения. Выпрямительные диоды 60, 62 вызывают D.C. выход между общим переходом или отводом 50 и общим выводом 56 для приема тока, протекающего от выводов 52, 54. Постоянный ток между отводом 50 и выводом 56 протекает через сварочную станцию W, состоящую из стандартного стержневого электрода 70 и заготовки 72. Импульсы тока между переходом или ответвлением 50 и выводом 56 фильтруются через стандартный дроссель 80 и подаются на сварочную станцию W.
Для синхронизации срабатывания двух наборов переключаемых устройств S1-S4 предусмотрена стандартная схема 100 запуска или стробирования, управляемая в режиме широтно-импульсной модуляции и имеющая тактовый генератор 102 последовательности, работающий с частотой 20 кГц.Схема 100 включает в себя выходы или вентили 1-6, причем выходы 1-4 адаптированы для выработки управляющих сигналов для переключающих устройств S1-S4 соответственно. Во время первой рабочей фазы стробирующий сигнал или пусковой импульс на выходах 1 и 2 приводит в действие переключатели S1, S2 в унисон, вызывая протекание тока в направлении A через обмотку 22. После этого управляющие управляющие сигналы на выходах 1, 2 удаляются. и стробирующие сигналы генерируются на выходах 3, 4. Эти сигналы или триггерные импульсы приводят в действие переключатели S3, S4, чтобы вызвать перемагничивающий ток В, протекающий через обмотку 24, как показано на фиг.1. Импульсы на выходах 1, 2, а затем на выходах 3, 4 генерируются с частотой 20 кГц. Ширина импульсов варьируется для управления выходным током сварочной станции. В режиме сварки постоянным током, таком как SMAW, сварка штучной сваркой, это обычно достигается путем измерения протекания тока в выходной цепи с помощью детектора, такого как шунт 120. Измеряемая схема 100 управления током путем изменения ширины импульса в соответствии с напряжением. на схематически проиллюстрированной линии 122. По мере того, как ток уменьшается, напряжение на линии 122 уменьшается, а ширина запускающих импульсов для полевого транзистора S1-S4 увеличивается в соответствии с концепциями стандартной широтно-импульсной модуляции.
На практике работа высокочастотного инвертора 10, как было описано до сих пор, дает характеристическую кривую напряжение / ток, как показано на фиг. 2. Максимальное выходное напряжение составляет примерно 43 вольта, а крутизна более 300 ампер составляет примерно 13 вольт. Эта характеристическая кривая не допускает рабочую точку 50 вольт при токе 50 ампер, требуемую для сварки штангой. Кроме того, максимальное выходное напряжение, существенно превышающее 43 В, требуется для стабилизации операции сварки штангой в случае увеличенной длины дуги.Ввиду недостатков этих параметров в инверторе 10, как было описано до сих пор, трудно использовать этот инвертор для сварки штучной сваркой. Кроме того, для такой сварки штангой потребуются дорогие электроды, имеющие стабилизирующее покрытие.
В соответствии с настоящим изобретением стандартная архитектура высокочастотного инвертора 10 модифицирована для включения вспомогательных вторичных обмоток 200, 202, повышающих напряжение. Эти обмотки соединены последовательно с секциями 42, 44 вторичной обмотки.На практике каждая из этих обмоток состоит из достаточного количества витков, чтобы увеличить максимальное выходное напряжение с 43 вольт до примерно 110 вольт. Эти вспомогательные обмотки включены последовательно с цепями управления током, включая токоограничивающие индукторы 204, 206, соответственно. Конечно, для ограничения тока можно использовать резистор; однако дроссели 204, 206 более эффективны, чем резисторы, поскольку они выделяют меньше тепла. Однонаправленные устройства 210, 212 согласованы с диодами 60, 62 для выпрямления выходных токов вспомогательных токовых обмоток 200, 202.Однонаправленные устройства 210, 212 показаны как SCR S5 и S6 соответственно. На фиг. 6, устройство ограничения тока представляет собой блок 204a, чтобы показать только общую потребность в ограничении этого тока, с однонаправленным устройством, показанным как просто диод 210a, тиристоры обеспечивают возможность выборочного подключения вспомогательных токовых обмоток 200, 202, как описано ниже в взаимосвязь с изображениями на фиг. 8 и 9.
При использовании вспомогательных вторичных обмоток токовая характеристика этих обмоток накладывается на стандартную характеристическую кривую, показанную на фиг.2. Чтобы проиллюстрировать эту концепцию, на фиг. 3 схематично и только для иллюстративных целей показана общая вольт-амперная характеристика вспомогательных вторичных обмоток. Индукторы 204, 206 выбираются так, чтобы предварительно выбранная рабочая точка OP находилась на кривой для вспомогательных вторичных обмоток, как показано на фиг. 3. На практике рабочая точка OP составляет 50 вольт при 50 ампер. Дроссели 204, 206 выбираются на основе рабочей частоты 20 кГц, которая определяется синхронизирующим входом в широтно-импульсный модулятор или схему 100 запуска, показанную на фиг.1. При использовании двух вспомогательных обмоток 200, 202 составная характеристическая кривая для высокочастотного инвертора теперь показана на фиг. 4. Эта кривая является составной, образованной путем сложения токовой характеристики вспомогательных обмоток, показанных в целом на фиг. 3 и стандартная характеристическая кривая на фиг. 2. Эта составная кривая не является чисто аддитивной и основана на соотношении витков в обмотках и других электрических характеристиках. Основная идея настоящего изобретения проиллюстрирована на фиг.4, в котором добавленное напряжение вспомогательной обмотки и ограниченный ток в параллельных цепях управления током комбинируются с напряжением и относительно неограниченным током в нормальной обмотке для получения характеристической кривой CC. Реализовано максимальное выходное напряжение более 110 вольт и режим сварки постоянным током в рабочей точке 50 вольт и 50 ампер. Кривая CC имеет повышенное напряжение без пропорционального увеличения тока. Заштрихованная часть графика, показанного на фиг.4, чтобы проиллюстрировать добавленную часть, вызванную вторичными обмотками или вспомогательными обмотками 200, 202, как показано на фиг. 1.
Теперь обратимся к фиг. 5, ток в первичном каскаде инвертора 10 схематично проиллюстрирован в виде импульсов 220, 222 тока. Импульс 220 — это ток, протекающий при включении переключателей S1, S2. Подобным образом импульс 222 является импульсом тока, когда переключатели S3, S4 включены. Импульсы 220, 222 показаны как противоположные полярности, чтобы проиллюстрировать протекание тока, как если бы использовалась одна первичная обмотка.Если бы к секциям 42, 44 были добавлены дополнительные обмотки с целью увеличения максимального выходного напряжения, амплитуда импульсов 220, 222 была бы увеличена. Это будет представлять собой пропорциональное увеличение среднеквадратичного тока, протекающего во входном каскаде инвертора 10, и потребует более обширного устройства рассеивания тепла или более дорогих переключающих устройств. Протекание тока в первичном каскаде, вызванное реализацией первого варианта осуществления настоящего изобретения, в котором диоды используются в качестве выпрямительных элементов вместо SCR S5, S6, приводит к импульсам 220a, 222a тока, показанным пунктирными линиями.В начале каждого импульса индуцированный ток несколько невелик из-за большего эффекта функции ограничения тока. По мере увеличения выходного тока в данном импульсе функция ограничения тока становится менее заметной, позволяя увеличить первичный ток.
Следовательно, в конце импульса более высокие токи возникают в результате использования вспомогательных обмоток 200, 202; однако фактический эффект нагрева увеличивается не так сильно, как это было бы за счет увеличения вторичных витков 42, 44, необходимых для получения такого же увеличения максимального выходного напряжения.Следовательно, меньшее увеличение теплового эффекта первичного каскада инвертора 10 вызвано реализацией настоящего изобретения.
В предпочтительном варианте осуществления настоящего изобретения, используя тиристоры в качестве управляемых выпрямляющих элементов S5, S6, форма волны первичного тока может быть представлена как 220a, 222a на фиг. 5 для уровней выходного тока ниже выбранного порогового значения, например 175 ампер, и для импульсов тока 220, 222 выше этого порога. При или около этого порогового уровня тока S5, S6 выключаются или включаются, так что вспомогательные обмотки добавляются к вторичным обмоткам ниже этого уровня и эффективно выходят из цепи выше этого уровня.При максимальном выходном токе первичные токи такие же низкие, как в инверторе с соответствующим низким числом вторичных витков.
На ФИГ. На фиг.6 относительное соотношение полной токовой части выходного тока и части ограниченного тока проиллюстрировано в виде параллельной схемы. Напряжение определяется общим числом витков (то есть суммированием вспомогательной и нормальной вторичной обмоток), тогда как ток представляет собой сумму полного тока нормальной обмотки и ограниченного тока вспомогательной обмотки.
Теперь обратимся к фиг. 7, реализация настоящего изобретения может быть выполнена для получения характеристической кривой, имеющей максимальное выходное напряжение и OP в общей заштрихованной области, определяемой линиями 250, 252. Это является иллюстративным по своей природе и исключает характеристические кривые, такие как линии 300, 302, и 304. Характеристическая кривая 300 допускает работу в установившемся режиме в рабочей точке OP; однако максимальное выходное напряжение будет лишь немногим выше 50 вольт. Этого недостаточно для стабилизации сварочной дуги.Подобным образом рабочая характеристика 302 снова допускает работу в установившемся режиме в рабочей точке OP; однако максимальное выходное напряжение находится за пределами заштрихованной области, схематично показанной на фиг. 7. Кривая 304 рабочих характеристик обеспечивает максимальное выходное напряжение, достаточное для стабилизации дуги в аппарате для ручной сварки; однако эта кривая не позволяет работать в установившемся режиме в точке OP. ИНЖИР. 7 показано, что существует семейство рабочих кривых, при которых достигаются максимальное выходное напряжение и рабочая точка.Выбор соответствующего ограничительного дросселя и количества витков во вспомогательных обмотках позволяет реализовать эти два параметра.
Другой аспект настоящего изобретения схематично проиллюстрирован на фиг. 8 и 9. Чтобы уменьшить нагрузку на первичную схему или обмотки инвертора 10, однонаправленные устройства 210, 212 являются переключаемыми устройствами, такими как тиристоры S5, S6 соответственно. Эти переключатели S5, S6 приводятся в действие схемой 100 стробирования (выходы 5 и 6, как показано на фиг.1) для их включения при более низких средних выходных токах.Чтобы снизить нагрузку на первичные цепи, тиристоры S5, S6 блокируются, когда во время операции сварки средний выходной ток превышает предварительно выбранный уровень, показанный как 175 ампер на фиг. 9. Этот уровень тока измеряется шунтом 120, и его выход направляется в схему 100 схематически проиллюстрированной линией 122. На практике инвертор 10 представляет собой инвертор на 300 ампер, а точка отсечки составляет приблизительно от 150 до 175 ампер. Выше этого отсечки SCR S5, S6 запрещены, так что обмотки 200, 202 (S5, S6) не работают.Ниже точки отсечки обмотки 200, 202 работают в соответствии с предыдущим обсуждением.
Схемы электроники для хобби: Схема сварочного инвертора SMPS
Если вы ищете возможность заменить обычный сварочный трансформатор, сварочный инвертор — лучший выбор. Сварочный инвертор удобен и работает от постоянного тока. Текущий контроль поддерживается с помощью потенциометра.
Написал и представил: Dhrubajyoti Biswas
При разработке сварочного инвертора я применил прямой инвертор с топологией двух переключателей.Здесь входное линейное напряжение проходит через фильтр электромагнитных помех, а затем сглаживается с большой емкостью. Однако, поскольку импульс тока включения имеет тенденцию быть большим, необходимо наличие схемы плавного пуска. Поскольку переключение включено и конденсаторы первичного фильтра заряжаются через резисторы, мощность дополнительно обнуляется путем включения реле. В момент переключения мощности транзисторы IGBT используются и далее используются через управляющий трансформатор прямого затвора TR2 с последующим формированием схемы с помощью BC327.В этом сценарии используется схема управления UC3844, которая очень похожа на UC3842 с ограничением ширины импульса до 50% и рабочей частотой до 42 кГц. Схема управления получает питание от вспомогательного источника питания 17 В. Из-за больших токов в обратной связи по току используется трансформатор Tr3. Напряжение измерительного регистра 4R7 / 2W более или менее равно выходному току. Выходной ток можно дополнительно контролировать с помощью потенциометра P1. Его функция заключается в измерении пороговой точки обратной связи, а пороговое напряжение на выводе 3 UC3844 составляет 1 В.
Одним из важных аспектов силовых полупроводников является то, что они нуждаются в охлаждении, и большая часть выделяемого тепла отводится через выходные диоды. Верхний диод, состоящий из 2x DSEI60-06A, должен выдерживать ток в среднем 50 А и потери до 80 Вт. Нижний диод, то есть STTh300L06TV1, также должен иметь средний ток 100А и потери до 120Вт. С другой стороны, общие максимальные потери вторичного выпрямителя составляют 140 Вт. Выходной дроссель L1 дополнительно подключен к отрицательной шине.Это хороший сценарий, поскольку на радиатор не подается высокочастотное напряжение. Другой вариант — использовать диоды FES16JT или MUR1560. Однако важно учитывать, что максимальный ток нижнего диода в два раза больше тока верхнего диода. Фактически, вычисление потерь IGBT — сложная процедура, поскольку, помимо потерь на проводимость, еще одним фактором являются потери при переключении. Также каждый транзистор теряет около 50 Вт. Выпрямительный мост также теряет мощность до 30 Вт и размещается на том же радиаторе, что и IGBT, вместе с диодом сброса UG5JT.Также есть возможность заменить UG5JT на FES16JT или MUR1560. Потеря мощности диодов сброса также зависит от конструкции Tr1, хотя потери меньше по сравнению с потерей мощности от IGBT. Выпрямительный мост также приводит к потере мощности около 30 Вт. Кроме того, при подготовке системы важно не забывать масштабировать максимальный коэффициент нагрузки сварочного инвертора. Затем, основываясь на измерениях, вы можете быть готовы выбрать правильный размер датчика обмотки, радиатора и т. Д.Еще один хороший вариант — добавить вентилятор, так как он будет контролировать температуру.
Коммутационный трансформатор Тр1 намотан двумя ферритовыми ЭЭ сердечниками, и оба они имеют сечение центральной колонны 16×20 мм. Таким образом, общее поперечное сечение составляет 16×40 мм. Следует соблюдать осторожность, чтобы не оставлять воздушных зазоров в области сердечника. Хорошим вариантом было бы использовать 20-витковую первичную обмотку, намотав ее 14 проводами диаметром 0,5 мм. С другой стороны, вторичная обмотка имеет шесть медных полос 36×0.55мм. Трансформатор прямого привода Tr2, который разработан с низкой паразитной индуктивностью, следует трехсторонней схеме намотки с тремя витыми изолированными проводами диаметром 0,3 мм и обмотками по 14 витков. Активная часть изготовлена из стали h32 с диаметром средней колонны 16 мм и без зазоров. Трансформатор тока Tr3 выполнен из дросселей для подавления электромагнитных помех. В то время как первичная обмотка имеет только 1 виток, вторичная обмотана 75 витками провода 0,4 мм. Один из важных вопросов — соблюдение полярности обмоток.В то время как L1 имеет ферритовый сердечник EE, средний столбец имеет поперечное сечение 16×20 мм с 11 витками медной полосы 36×0,5 мм. Кроме того, общий воздушный зазор и магнитная цепь настроены на 10 мм, а его индуктивность составляет 12 мкГн cca.
Обратная связь по напряжению на самом деле не мешает сварке, но определенно влияет на потребление и потерю тепла в режиме ожидания. Использование обратной связи по напряжению очень важно из-за высокого напряжения около 1000 В. Более того, ШИМ-контроллер работает с максимальным рабочим циклом, что увеличивает расход энергии, а также увеличивает количество нагревательных компонентов.
Постоянный ток 310 В может быть извлечен из сети 220 В после выпрямления через мостовую сеть и фильтрации через пару электролитических конденсаторов 10 мкФ / 400 В.
Источник питания 12 В может быть получен от готового блока адаптера 12 В или построен дома с помощью информации, предоставленной здесь :
.